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Lenses may be characterised as objects in the category of algebras over
a monad, however they are often understood instead as morphisms, which
propagate updates between systems. Working internally to a category with
pullbacks, we define lenses as simultaneously functors and cofunctors between
categories. We show that lenses may be canonically represented as a particular
commuting triangle of functors, and unify the classical state-based lenses with
both c-lenses and d-lenses in this framework. This new treatment of lenses leads
to considerable simplifications that are important in applications, including a
clear interpretation of lens composition.

1 Introduction
Lenses form a mathematical structure that aims to capture the fundamental aspects of
certain synchronisations between pairs of systems. The central goal of such synchronisation
is to coherently propagate updates in one system to updates in another, and vice versa.
The precise nature of the synchronisation process depends closely on the type of system
being studied, and thus many different kinds of lenses have been defined to characterise
various applications and examples.

Although a relatively recent subject for detailed abstract study, lenses are an impressive
example of applied category theory, playing major roles in database view updating, in
Haskell programs of many kinds, and in diverse examples of Systems Interoperations, Data
Sharing, and Model-Driven Engineering. Thus, further clarifying the category-theoretic
status and systematising the use of lenses, as this paper aims to do, is an important part
of applied category theory.

Lenses were originally introduced [8] to provide a solution to the view-update problem
[3]. In treatments of the view-update problem systems are generally modelled as a set of
states, where it is possible to update from one state of the system to any other, and the
only information retained about this update are its initial and final states. Thus a system
may be understood as a codiscrete category on its set of states S with set of updates S×S
given by a pair of initial and final states.

Lenses have long been recognised to be some kind of morphism between systems. An
obvious notion of morphism between systems is simply a function g : S → V between their
sets of states. Since systems may be modelled as codiscrete categories, there is also an
induced function g × g : S × S → V × V between the sets of updates of these systems.
The map g : S → V is called the Get function and provides the first component of a lens
between the systems S and V , often called the source and view.
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The second component of a lens is called the Put function p : S × V → S whose role
is less obvious. The set S × V may be interpreted as the set of anchored view updates via
the induced function g× 1V : S × V → V × V which produces a view update whose initial
state is given by the Get function. Therefore the induced function 〈π0, p〉 : S × V → S × S
may be regarded as the Put function propagating every anchored view update to a source
update, illustrated in the diagram below.

S s p(s, v)

V gs v

g ... ...

Frequently the Get and Put functions of a lens are required to satisfy three additional
axioms, called the lens laws, which ensure the synchronisation of updates between systems
is well-behaved.

S × V S

V

p

π1
g

S S × V

S

〈1S ,g〉

1S

p

S × V × V S × V

S × V S

π0,2

p×1V

p

p

In order from left to right: the Put-Get law ensures that the systems S and V are indeed
synchronised under the Get and Put functions; the Get-Put law ensures that anchored view
updates which are identities are preserved by the Put function; the Put-Put law ensures
that composite anchored view updates are preserved under the Put function.

In summary, a state-based lens [8], denoted Λ: S 
 V , consists of a Get function
g : S → V and a Put function p : S × V → S satisfying the lens laws. Early mathematical
work [13] characterised state-based lenses as algebras for a well-known monad,

Set�V −→ Set�V
g : S → V 7−→ π1 : S × V → V

which may be generalised to any category with finite products. It was later shown that
lenses are also coalgebras for a comonad [9] and may be defined inside any cartesian closed
category. While these works took the first steps towards internalisation of lenses, they
characterised lenses as objects in the category of Eilenberg-Moore (co)algebras, rather
than morphisms between sets, and did not account for composition of lenses.

A significant shortcoming of state-based lenses in many applications is they only de-
scribe synchronisation between systems as a set of states, or codiscrete categories, ignoring
the information on how states are updated. This motivated the independent development
of both c-lenses [14] and d-lenses [7] between systems modelled as arbitrary categories.
Making use of comma categories instead of products, c-lenses were defined as algebras for
a classical KZ-monad [17], and may be also understood as split Grothendieck opfibrations.
In contrast d-lenses were shown [11] to be more general, as split opfibrations without the
usual universal property, and could only be characterised as algebras for a semi-monad
satisfying an additional axiom.

