
Learning Functors using Gradient Descent
Bruno Gavranović

University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia

Neural networks have become an in-
creasingly popular tool for solving many
real-world problems. They are a gen-
eral framework for differentiable optimiza-
tion which includes many other machine
learning approaches as special cases. In
this paper we build a categorical formal-
ism around a class of neural networks ex-
emplified by CycleGAN [13]. CycleGAN
is a collection of neural networks, closed
under composition, whose inductive bias
is increased by enforcing composition in-
variants, i.e. cycle-consistencies. Inspired
by Functorial Data Migration [12], we
specify the interconnection of these net-
works using a categorical schema, and net-
work instances as set-valued functors on
this schema. We also frame neural net-
work architectures, datasets, models, and
a number of other concepts in a categor-
ical setting and thus show a special class
of functors, rather than functions, can be
learned using gradient descent. We use
the category-theoretic framework to con-
ceive a novel neural network architecture
whose goal is to learn the task of object in-
sertion and object deletion in images with
unpaired data. We test the architecture
on a CelebA dataset and obtain promising
results.

1 Introduction
Compositionality describes and quantifies how
complex things can be assembled out of simpler
parts. It is a principle which tells us that the
design of abstractions in a system needs to be
done in such a way that we can intentionally for-
get their internal structure [7]. There are two
interesting properties of neural networks related
to compositionality: (i) they are compositional
Bruno Gavranović: bruno@brunogavranovic.com

– increasing the number of layers tends to yield
better performance, and (ii) they are discovering
(compositional) structures in data.

Figure 1: We devise a novel method to regularize neural
network training using a category presented by genera-
tors and relations. We train neural networks to remove
glasses from the face of a person and insert them para-
metrically, without ever telling the neural networks that
the image contains glasses or even that it contains a
person.

Furthermore, an increasing number of com-
ponents of a modern deep learning system is
learned. For instance, Generative Adversarial
Networks [6] learn the cost function. The paper
Learning to Learn by gradient descent by gradient
descent [2] specifies networks that learn the op-
timization function. The paper Decoupled Neural
Interfaces using Synthetic Gradients [8] specifies
how gradients themselves can be learned. The
system in [8] can be thought of as a cooperative
multi-player game, where some players depend on
other ones to learn but can be trained in an asyn-
chronous manner.
These are just rough examples, but they give

a sense of things to come. As more and more
components of these systems stop being fixed
throughout training, there is an increasingly
larger need for more precise formal specification
of the things that do stay fixed. This is not an
easy task; the invariants across all these networks
seem to be rather abstract and hard to describe.
In this paper we explore the hypothesis that the
language of category theory could be well suited
to describe these systems in a precise manner.

1

mailto:bruno@brunogavranovic.com

Inter-domain mappings. Recent advances in
neural networks describe and quantify the pro-
cess of discovering high-level, abstract structure
in data using gradient information. As such,
learning inter-domain mappings has received in-
creasing attention in recent years, especially in
the context of unpaired data and image-to-image
translation [1, 13]. Pairedness of datasets X and
Y generally refers to the existence of some invert-
ible function X → Y . Note that in classification
we might also refer to the input dataset as being
paired with the dataset of labels, although the
meaning is slightly different as we cannot obvi-
ously invert a label f(x) for some x ∈ X.

Obtaining datasets that contain extra informa-
tion about inter-domain relationships is a much
more difficult task than just the collection of the
relevant datasets. Consider the task of object
removal from images; obtaining pairs of images
where one of them lacks a certain object, with
everything else the same, is much more difficult
than the mere task of obtaining two sets of im-
ages: one that contains that object and one that
does not, with everything else varying. Moreover,
we further motivate this example by the reminis-
cence of the way humans reason about the miss-
ing object: simply by observing two unpaired sets
of images, where we are told one set of images lack
an object, we are able to learn what the missing
object looks like.

Motivated by the sucess of Generative Ad-
versarial Networks (GANs) [6] in image genera-
tion, some existing unsupervised learning meth-
ods [1, 13] use adversarial losses to learn the true
data distribution of given domains of natural im-
ages and cycle-consistency losses to learn coher-
ent mappings between those domains. Cycle-
GAN is an architecture which learns a one-to-one
mapping between two domains. Each domain has
an associated discriminator, while the mappings
between these domains correspond to generators.
The set of generators in CycleGAN is a collection
of neural networks which is closed under com-
position, and whose inductive bias is increased
by enforcing composition invariants, i.e. cycle-
consistencies. The canonical example of this iso-
morphism used in [13] is that between the images
of horses and zebras. Simply by changing the
texture of the animal in such an image we can,
approximately, map back and forth between these
images.

Outline of the main contributions. In this
paper we take a collection of abstractions known
to deep learning practitioners and translate them
into the language of category theory.

We package a notion of the interconnection of
networks as a free category Free(G) on some
graph G and specify any equivalences between
networks as relations between morphisms as a
quotient category Free(G)/∼. Given such a cat-
egory – which we call a schema, inspired by [12]
– we specify the architectures of its networks as
a functor Arch. We reason about various other
notions found in deep learning, such as datasets,
embeddings, and parameter spaces. The training
process is associated with an indexed family of
functors {Hp : Free(G) → Set}Ti=1, where T is
the number of training steps and p is some choice
of a parameter for that architecture.

Analogous to standard neural networks – we
start with a randomly initialized Hp and itera-
tively update it using gradient descent. Our op-
timization is guided by two objectives. These ob-
jectives arise as a natural generalization of those
found in [13]. One of them is the adversarial ob-
jective – the minmax objective found in any Gen-
erative Adversarial Network. The other one is a
generalization of the cycle-consistency loss which
we call path-equivalence loss.