Later work [12] showed that the category of state-based lenses (as morphisms) is a full
subcategory of the category of d-lenses (which also contains a subcategory of c-lenses).
Despite this unification of category-based lenses, composition was still defined in an ad
hoc fashion, and there was no mathematical explanation as to why lenses characterised as
algebras should be understood as morphisms.
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Summary of Paper
The contribution of this paper may be summarised as follows:

• Generalise the theory of lenses internal to any category E with pullbacks.

• Characterise internal cofunctors as spans of internal functors with left leg identity-
on-objects and right leg a discrete opfibration.

• Define an internal lens as an internal functor and an internal cofunctor, which provide
the appropriate notion of Get and Put, respectively.

• Show there is a well-defined category Lens(E) whose objects are internal categories
and whose morphisms are internal lenses.

• Demonstrate state-based lenses, c-lenses, and d-lenses as examples of internal lenses.

2 Background
This section provides a brief review of the relevant internal category theory required for the
paper, most of which can be found in standard references such as [4, 15, 16]. Throughout we
work internal to a category E with pullbacks, with the main examples being E = Set,Cat.

The idea is that a system may be defined as an internal category with an object of
states and an object of updates. An internal functor will later be interpreted as the Get
component of an internal lens, while internal discrete opfibrations will also be central in
defining the Put component of an internal lens. Codiscrete categories and arrow categories
are presented as examples and will later be used to define internal versions of state-based
lenses and c-lenses.

2.1 Internal Categories
Definition 1. An internal category V consists of an object of objects V0 and an object
of morphisms V1 together with a span,

V1

V0 V0

l0 r0 (1)

where l0 : V1 → V0 is the domain map and r0 : V1 → V0 is the codomain map, and the
pullbacks,

V2

V1 V1

V0

l1 r1

l0r0

y
V3

V2 V2

V1

l2 r2

l1r1

y
(2)

where V2 is the object of composable pairs and V3 is the object of composable triples,
as well as an identity map i : V0 → V1 and composition map c : V2 → V1 satisfying the
following commutative diagrams:

V0 V1

V1 V0

i

i

1V0 l0

r0

V1 V2 V1

V0 V1 V0

l0

l1 r1

c r0

l0 r0

V1 V2

V2 V1

〈il0,1〉

〈1,ir0〉

1V1 c

c

V3 V2

V2 V1

l1×c

c×r1

c

c

(3)
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Notation. The commutative diagrams (3) include universal morphisms induced by the
pullbacks (2) defined by the diagrams below:

V1

V0

V2

V1 V1

V0

l0

1V1
〈il0,1〉

i l1 r1

r0 l0

y

V1

V0

V2

V1 V1

V0

1V1

r0

〈1,ir0〉

il1 r1

r0 l0

y

V3

V2 V2

V2

V1 V1

V0

l2 r2

l1×c

l1 c
l1 r1

r0 l0

y

V3

V2 V2

V2

V1 V1

V0

l2 r2

c×r1

c r1
l1 r1

r0 l0

y
(4)

Example 1. A small category is an internal category in Set. Thus a small category
consists of a set of objects and a set of morphisms, together with functions specifying the
domain, codomain, identity, and composition.

Example 2. A (small) double category is an internal category in Cat, the category of
small categories and functors. Thus a double category consists of a category of objects
and a category of morphisms, together with functors specifying the domain, codomain,
identity, and composition.

Example 3. Assume E has finite limits. A codiscrete category is an internal category
whose object of morphisms is the product V × V of its object of objects V , with domain
and codomain maps given by the left and right projections:

V × V

V V

π0 π1

The identity map is given by the diagonal 〈1V , 1V 〉 : V → V ×V , and object of composable
pairs is given by the product V ×V ×V , with the composition map defined by the following
universal morphism:

V × V × V

V V × V V

π0 π2π0,2

π0 π1

Example 4. Let V be an internal category. The arrow category Φ(V) has an object of
objects V1 and an object of morphisms V11 defined by the pullback,

V11

V2 V2

V1 V1 V1

〈σ,ρ〉 〈λ,τ〉

l1 c c r1

y

with domain map σ : V11 → V1 and codomain map τ : V11 → V1. The pullback V11 may
be understood as the object of commutative squares in V. The identity and composition
maps require tedious invention of notation to define precisely, however we note they are
induced from the diagrams (3).
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2.2 Internal Functors
Definition 2. Let S and V be internal categories. An internal functor G : S→ V consists
of morphisms,

g0 : S0 −→ V0 g1 : S1 −→ V1

satisfying the following commutative diagrams:

S0 S1 S0

V0 V1 V0

g0

l0 r0

g1 g0

l0 r0

S0 S1

V0 V1

i

g0 g1

i

S2 S1

V2 V1

c

g2 g1

c

(5)

Notation. The morphism g2 : S2 → V2 present in (5) is defined using the universal property
of the pullback via the diagram below:

S2

S1 S1
V2

V1 V1

V0

l1 r1

g2

g1 g1l1 r1

r0 l0

y
(6)

Remark. Given an internal category V, the identity functor consists of a pair of morphisms:

1V0 : V0 −→ V0 1V1 : V1 −→ V1

Given internal functors G : S→ V and H : V→ U, their composite functor HG : S→ U
consists of a pair of morphisms:

h0g0 : S0 −→ U0 h1g1 : S1 −→ U1

Composition of internal functors is both unital and associative, as it is induced by com-
position of morphisms in E .
Definition 3. Let Cat(E) be the category whose objects are internal categories and whose
morphisms are internal functors.
Example 5. The category of sets and functions Set has pullbacks, thus we obtain the
familiar example Cat = Cat(Set) of small categories and functors between them.
Example 6. The category Cat has pullbacks, so we obtain the category Dbl = Cat(Cat)
of double categories and (double) functors between them.
Remark. The category Cat(E) has all pullbacks. Given internal functors G : S → V and
H : U→ V, their pullback is the category S×V U constructed from the pullbacks,

S0 ×V0 U0

S0 U0

V0
g0 h0

y
S1 ×V1 U1

S1 U1

V1
g1 h1

y

which define the object of objects and object of morphisms, respectively. The rest of the
structure is defined using the universal property of the pullback. Therefore internal double
categories may be defined as categories internal to E ′ = Cat(E).
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Example 7. An (internal) discrete opfibration is an internal functor G : S→ V such that
the following diagram is a pullback:

S1

S0 V1

V0

l0 g1

g0 l0

y

Note the identity functor is a discrete opfibration, and the composite of discrete opfibra-
tions is a discrete opfibration using the Pullback Pasting Lemma.

Definition 4. Let DOpf(E) be the category whose objects are internal categories and
whose morphisms are discrete opfibrations.

3 Internal Cofunctors
This section introduces the notion of an internal cofunctor and proves a useful represen-
tation of internal cofunctors as certain spans of internal functors. Since their introduction
[1] there has been almost no work on cofunctors apart from the recent reference [2]. To
avoid confusion, we explicitly note that a cofunctor is not a contravariant functor.

The idea of a cofunctor is to generalise discrete opfibrations, providing a way to lift
certain morphisms while preserving identities and composition. Cofunctors are dual to
functors in the sense that they lift morphisms in the opposite direction to the object
assignment, while functors push-forward morphisms in the same direction. In the context
of synchronisation, a cofunctor will later be interpreted as the Put component of an internal
lens which lifts anchored view updates in the pullback Λ1 to source updates in S1.

Definition 5. Let S and V be internal categories. An internal cofunctor Λ: S 9 V
consists of morphisms,

g0 : S0 −→ V0 k1 : Λ1 −→ S1 p0 : Λ1 −→ S0

where Λ1 := S0 ×V0 V1 (defined below) along with the pullbacks,

Λ1

S0 V1

V0

l0 g1

g0 l0

y
Λ2

Λ1 V2

V1

l1 g2

g1 l1

y
(7)

and satisfying the following commutative diagrams:

Λ1 S0

V1 V0

p0

g1 g0

r0

S0 Λ1 S0

S0 S1 S0

1S0

l0 p0

k1 1S0

l0 r0

S0 Λ1

S0 S1

i

1S0 k1

i

Λ2 Λ1

S2 S1

c

k2 k1

c

(8)

Remark. The pullback projections in (7) will play different roles which prompt different
notational conventions. The projection l0 should be understood as the domain map for an
internal category with object of morphisms Λ1 which will be defined in Proposition 1. The
projection g1 should be understood as morphism assignment for a discrete opfibration G
which will be defined in Theorem 2. The projections l1 and g2 may be understood similarly.