This approach yields useful insights and a large
degree of generality: (i) it enables learning with
unpaired data as it does not impose any con-
straints on ordering or pairing of the sets in a
category, and (ii) although specialized to gener-
ative models in the domain of computer vision,
this approach is domain-independent and general
enough to hold in any domain of interest, such
as sound, text, or video. This allows us to con-
sider a subcategory of SetFree(G) as a space in
which we can employ a gradient-based search. In
other words, we use the structure of categorical
schemas as regularization during training, such
that the imposed relationships guide the learning
process.

We show that for specific choices of Free(G)/∼
and the dataset we recover GAN [6] and Cycle-
GAN [13]. Furthermore, a novel neural network
architecture capable of learning to remove and in-
sert objects into an image with unpaired data is
proposed. We outline its categorical perspective
and test it on the CelebA dataset.

2

2 Categorical Deep Learning

Modern deep learning optimization algorithms
can be framed as a gradient-based search in some
function space Y X , where X and Y are sets that
have been endowed with extra structure. Given
some sets of data points DX ⊆ X, DY ⊆ Y , a
typical approach for adding inductive bias relies
on exploiting this extra structure associated to
the data points embedded in those sets, or those
sets themselves. This structure includes domain-
specific features which can be exploited by var-
ious methods – convolutions for images, Fourier
transform for audio, and specialized word embed-
dings for textual data.
In this section we develop the categorical tools

to increase inductive bias of a model by enforc-
ing the composition invariants of its constituent
networks.

2.1 Model schema

Many deep learning models are complex systems,
some comprised of several neural networks. Each
neural network can be identified with domain X,
codomain Y , and a differentiable parametrized
function X → Y . Given a collection of such net-
works, we use a directed multigraph to capture
their interconnections. Each directed multigraph
G gives rise to a corresponding free category on
that graph Free(G). Based on this construction,
Figure 2 shows the interconnection pattern for
generators of two popular neural network archi-
tectures: GAN [6] and CycleGAN [13].

Latent space
•

Image
•

h

no equations

(a) GAN

Horse• Zebra•

f

g

g ◦ f = idH
f ◦ g = idZ

(b) CycleGAN

Figure 2: Bird’s-eye view of two popular neural network
models

Observe that CycleGAN has some additional
properties imposed on it, specified by equa-
tions in Figure 2 (b). These are called
cycle-consistency conditions and can roughly
be stated as follows: given domains A and
B considered as sets, a ≈ g(f(a)), ∀a ∈ A and

b ≈ f(g(b)), ∀b ∈ B. A particularly clear diagram
of the cycle-consistency condition can be found in
Figure 3 in [13].
Our approach involves a realization that cycle-

consistency conditions can be generalized to
path equivalence relations, or, in formal terms
- a congruence relation. The condition a ≈
g(f(a)),∀a ∈ A can be reformulated such that it
does not refer to the elements of the set a ∈ A. By
eta-reducing the equation we obtain ida = g ◦ f .
Similar reformulation can be done for the other
condition: idb = f ◦ g.

This allows us to package the newly formed
equations as equivalence relations on the sets
Free(G)(A,A) and Free(G)(B,B), respectively.
This notion can be further packaged into a quo-
tient category Free(G)/∼, together with the quo-
tient functor Free(G) Q−→ Free(G)/∼.
This formulation – as a free category on a graph

G – represents the cornerstone of our approach.
These schemas allow us to reason solely about
the interconnections between various concepts,
rather than jointly with functions, networks or
other some other sets. All the other constructs in
this paper are structure-preserving maps between
categories whose domain, roughly, can be traced
back to Free(G).

2.2 What is a neural network?

In computer science, the idea of a neural network
colloquially means a number of different things.
At a most fundamental level, it can be interpreted
as a system of interconnected units called neu-
rons, each of which has a firing threshold acting
as an information filtering system. Drawing in-
spiration from biology, this perspective is thor-
oughly explored in literature. In many contexts
we want to focus on the mathematical properties
of a neural network and as such identify it with
a function between sets A f−→ B. Those sets are
often considered to have extra structure, such as
those of Euclidean spaces or manifolds. Func-
tions are then considered to be maps of a given
differentiability class which preserve such struc-
ture. We also frequently reason about a neural
network jointly with its parameter space P as a
function of type f : P × A → B. For instance,
consider a classifier in the context of supervised
learning. A convolutional neural network whose
input is a 32 × 32 RGB image and output is real

3

number can be represented as a function with the
following type: Rn × R32×32×3 → R, for some
n ∈ N. In this case Rn represents the parameter
space of this network.

The former (A→ B) and the latter (P ×A→
B) perspective on neural networks are related.
Namely, consider some function space BA. Any
notion of smoothness in such a space is not well
defined without any further assumptions on sets
A or B. This is the reason deep learning em-
ploys a gradient-based search in such a space via
a proxy function P ×A→ B. This function spec-
ifies an entire parametrized family of functions of
type A → B, because partial application of each
p ∈ P yields a function f(p,−) : A → B. This
choice of a parametrized family of functions is
part of the inductive bias we are building into the
training process. For example, in computer vision
it is common to restrict the class of functions to
those that can be modeled by convolutional neu-
ral networks.

With this in mind, we recall the model schema.
For each morphism A → B in Free(G) we are
interested in specifying a parametrized function
f : P×A→ B, i.e. a parametrized family of func-
tions in Set. The function f describes a neural
network architecture, and a choice of a partially
applied p ∈ P to f describes a choice of some
parameter value for that specific architecture.

We capture the notion of parametrization with
a category Para [4]. It is a strict symmetric
monoidal category whose objects are Euclidean
spaces and morphisms Rn → Rm are, roughly,
differentiable functions of type Rp×Rn → Rm, for
some p. We refer to Rp as the parameter space.
Composition of morphisms in Para is defined in
such a way that it explicitly keeps track of pa-
rameters. For more details, we refer the reader
to [4].

A closely related construction we use is Euc,
the strict symmetric monoidal category whose ob-
jects are finite-dimensional Euclidean spaces and
morphisms are differentiable maps. A monoidal
product on Euc is given by the cartesian product.

We package both of these notions – choosing an
architecture and choosing parameters – into func-
tors whose domain is Free(G) and codomains are
Para and Euc, respectively.

2.3 Network architecture
We now formally specify model architecture as a
functor. Observe that the action on morphisms
is defined on the generators in Free(G).

Definition 1. Architecture of a model is a func-
tor Arch : Free(G)→ Para.

• For each A ∈ Ob(Free(G)), it specifies an
Euclidean space Ra;

• For each generating morphism A
f−→ B in

Free(G), it specifies a morphism
Ra Arch(f)−−−−→ Rb which is a differentiable
parametrized function of type Rn×Ra → Rb.

Given a non-trivial composite morphism f = fn◦
fn−1 ◦ · · · ◦ f1 in C, the image of f under Arch
is the composite of the image of each constituent:
Arch(f) = Arch(fn) ◦ Arch(fn−1) ◦ · · · ◦ Arch(f1).
Arch maps identities to the projection π2 : I ×
A→ A.

The choice of architecture Free(G) Arch−−−→ Para
goes hand in hand with the choice of an embed-
ding.

Proposition 2. An embedding is a functor
|Free(G)| E−→ Set which agrees with Arch on ob-
jects.

Notice that the codomain of E is Set, rather
than Para, as Para and Euc have the same ob-
jects and objects in Euc are just sets with extra
structure.
Embedding E and Arch come up in two dif-

ferent scenarios. Sometimes we start out with
a choice of architecture which then induces the
embedding. In other cases, the embedding is
given to us beforehand and it restricts the pos-
sible choice of architectures.

3 Parameter space
Each network architecture f : Rn × Ra → Rb
comes equipped with its parameter space Rn.
Just as Free(G) Arch−−−→ Para is a categorical gen-
eralization of architecture, we now show there ex-
ists a categorical generalization of a parameter
space. In this case – it is the parameter space of
a functor. Before we move on to the main defi-
nition, we package the notion of parameter space
of a function f : Rn × Ra → Rb into a simple
function p(f) = Rn.

4

Definition 3 (Functor parameter space).
Let GenFree(G) the set of generators in
Free(G). The total parameter map
P : Ob(ParaFree(G))→ Ob(Euc) assigns to
each functor Free(G) Arch−−−→ Para the product
of the parameter spaces of all its generating
morphisms:

P(Arch) :=
∏

f∈GenFree(G)

p(Arch(f))

Essentially, just as p returns the parameter
space of a function, P does the same for a functor.
We are now in a position to talk about

parameter specification. Recall the non-
categorical setting: given some network architec-
ture f : P ×A→ B and a choice of p ∈ p(f) we
can partially apply the parameter p to the net-
work to get f(p,−) : A → B. This admits a
straightforward generalization to the categorical
setting.

Definition 4 (Parameter specification). Param-
eter specification PSpec is a dependently typed
function with the following signature:

(Arch : Ob(ParaFree(G)))× P(Arch)→ Ob(EucFree(G))
(1)

Given an architecture Arch and a parameter
choice (pf)f∈GenFree(G) ∈ P(Arch) for that ar-
chitecture, it defines a choice of a functor in
EucFree(G). This functor acts on objects the
same as Arch. On morphisms, it partially applies
every pf to the corresponding morphism Arch(f) :
Rn × Ra → Rb, thus yielding f(pf ,−) : Ra → Rb
in Euc.

Elements of EucFree(G) will play a central role
later on in the paper. These elements are func-
tors which we will call Models. Given some ar-
chitecture Arch and a parameter p ∈ P(Arch), a
model Free(G) Modelp−−−−→ Euc generalizes the stan-
dard notion of a model in machine learning – it
can be used for inference and evaluated.
Analogous to database instances in [12], we call

a network instance Hp the composition of some
Modelp with the forgetful functor Euc U−→ Set.
That is to say, a network instance is a functor
Free(G) Hp−−→ Set := U ◦Modelp.
We shed some more light on these constructions

using Figure 3.

Free(G) Para

Euc

Set

Arch

Modelp

Hp

U

Figure 3: Free(G) is the domain of three types of func-
tors of interest: Arch, Modelp and Hp.

4 Data
We have described constructions which allow us
to pick an architecture for a schema and consider
its different models Modelp, each of them iden-
tified with a choice of a parameter p ∈ P(Arch).
In order to understand how the optimization pro-
cess is steered in updating the parameter choice
for an architecture, we need to understand a vital
component of any deep learning system – datasets
themselves.
This necessitates that we also understand the

relationship between datasets and the space they
are embedded in. Recall the embedding functor
and the notation |C| for the discretizaton of some
category C.

Definition 5. Let |Free(G)| E−→ Set be the
embedding. A dataset is a subfunctor DE :
|Free(G)| → Set of E. DE maps each ob-
ject A ∈ Ob(Free(G)) to a dataset DE(A) :=
{ai}Ni=1 ⊆ E(A).