6



Notation. The commutative diagrams (8) include morphisms defined using the universal
property of the pullback via the diagrams below:

S0

V0

Λ1

S0 V1

V0

1S0

g0

i

il0 g1

g0 l0

y

Λ2

Λ1 V2

Λ1

S0 V1

V0

l1 g2

c

l0 cl0 g1

g0 l0

y

Λ2

Λ1 V2

Λ1

S0 V1

V0

l1 g2

p1

p0 r1l0 g1

g0 l0

y

Λ2

Λ1 Λ1
S2

S1 S1

S0

l1 p1

k2

k1 k1l1 r1

r0 l0

y

(9)
Remark. Strictly speaking, the morphism p0 : Λ1 → S0 is not required for the definition
of a cofunctor. Instead the two commutative diagrams in (8) which contain it may be
replaced with the commutative diagram:

Λ1 S1 S0

V1 V0

g1

k1 r0

g0

r0

(10)

Example 8. An internal cofunctor with k1 : Λ1 ∼= S1 is a discrete opfibration.

Example 9. An internal cofunctor between monoids, as categories with one object, is a
monoid homomorphism.

Example 10. An internal cofunctor with g0 = 1S0 is an identity-on-objects functor.

Remark. Given an internal category V, the identity cofunctor consists of morphisms:

1V0 : V0 −→ V0 1V1 : V1 −→ V1 r0 : V1 −→ V0

Given internal cofunctors Λ: S 9 V and Ω: V 9 U, consisting of triples (g0, k1, p0) and
(h0, j1, q0) respectively, their composite cofunctor Λ�Ω: S→ U consists of the morphism,

h0g0 : S0 −→ U0

together with the pullback (Λ� Ω)1 := S0 ×U0 U1 and the morphisms,

k1〈l0, j(g0 × 1U1)〉 : (Λ� Ω)1 −→ S1 p0〈l0, j(g0 × 1U1)〉 : (Λ� Ω)1 −→ S1 (11)

where the universal morphisms are defined via the following commutative diagram:

(Λ� Ω)1 Ω1 U1

Λ1 V1

S1

S0 V0 U0

〈l0,j1(g0×1U1 )〉

g0×1U1

y
j1

h1

l0

l0

g1

k1

l0 l0

l0

g0 h0

(12)

Composition of cofunctors is both unital and associative, however we omit the diagram-
chasing required for the proof.
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Definition 6. Let Cof(E) be the category whose objects are internal categories and whose
morphisms are internal cofunctors.

Proposition 1. If Λ: S 9 V is an internal cofunctor, then there exists an internal
category Λ with object of objects S0 and object of morphisms Λ1, together with domain
map l0 : Λ1 → S0, codomain map p0 : Λ1 → S0, identity map i : S0 → Λ1, and composition
map c : Λ2 → Λ1.

Proof. We give a partial proof and show the first pair of diagrams in (3) are satisfied.
Using the relevant diagrams from Definition 1 and Definition 5 we have the following
commutative diagram:

S0

S1

S0 Λ1 S0

1S0
i

i

1S0

r0
k1

l0 p0

This shows that the identity map i : S0 → Λ1 is well-defined.
To show that Λ2 is well-defined as the the pullback of the domain and codomain

maps (left-most square below) we use the Pullback Pasting lemma, noting that the outer
rectangles below are equal:

Λ2 Λ1 V1

Λ1 S0 V0

l1

p1

l0

g1

y
l0

p0 g0

=
Λ2 V2 V1

Λ1 V1 V0

l1

g2

y y

r1

l1 l0

g1 r0

Again using the relevant diagrams from Definition 1 and Definition 5 we have the
following commutative diagram:

Λ1 Λ2 Λ1

S2 S1

S1 S0

S0 Λ1 S0

l0

l1 p1

c

k2 k1

p0c

r1

r0

r0

l0 p0

k1

This shows that the composition map c : Λ2 → Λ1 is well-defined.

Remark. Proposition 1 may be understood as showing that a cofunctor induces a category
whose objects are source states and whose morphisms are anchored view updates. The
internal category Λ is shown in Theorem 2 to mediate between the source and the view,
and reduces the complexity of Definition 5 to a simple statement concerning internal
categories and functors.

Theorem 2. If Λ: S 9 V is an internal cofunctor, then there is a discrete opfibration
G : Λ→ V consisting of the morphisms,

g0 : S0 −→ V0 g1 : Λ1 −→ V1
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and an identity-on-objects functor K : Λ→ S consisting of morphisms:

1S0 : S0 −→ S0 k1 : Λ1 −→ S1

Thus every cofunctor Λ: S 9 V may be represented as a span of functors:

Λ

S V

K G

Proof. To show that G : Λ → V is a well-defined discrete opfibration, we note from (7),
(8), and (9) that the following diagrams commute:

S0 Λ1 S0

V0 V1 V0

g0

l0 p0

g1
x

g0

l0 r0

S0 Λ1

V0 V1

g0

i

g1

i

Λ2 Λ1

V2 V1

g2

c

g1

c

To show that K : Λ→ S is a well-defined identity-on-objects functor, we again note from
(7), (8), and (9) that the following diagrams commute:

S0 Λ1 S0

S0 S1 S0

1S0

l0 p0

k1 1S0

l0 r0

S0 Λ1

S0 S1

1S0

i

k1

i

Λ2 Λ1

S2 S1

k2

c

k1

c

Thus every cofunctor may be represented as a span of functors, with right-leg a discrete
opfibration, and left-leg an identity-on-objects functor.

4 Internal Lenses
In this section we define an internal lens to consist of an internal Get functor and an
internal Put cofunctor sastisfying a simple axiom akin to the Put-Get law. An immediate
corollary of Theorem 2 then is that every internal lens may be understood as a particular
commuting triangle (15) of internal functors. We also construct a category whose objects
are internal categories and whose morphisms are internal lenses. The section concludes
with a unification of discrete opfibrations, state-based lenses, c-lenses, and d-lenses in this
internal framework, based upon results in [5].

Definition 7. An internal lens (G,Λ): S
 V consists of an internal functor G : S→ V
comprised of morphisms,

g0 : S0 −→ V0 g1 : S1 −→ V1

and an internal cofunctor Λ: S 9 V comprised of morphisms,

g0 : S0 −→ V0 k1 : Λ1 −→ S1 p0 : Λ1 −→ S0

such that the following diagram commutes:

Λ1

S1 Λ1

k1 1Λ1

〈l0,g1〉

(13)
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Remark. Alternatively, the commutative diagram (13) for an internal lens may be replaced
with the requirement that the following diagram commutes:

Λ1

S1 V1

k1 g1

g1

(14)

In either case, this axiom for an internal lens ensures that the functor and cofunctor parts
interact as expected. Explicitly it states that lifting a morphism by the cofunctor then
pushing-forward by the functor should return the original morphism.

Corollary. Every lens (G,Λ): S 
 V may be represented as a commuting triangle of
functors,

Λ

S V

K G

G

(15)

where G : Λ→ V is a discrete opfibration, and K : Λ→ S is an identity-on-objects functor.

Corollary. Given a pair of lenses (G,Λ): S 
 V and (H,Ω): V 
 U, their composite
lens may be computed via the composition of the respective functor and cofunctor parts,
and has a simple representation as a commuting triangle of functors:

Λ×V Ω

Λ Ω

S V U

y

K G J H

G H

(16)

Definition 8. Let Lens(E) be the category whose objects are internal categories and whose
morphisms are internal lenses. Composition of lenses is determined by composition of the
corresponding functor and cofunctor parts.

Example 11. Every discrete opfibration is both an internal functor and an internal co-
functor, hence also an internal lens. Therefore DOpf(E) is a subcategory of Lens(E).

Example 12. If E = Set, then the category Lens(Set) is the category of d-lenses [7]. The
Get of a d-lens is given by the functor G : S→ V, while the Put of a d-lens is given by the
cofunctor Λ: S 9 V.

In particular, the function k1 : Λ1 → S1 takes each pair (s, α : gs → v) ∈ Λ1 to an
arrow k(s, α) : s→ p(s, α) ∈ S, as illustrated in the diagram below.