Note that we refer to this functor in the singu-
lar, although it assigns a dataset to each object
in Free(G). We also highlight that the domain
of DE is |Free(G)|, rather than Free(G). We
generally cannot provide an action on morphisms
because datasets might be incomplete. Going
back to the example with Horses and Zebras – a
dataset functor on Free(G) in Figure 2 (b) maps
Horse to the set of obtained horse images and
Zebra to the set of obtained zebra images.
The subobject relation DE ⊆ E in Proposition

5 reflects an important property of data; we can-
not obtain some data without it being in some
shape or form, embedded in some larger space.
Any obtained data thus implicitly fixes an em-
bedding.

5

Observe that when we have a dataset in stan-
dard machine learning, we have a dataset of
something. We can have a dataset of historical
weather data, a dataset of housing prices in New
York or a dataset of cat images. What ties all
these concepts together is that each element ai of
some dataset {ai}Ni=1 is an instance of a more gen-
eral concept. As a trivial example, every image in
the dataset of horse images is a horse. The word
horse refers to a more general concept and as such
could be generalized from some of its instances
which we do not possess. But all the horse images
we possess are indeed an example of a horse. By
considering everything to be embedded in some
space E(A) we capture this statement with the
relation {ai}Ni=1 ⊆ C(A) ⊆ E(A). Here C(A) is
the set of all instances of some notion A which
are embedded in E(A). In the running example
this corresponds to all images of horses in a given
space, such as the space of all 64 × 64 RGB im-
ages. Obviously, the precise specification of C(A)
is unknown – as we cannot enumerate or specify
the set of all horse images.

We use such calligraphy to denote this is an
abstract concept. Despite the fact that its pre-
cise specification is unknown, we can still reason
about its relationship to other structures. Fur-
thermore, as it is the case with any abstract no-
tion, there might be some edge cases or it might
turn out that this concept is ambiguously defined
or even inconsistent. Moreover, it might be possi-
ble to identify a dataset with multiple concepts; is
a dataset of male human faces associated with the
concept of male faces or is it a non-representative
sample of all faces in general? We ignore these
concerns and assume each dataset is a dataset of
some well-defined, consistent and unambiguous
concept. This does not change the validity of the
rest of the formalism in any way as there exist
plenty of datasets satisfying such a constraint.

Armed with intuition, we show this admits a
generalization to the categorical setting. Just
as {ai}Ni=1 ⊆ C(A) ⊆ E(A) are all subsets of
E(A) we might hypothesize the domain of C is
|Free(G)| and that DE ⊆ C ⊆ E are all subfunc-
tors of E. However, just as we assign a set of
all concept instances to objects in Free(G), we
also assign a function between these sets to mor-
phisms in Free(G). Unlike with datasets, this
can be done because, by definition, these sets are
not incomplete.

Definition 6. Given a schema Free(G)/∼ and
a dataset |Free(G)| DE−−→ Set, a concept asso-
ciated with the dataset DE embedded in E is a
functor C : Free(G)/∼ → Set such that DE ⊆
C ◦ I ⊆ E. We say C picks out sets of concept
instances and functions between those sets.

Another way to understand a concept
Free(G)/∼ C−→ Set is that it is required
that a human observer can tell, for each
A ∈ Ob(Free(G)) and some a ∈ E(A) whether
a ∈ C(A). Similarly for morphisms, a human
observer should be able to tell if some function
C(A) f−→ C(B) is an image of some morphism in
Free(G)/∼ under C.
For instance, consider the GAN schema in Fig-

ure 2 (a) where C(Image) is a set of all images
of human faces embedded in some space such as
R64×64×3. For each image in this space, a human
observer should be able to tell if that image con-
tains a face or not. We cannot enumerate such a
set C(Image) or write it down explicitly, but we
can easily tell if an image contains a given con-
cept. Likewise, for a morphism in the CycleGAN
schema (Figure 2 (b)), we cannot explicitly write
down a function which transforms a horse into a
zebra, but we can tell if some function did a good
job or not by testing it on different inputs.
The most important thing related to this

concept is that this represents the goal of
our optimization process. Given a dataset
|Free(G)| DE−−→ Set, want to extend it into a func-
tor Free(G)/∼ C−→ Set, and actually learn its im-
plementation.

4.1 Restriction of network instance to the
dataset

We have seen how data is related to its embed-
ding. We now describe the relationship between
network instances and data.
Observe that network instance Hp maps each

object A ∈ Ob(Free(G)) to the entire embed-
ding Hpi(A) = E(A), rather than just the con-
cept C(A). Even though we started out with an
embedding E(A), we want to narrow that embed-
ding down just to the set of instances correspond-
ing to some concept A.
For example, consider a diagram such as the

one in Figure 2 (a). Suppose the result of a suc-
cessful training was a functor Free(G) H−→ Set.

6

Suppose that the image of h is H(h) : [0, 1]100 →
[0, 1]64×64×3. As such, our interest is mainly
the restriction of [0, 1]64×64×3 to C(Image), the
image of [0, 1]100 under H(h), rather than the
entire [0, 1]64×64×3. In the case of horses and
zebras in Figure 2 (b), we are interested in a
map C(Horse) → C(Zebra) rather than a map
[0, 1]64×64×3 → [0, 1]64×64×3. In what follows
we show a construction which restricts some Hp

to its smallest subfunctor which contains the
dataset DE . Recall the previously defined inclu-
sion |Free(G)| I

↪−→ Free(G).

Definition 7. Let DE : |Free(G)| → Set be the
dataset. Let Free(G) Hp−−→ Set be the network
instance on Free(G). The restriction of Hp to
DE is a subfunctor of Hp defined as follows:

IHp :=
⋂

{G∈Sub(Hp))|DE⊆G◦I}
G

where Sub(Hp) is the set of subfunctors of Hp.

This definition is quite condensed so we sup-
ply some intuition. We first note that the meet
is well defined because each G is a subfunctor of
H. In Figure 4 we depict the newly defined con-
structions using a commutative diagram.

Free(G)

|Free(G)| Set

⊆
Hp

IHp
I

⊆

DE

E

Figure 4: The functor Hp contains IHp in such a way
that DE is a subfunctor of IHp ◦ I.

It is useful to think of IH as a restriction of
H to the smallest functor which fits all data and
mappings between the data. This means that IHp
contains all data samples specified by DE .

Corollary 8. DE is a subfunctor of IHp ◦ I:

Proof. This is straightforward to show, as IHp
is the intersection of all subobjects of H which,
when composed with the inclusion I contain DE .
Therefore IHp ◦ I contains DE as well.

5 Optimization
We now describe how data guides the search pro-
cess. We identify the goal of this search with
the concept functor Free(G)/∼ C−→ Set. This
means that given a schema Free(G)/∼ and data
|Free(G)| DE−−→ Set we want to train some archi-
tecture and find a functor Free(G)/∼ H′

−→ Set
that can be identified with C. Of course, unlike
in the case of the concept C, the implementation
of H ′ is something that will be known to us.
We now define the notion of a task.

Definition 9. Let G be a directed multigraph and
∼ a congruence relation on Free(G). A task is a
triple (G,∼, |Free(G)| DE−−→ Set).

In other words, a graph G and ∼ specify a
schema Free(G)/∼ and a functor DE specifies a
dataset for that schema. Each dataset is a dataset
of something and thus can be associated with a
functor Free(G)/∼ C−→ Set. Moreover, recall that
a dataset fixes an embedding E too, as DE ⊆ E.
This in turn also narrows our choice of architec-
ture Free(G) Arch−−−→ Para, as it has to agree with
the embedding on objects. This situation fully
reflects what happens in standard machine learn-
ing practice – a neural network P × A → B has
to be defined in such a way that its domain A
and codomain B embed the datasets of all of its
inputs and outputs, respectively.
Even though for the same schema Free(G)/∼

we might want to consider different datasets, we
will always assume a chosen dataset corresponds
to a single training goal C.

5.1 Optimization objectives

We generalize the training procedure described in
[13] in a natural way, free of ad-hoc choices.
Suppose we have a task (G,∼, |Free(G)| DE−−→

Set). After choosing an architecture
Free(G) Arch−−−→ Para consistent with the
embedding E and, hopefully, with the right
inductive bias, we start with a randomly chosen
parameter θ0 ∈ P(Arch). This amounts the

choice of a specific Free(G)
Modelθ0−−−−−→ Euc.

Using the loss function defined further down
in this section, we partially differentiate each
f : Rn × Ra → Rb ∈ GenFree(G) with respect to
the corresponding pf . We then obtain a new

7

parameter value for that function using some
update rule, such as Adam [9]. The product
of these parameters for each of the generators
(pf)f∈GenFree(G) (Definition 3) defines a new
parameter θ1 ∈ P(Arch) for the model Modelθ1 .
This procedure allows us to iteratively update
a given Modelθi and as such fixes a linear order
{θ0, θ1, . . . , θT } on some subset of P(Arch).
The optimization objective for a

model Free(G) Modelθ−−−−→ Euc and a task
(G,∼, |Free(G)| DE−−→ Set) is twofold. The total
loss will be stated as a sum of the adversarial loss
and a path-equivalence loss. We now describe
both of these losses. As we slowly transition to
standard machine learning lingo, we note that
some of the notation here will be untyped due to
the lack of the proper categorical understanding
of these concepts.1

We start by assigning a discriminator to each
object A ∈ Ob(Free(G)) using the following
function:

D : (A : Ob(Free(G)))→ Para(Arch(A),R)

This function assigns to each object A ∈
Ob(Free(G)) a morphisms in Para such that its
domain is that given by Arch(A). This will allow
us to compose compatible generators and discrim-
inators. For instance, consider Arch(A) = Ra.
Discriminator D(A) is then a function of type
Rq × Ra → R : Para(Ra,R), where Rq is the pa-
rameter space of the discriminator. As a slight
abuse of notation – and to be more in line with
machine learning notation – we will call DA dis-
criminator of the object A with some partially
applied parameter value D(A)(p,−).
In the context of GANs, when we refer to a

generator we refer to the image of a generating
morphism in Free(G) under Arch. Similarly as
with discriminators, a generator corresponding to
a morphism Ra f−→ Rb in Para with some par-
tially applied parameter value will be denoted us-
ing Gf .
The GAN minimax objective LBGAN for a gen-

erator Gf and a discriminator DB is stated in Eq.

1Categorical formulation of the adversarial component
of Generative Adversarial Networks is still an open prob-
lem. It seems to require nontrivial reformulations of ex-
isting constructions [4] and at least a partial integration
of Open Games [5] into the framework of gradient-based
optimization.

(2). In this formulation we use the Wasserstein
distance [3].

LBGAN (Gf ,DB) := E
b∼DE(B)

[DB(b)]

− E
a∼DE(A)

[DB(Gf (a))]
(2)

The generator is trained to minimize the loss in
the Eq. (2), while the discriminator is trained to
maximize it.
The second component of the total loss is a

generalization of cycle-consistency loss in Cycle-
GAN [13], analogous to the generalization of the
cycle-consistency condition in Section 2.1.