S s p(s, α)

V gs v

G Λ ...

k(s,α)

...
α

(17)

The Put-Get law is satisfied by (13), which corresponds in the above diagram to the
morphism k(s, α) being a genuine lift of α : gs → v with respect to the functor acting on
morphisms. The Get-Put and Put-Put laws are satisfied as K : Λ→ S is a functor, which
by definition respects identities and composition.
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Example 13. Every state-based lens consisting of Get function g : S → V and Put func-
tion p : S × V → S induces a lens in Lens(Set).

Let S and V be the small codiscrete categories induced by the sets S and V , respec-
tively, and let G : S→ V the canonical functor,

S S × S S

V V × V V

g

π0 π1

g×g g

π0 π1

induced by the Get function. Let Λ be the category with domain and codomain maps
described by the span:

S × V

S S

π0 p

The category Λ is well-defined by the lens laws. The functor G : Λ→ V is induced using
the Put-Get law,

S S × V S

V V × V V

g
x

π0 p

g×1V g

π0 π1

while the functor K : Λ→ S is induced for free:

S S × V S

S S × S S

1S

π0 p

〈π0,p〉 1S

π0 π1

This example may be instantiated internal to any category E with finite limits.

Example 14. Given a pair of state-based lenses (g, p) : S 
 V and (h, q) : V 
 U , their
composite is a lens whose Get function is simply given by hg : S → U and whose Put
function may be computed from the formula (11):

p〈π0, q(g × 1U )〉 : S × U −→ S

Example 15. Every c-lens (also known as a split opfibration) consisting of a Get functor
G : S→ V and Put functor P : (G ↓ V)→ S induces a lens in Lens(Cat).

Let V be the double category of squares, whose category of objects is V and whose
category of morphisms is the arrow category Φ(V), together with domain and codomain
functors L,R : Φ(V)→ V given by,

V1 V11 V1

V0 V1 V0

l0

σ τ

λ l0

l0 r0

V1 V11 V1

V0 V1 V0

r0

σ τ

ρ r0

l0 r0

using the same notation from the diagram in Example 4; define S similarly. Construct the
functor Φ(G) : Φ(S)→ Φ(V) between the arrow categories,

S1 S11 S1

V1 V11 V1

g1

σ τ

g2×g2 g1

σ τ

11



induced by the Get functor, which forms a canonical double functor G : S → V. Let � be
the double category with domain and codomain functors described by the span:

(G ↓ V)

S S
L P

Note that the comma category (G ↓ V) may defined as the pullback,

(G ↓ V) Φ(V) V

S V
L

R

L

R

G

y

where L : (G ↓ V) → S and R : (G ↓ V) → V are the usual comma category projections.
The double category � is well-defined by the c-lens laws, and we may show with further
reasoning that there exist unique double functors K : �→ S and G : �→ V.

5 Conclusion and Future Work
In this paper it was shown that lenses may be defined internal to any category E with
pullbacks, providing a significantly generalised yet minimal framework to understand the
notion of synchronisation between systems. It was demonstrated that the enigmatic Put
of a lens may be understood as a cofunctor, which has a simple description as a span of
a discrete opfibration and an identity-on-objects functor. The surprising characterisation
of a lens as a functor/cofunctor pair both promotes the prevailing attitude of lenses as
morphisms between categories, and yields a straightforward definition for composition in
the category Lens(E), which fits within an elegant diagram of forgetful functors.

Cof(E)

DOpf(E) Lens(E) E

Cat(E)

The success of internal lenses in unifying the known examples of state-based lenses, c-
lenses, and d-lenses promotes the effectiveness of this perspective to be used in applications
such programming, databases, and Model-Driven Engineering, and also anticipates many
future mathematical developments. Current work in progress indicates Lens(E) may be
enhanced to a 2-category through incorporating natural transformations between lenses,
while consideration of spans in Lens(E) leads towards a clarified understanding of symmetric
lenses; both ideas which have been shown to be important in applications and the literature
[6, 10]. Future work also intends to investigate examples of lenses internal to diverse range
of categories, as well as taking steps towards a theory of lenses between enriched categories.
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