Definition 10. Let A
f−→−→
g

B and suppose there

exists a path equivalence f = g. For the equiva-
lence f = g and the model Free(G) Modeli−−−−→ Euc
we define a path equivalence loss Lf,g∼ as fol-
lows:

Lf,g∼ := Ea∼DE(A)
[
||Modeli(f)(a)−Modeli(g)(a)||1

]
This enables us to state the total loss simply as

a weighted sum of adversarial losses for all genera-
tors and path equivalence losses for all equations.

Definition 11. The total loss is given as
the sum of all adversarial and path equivalence
losses:

Li :=
∑

A
f−→B∈GenFree(G)

LBGAN (Gf ,DB) + γ
∑

f=g∈∼
Lf,g∼

where γ is a hyperparameter that balances be-
tween the adversarial loss and the path equiva-
lence loss.

5.2 Path equivalence relations
There is one interesting case of the total
loss – when the total path-equivalence loss is
zero:

∑
f=g∈∼ Lf,g∼ = 0. This tells us that

H(f) = H(g) for all f = g in ∼. In what follows
we elaborate on what this means by recalling how
Free(G) and Free(G)/∼ are related.
So far, we have been only considering schemas

given by Free(G). This indeed is a limiting fac-
tor, as it assumes the categories of interest are
only those without any imposed relations R be-
tween the generatorsG. One example of a schema
with relations is the CycleGAN schema 2 (b) for

8

which fixing a functor Free(G)/∼ → Set re-
quires that its image satisfies any relations im-
posed by Free(G)/∼. As neural network param-
eters usually are initialized randomly, any such
image in Set will most surely not preserve such
relations and thus will not be a proper functor
whose domain is Free(G)/∼.
However, this construction is a functor if we

consider its domain to be Free(G). Furthermore,
assuming a successful training process whose end
result is a path-equivalence relation preserving
functor Free(G) → Set, we show this induces
an unique Free(G)/∼ → Set (Figure 5).

Free(G)

Free(G)/∼ Set

H
Q

H′

Figure 5: Functor H which preserves path-equivalence
relations factors uniquely through Q.

Theorem 12. Let Q : Free(G) → Free(G)/∼
be the quotient functor and let H : Free(G) →
Set be a path-equivalence relation preserving
functor. Then there exists a unique functor H ′ :
Free(G)/∼ → Set such that H ′ ◦Q = H.

Proof. [11], Section 2.8., Proposition 1.

Finding such a functor H is no easier task
than finding a functor H ′. However, this con-
struction allow us to initially just guess a functor
Hθ0 , since this initial choice will not have to pre-
serve any relations. As training progresses and
the path-equivalence loss of a network instance
Free(G) Hθ−−→ Set converges to zero, by The-
orem 12 we show Hθ factors uniquely through
Free(G) Q−→ Free(G)/∼ via Free(G)/∼ H′

−→
Set.

5.3 Functor space
Given an architecture Arch, each choice of p ∈
P(Arch) specifies a functor of type Free(G) →
Set. In this way exploration of the parameter
space amounts to exploration of part of the func-
tor category SetFree(G). Roughly stated, this
means that a choice of an architecture adjoins
a notion of space to the image of PSpec(Arch,−)
in the functor category SetFree(G). This space
inherits all the properties of Euc.

By using gradient information to search the
parameter space P(Arch), we are effectively us-
ing gradient information to search part of the
functor space SetFree(G). Although we cannot
explicitly explore just SetFree(G)/∼, we penalize
the search method for veering into the parts of
this space where the specified path equivalences
do not hold. As such, the inductive bias of the
model is increased without special constraints on
the datasets or the embedding space - we merely
require that the space is differentiable and that is
has a sensible notion of distance.
Note that we do not claim inductive bias is suf-

ficient to guarantee training convergence, merely
that it is a useful regularization method applica-
ble to a wide variety of situations. As categories
can encode complex relationships between con-
cepts and as functors map between categories in a
structure-preserving way – this enables structured
learning of concepts and their interconnections in
a very general fashion.

6 Product task

We now present a choice of a dataset for the Cy-
cleGAN schema which makes up a novel task we
will call the product task. The interpretation of
this task comes in two flavors: as a simple change
of dataset for the CycleGAN schema and as a
method of composition and decomposition of im-
ages.
Just as we can take the product of two real

numbers a, b ∈ R with a multiplication function
(a, b) 7→ ab, we show we can take a product of
some two sets of images A,B ∈ Ob(Set) with a
neural network of type A×B → C. We will show
C ∈ Ob(Set) is a set of images which possesses
all the properties of a categorical product.
In a cartesian category such as Set there al-

ready exists a notion of a categorical product –
the cartesian product. Recall that the categorical
product A×B is uniquely isomorphic to any other
object AB which satisfies the universal property
of the categorical product of objects A and B.
This isomorphism will be central to the notion of
the product task.
By learning the model Free(G) Model−−−→ Euc

corresponding to the isomorphism AB ∼= A × B
we are also learning the projection maps θA and
θB of AB. This follows from the universal prop-
erty of the categorical product: πA ◦ d = θA and

9

πB◦d = θB. Note how AB differs from a cartesian
product. The domain of the corresponding pro-
jections θA and θB is not a simple pair of objects
(a, b) and thus these projections cannot merely
discard an element. θA needs to learn to remove
A from a potentially complex domain. As such,
this can be any complex, highly non-linear func-
tion which satisfies coherence conditions of a cat-
egorical product.
We will be concerned with supplying this new

notion of the product AB with a dataset and
learning the image of the isomorphism AB ∼=
A × B under Free(G) Model−−−→ Set. We illustrate
this on a concrete example. Consider a dataset A
of images of human faces, a dataset B of images
of glasses, and a dataset AB of people wearing
glasses. Learning this isomorphism amounts to
learning two things: (i) learning how to decom-
pose an image of a person wearing glasses (ab)i
into an image of a person aj and image bk of these
glasses, and (ii) learning how to map this person
aj and some other glasses bl into an image of a
person aj wearing glasses bl. Generally, AB rep-
resents some sort of composition of objects A and
B in the image space such that all information
about A and B is preserved in AB. Of course,
this might only be approximately true. Glasses
usually cover a part of a face and sometimes its
dark shades cover up the eyes – thus losing infor-
mation about the eye color in the image and ren-
dering the isomorphism invalid. However, in this
paper we ignore such issues and assume that the
networks Arch(d) can learn to unambiguously fill
part of the face where the glasses were and that
Arch(c) can learn to generate and superimpose
the glasses on the relevant part of the face.
Even though we use the same CycleGAN

schema from Figure 2 (b), we label one of its ob-
jects as AB and the other one as A × B. Note
that this does not change the schema itself, the
labeling is merely for our convenience. The no-
tion of a product or its projections is not captured
in the schema itself. As schemas are merely cate-
gories presented with generators G and relations
R, they lack the tools needed to encode a com-
plex abstraction such as a universal construction.
So how do we capture the notion of a product?
In this paper we frame this simply as a spe-

cific dataset functor, which we now describe. A
dataset functor corresponding to the product task
maps the object A×B in CycleGAN schema to a

cartesian product of two datasets, DE(A × B) =
{ai}Ni=0 × {bj}Mj=0. It maps the object AB to
a dataset {(ab)i}Ni=0. In this case ab, a, and b
are free to be any elements of datasets of a well-
defined concept C. Although the difference be-
tween the product task and the CycleGAN task
boils down to a different choice of a dataset func-
tor, we note this is a key aspect which allows for
a significantly different interpretation of the task
semantics.
By considering A as some image background

and B as the object which will be inserted, this
allows us to interpret d and c as maps which re-
move an object from the image and insert an ob-
ject in an image, respectively. This seems like a
novel method of object generation and deletion
with unpaired data, though we cannot claim to
know the literature well enough to be sure.

7 Experiments

In this section we test whether the product task
described in Section 6 can be trained in practice.
In our experiments we use the CelebA dataset.
CelebFaces Attributes Dataset (CelebA) [10] is

a large-scale face attributes dataset with more
than 200000 celebrity images, each with 40 at-
tribute annotations. Frequently used for image
generation purposes, it fits perfectly into the pro-
posed paradigm of the product task. The im-
ages in this dataset cover large pose variations
and background clutter. The attribute annota-
tions include “eyeglasses”, “bangs”, “pointy nose”,
“wavy hair” etc., as boolean flags for every image.
We used the attribute annotations to separate

CelebA into two datasets. The dataset DE(AB)
consists of images with the attribute “Eyeglasses”,
while the dataset DE(A) consists of all the other
images.
Given that we could not obtain a dataset of

images of just glasses, we set DE(BZ) = [0, 1]100

and add the subscript Z to B, as to make it more
clear we are not generating images of this object.
We refer to an element z ∈ DE(BZ) as a latent
vector, in line with machine learning terminology.
This is a parametrization of all the missing infor-
mation from A such that A×BZ ∼= AB.
We investigate three things: (i) whether it is

possible to generate an image of a specific per-
son wearing specific glasses, (ii) whether we can
change glasses that a person wears by changing

10

the corresponding latent vector, and (iii) whether
the same latent vector corresponds to the same
glasses, irrespectively of the person we pair it
with.

7.1 Results
In Figure 6 (left) we show the model learns the
task (i): generating image of a specific person
wearing glasses. Glasses are parametrized by the
latent vector z ∈ DE(BZ). The model learns to
warp the glasses and put them in the right angle
and size, based on the shape of the face. This
can especially be seen in Figure 8, where some
of the faces are seen from an angle, but glasses
still blend in naturally. Figure 6 (right) shows
the model learning task (ii): changing the glasses
a person wears.

(a) (b)

Figure 6: Parametrically adding glasses (a) and chang-
ing glasses (b) on a person’s face. (a): the leftmost
column shows a sample from the dataset ai ∈ DE(A).
Three rightmost columns show the result of c(ai, zj),
where zj ∈ DE(BZ) is a randomly sampled latent vec-
tor. (b): leftmost column shows a sample from the
dataset (ab)i ∈ DE(AB). Three rightmost columns
show the image c(πA(d((abi))), zj) which is the result
of changing the glasses of a person. The latent vector
zj ∈ DE(BZ) is randomly sampled.

Figure 7 shows the model can learn to remove
glasses. Observe how in some cases the model
did not learn to remove the glasses properly, as a
slight outline of glasses can be seen.
An interesting test of the learned semantics can

be done by checking if a specific randomly sam-
pled latent vector zj is consistent across different
images. Does the resulting image of the applica-
tion of g(ai, zj), contain the same glasses as we
vary the input image ai? The results for the tasks
(ii, iii) are shown in Figure 8. It shows how the
network has learned to associate a specific vector
zj to a specific type of glasses and insert it in a
natural way.

Figure 7: Top row shows samples (ab)i ∈ DE(AB).
Bottom row shows the result of a function
πA ◦ d : AB → A which removes the glasses from
the person.

We note low diversity in generated glasses and
a slight loss in image quality, which is due to sub-
optimal architecture choice for neural networks.
Despite this, these experiments show that it is
possible to train networks to (i) remove objects
from, and (ii) parametrically insert objects into
images in a unsupervised, unpaired fashion. Even
though none of the networks were told that im-
ages contain people, glasses, or objects of any
kind, we highlight that they learned to preserve
all the main facial features.

Figure 8: Bottom row shows true samples ai ∈ DE(A).
Top two rows show the image c(ai, zj) of adding glases
with a specific latent vector z1 for the topmost row and
z2 for the middle row. Observe how the general style
of the glasses stays the same in a given row, but gets
adapted for every person that wears them.

8 From categorical databases to deep
learning
The formulation presented in this paper bears a
striking and unexpected similarity to Functorial
Data Migration (FDM) [12]. Given a categorical
schema Free(G)/∼ on some graph G, FDM de-
fines a functor category SetFree(G)/∼ of database
instance on that schema. The notion of data in-

11

tegrity is captured by path equivalence relations
which ensure any specified “business rules” hold.
The analogue of data integrity in neural networks
is captured in the same way, first introduced in
CycleGAN [13] as cycle-consistency conditions.
The main difference between the approaches is
that in this paper we do not start out with an im-
plementation of the network instance functor, but
rather we randomly initialize it and then learn it.
This shows that the underlying structures used

for specifying data semantics for a given database
systems are equivalent to the structures used to
design data semantics which are possible to cap-
ture by training neural networks.

9 Conclusion and future work
In this paper we introduced a categorical formal-
ism for training networks given by an arbitrary
categorical schema. We showed a correspondence
between categorical formulation of databases and
neural network training and developed a rudi-
mentary theory of learning a specific class of func-
tors using gradient descent. Using the CelebA
dataset we obtained experimental results and ver-
ified that semantic image manipulation can be
carried out in a novel way.
We believe this to be one of the first steps ex-

ploring a rich connection between category theory
and machine learning. It opens up interesting av-
enues of research and is seems to be deserving of
further exploration.

References
[1] Amjad Almahairi, Sai Rajeswar, Alessan-

dro Sordoni, Philip Bachman, and Aaron C.
Courville. Augmented cyclegan: Learn-
ing many-to-many mappings from unpaired
data. CoRR, abs/1802.10151, 2018. URL
http://arxiv.org/abs/1802.10151.

[2] Marcin Andrychowicz, Misha Denil, Ser-
gio Gomez Colmenarejo, Matthew W. Hoff-
man, David Pfau, Tom Schaul, and Nando
de Freitas. Learning to learn by gradi-
ent descent by gradient descent. CoRR,
abs/1606.04474, 2016. URL http://arxiv.
org/abs/1606.04474.

[3] Martin Arjovsky, Soumith Chintala, and
Léon Bottou. Wasserstein GAN. arXiv e-
prints, art. arXiv:1701.07875, January 2017.

[4] Brendan Fong, David I. Spivak, and Rémy
Tuyéras. Backprop as functor: A compo-
sitional perspective on supervised learning.
CoRR, abs/1711.10455, 2017. URL http:
//arxiv.org/abs/1711.10455.

[5] Neil Ghani, Jules Hedges, Viktor Winschel,
and Philipp Zahn. Compositional game the-
ory. arXiv e-prints, art. arXiv:1603.04641,
March 2016.

[6] Ian Goodfellow, Jean Pouget-Abadie,
Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial
nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages
2672–2680. Curran Associates, Inc., 2014.
URL http://papers.nips.cc/paper/
5423-generative-adversarial-nets.
pdf.

[7] Jules Hedges. On compositionality. 2017.
URL https://julesh.com/2017/04/22/
on-compositionality/.

[8] Max Jaderberg, Wojciech Marian Czarnecki,
Simon Osindero, Oriol Vinyals, Alex Graves,
and Koray Kavukcuoglu. Decoupled neural
interfaces using synthetic gradients. CoRR,
abs/1608.05343, 2016. URL http://arxiv.
org/abs/1608.05343.

[9] Diederik P. Kingma and Jimmy Ba. Adam:
A method for stochastic optimization. In
ICLR, 2015.

[10] Ziwei Liu, Ping Luo, Xiaogang Wang, and
Xiaoou Tang. Deep learning face attributes
in the wild. In Proceedings of International
Conference on Computer Vision (ICCV),
2015.

[11] Saunders MacLane. Categories for the Work-
ing Mathematician. Springer-Verlag, New
York, 1971. Graduate Texts in Mathemat-
ics, Vol. 5.

[12] David I. Spivak. Functorial data migration.
CoRR, abs/1009.1166, 2010. URL http://
arxiv.org/abs/1009.1166.

[13] Jun-Yan Zhu, Taesung Park, Phillip Isola,
and Alexei A. Efros. Unpaired image-to-
image translation using cycle-consistent ad-
versarial networks. CoRR, abs/1703.10593,
2017. URL http://arxiv.org/abs/1703.
10593.

12

http://arxiv.org/abs/1802.10151
http://arxiv.org/abs/1606.04474
http://arxiv.org/abs/1606.04474
http://arxiv.org/abs/1711.10455
http://arxiv.org/abs/1711.10455
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://julesh.com/2017/04/22/on-compositionality/
https://julesh.com/2017/04/22/on-compositionality/
http://arxiv.org/abs/1608.05343
http://arxiv.org/abs/1608.05343
http://arxiv.org/abs/1009.1166
http://arxiv.org/abs/1009.1166
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593

	Introduction
	Categorical Deep Learning
	Model schema
	What is a neural network?
	Network architecture

	Parameter space
	Data
	Restriction of network instance to the dataset

	Optimization
	Optimization objectives
	Path equivalence relations
	Functor space

	Product task
	Experiments
	Results

	From categorical databases to deep learning
	Conclusion and future work
	References

