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Abstract: Motivated by the concept of degeneracy in biology [3], we establish a first
connection between the Multiplicity Principle [4, 5] and mathematical statistics. Specifi-
cally, we exhibit two families of tests that satisfy this principle to achieve the detection of
a signal in noise.

1 Introduction

In [3], Edelman & Gally pointed out degeneracy as the fundamental property allowing for
living systems to evolve through natural selection towards more complexity in fluctuating
environments. Degeneracy is defined [3] as “ . . . the ability of elements that are structurally
different to perform the same function or yield the same output”. Degeneracy is a crucial
feature of immune systems and neural networks, at all organization levels.

The Multiplicity Principle (MP) [4, 5], introduced by Ehresmann & Vanbremeersch, is a
mathematical formalization of degeneracy in Categorical terms. The consequences of this
principle, as treated in [4, 5], underpin Edelman & Gally’s conjecture according to which
“complexity and degeneracy go hand in hand” [3].

Another property of many biological and social systems is their resilience: (i) they can
perform in degraded mode, with some performance loss, but without collapsing; (ii) they
can recover their initial performance level when nominal conditions are satisfied again;
(iii) they can perform corrections and auto-adaption so as to maintain essential tasks
for their survival. In addition, resilience of social or biological systems is achieved via
agents with different skills. For instance, cells are simply reactive organisms, whereas so-
cial agents have some cognitive properties. Thence the idea that resilience may derive
from fundamental properties satisfied by agents, interactions and organizations. Could
this fundamental property be a possible consequence of degeneracy [5, Section 3.1, p. 15]?

The notion of resilience remains, however, somewhat elusive, mathematically speak-
ing. In contrast, the notion of robustness has a long history and track record in mathe-
matical statistics [6]. By and large, a statistical method is robust if its performance is not
unduly altered in case of outliers or fluctuations around the model for which it is designed.
Can we fathom the links between resilience and robustness?

As an attempt to embrace the questions raised above from a comprehensive outlook,
the original question addressed in this work-in-progress is the possible connection be-
tween MP and robustness to account for emergence of resilience in complex systems. As
a first step in our study aimed at casting the notions of robustness, resilience and degen-
eracy within the same theoretical framework based on MP, we hereafter establish that sta-
tistical tests do satisfy MP. The task to perform by the tests is the fundamental problem
of detecting a signal in noise. However, to ease the reading of a paper at the interface be-
tween category theory and mathematical statistics, we consider a simplified version of this
problem.
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The paper is organized as follows. We begin by specifying notation and notions in
mathematical statistics. In Section 2, we state MP in categorical words on the basis of
[4] and consider the particular case of preorders, which will be sufficient at the present
time to establish that statistical tests satisfy MP for detecting signals in noise. In Section
3, we set out the statistical detection problem. We will then introduce, in Section 4, a
preorder that makes it possible to exhibit two types of "structurally different" tests, namely,
the Neyman-Pearson tests (Section 5) and the RDT tests (Section 6). Section 7 concludes
the paper by establishing that these two types of tests achieve the MP for the detection
problem under consideration. For space considerations, we limit proofs to the minimum
making it possible to follow the approach without too much undue effort.

Summary of main results

Because this paper lies at the interface between different mathematical specialties, the
present section summarizes its contents in straight text. To begin with, the MP is a prop-
erty of a category that has structurally different diagrams that share the same cocones. To
state our main results, it will not be necessary to consider the general MP though. In fact,
the particular case of preordered sets will suffice, in which case MP reduces to Proposi-
tion 1.

Second, in statistical hypothesis testing, a hypothesis can be seen as a predicate, the
truth value of which we aim at determining using statistical decisions, some of which be-
ing potentially better than others. There exist many optimality criteria to devise a decision
to test a given hypothesis. In non-Bayesian approaches, which will be our focus below,
such criteria are encoded through the notions of size and power.

The size is the least upper bound for the probability of rejecting the hypothesis when
this one is actually true. We generally want this size to remain below a certain value called
level, because the hypothesis to test mostly represents the standard situation. For in-
stance, planes in the sky are rare events, after all, and the standard hypothesis is "there
is no plane", which represents the standard situation. A too large level may result in an
almost intractable cluttering of a radar screen.

We do not want to be bothered by too many alarms. In contrast, when the hypothesis
is false, we want to reject it with highest confidence. The probability of a test rejecting the
hypothesis when this one is actually false is called the power of the test. For a given testing
problem, we thus look for decisions with maximal power within the set of decisions whose
size does not exceed the specified level. This defines a preorder. A maximal element in
this preorder is said to be optimal.

Different hypotheses to test may thus require different criteria, specified through dif-
ferent notions of size and two different notions of power. This is what we exploit below to
exhibit two sets of "structurally different" decisions that satisfy the MP.

To carry out this construction, we consider the detection of a signal in independent
standard gaussian noise, a classical problem in many applications. This is an hypoth-
esis testing problem for which there exists an optimality criterion where the size is the
so-called probability of false alarm and the power is the so-called probability of detec-
tion. This criterion has a solution, the Neyman-Pearson (NP) decision, which is thus the
maximal element of a certain preorder. We can consider a second class of tests, namely,
the RDT tests. These tests are aimed at detecting deviations of a signal with respect to
a known deterministic model in presence of independent standard gaussian noise. This
problem is rotationally invariant and the RDT tests are optimal with respect to a specific
criterion defined through suitable notions of size and power. They are maximal elements
of another preordered set. Although not dedicated to signal detection, these tests can be
used as surrogates to NP tests to perform signal detection. It turns out that the family of
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RDT tests and that of NP tests satisfy the MP as stated in Theorem 4. This is because the
more data we have, the closer to perfection both tests are.

Notation

Random variables. Given two measurable spaces E and F , M (E ,F ) denotes the set of
all measurable functions defined on E and valued in F . The two σ-algebra involved are
omitted in the notation because, in the sequel, they will always be obvious from the con-
text. In particular, we will throughout consider a probability space (Ω,B,P) and system-
atically endow R with the Borel σ-algebra, which will not be recalled. Therefore, M (Ω,R)
designates the set of all real random variables. Given q ∈ [0,∞[, B∞(q) is the set of all
real random variables ∆ ∈ M (Ω,R) such that |∆|∞ 6 q . As usual, we write X ∼ N (0,1)
to mean that X ∈M (Ω,R) is standard normal. The cumulative distributive function (cdf)
of any X ∼ N (0,1) is denoted by Φ. Given a sequence (Xn)n∈N ∈ M (Ω,R)N of real ran-

dom variables, we write X1, X2, . . .
iid∼ N (0,1) to mean that the random variables X1, X2, . . .

are independent and identically distributed with common distribution N (0,1). For any
n ∈N, the Generalized Marcum function Qn/2 is defined for all ρ > 0 and all λ> 0 by set-
ting: Qn/2(ρ,λ) := 1−Fχ2

n (ρ2)(λ
2), where Fχ2

n (ρ2) is the cdf of the χ2 law with n degrees of

freedom and non-centrality parameter ρ2.

Decisions et Observations. Throughout, M
(
{0,1}×Ω,

{
0,1

})
designates the set of all mea-

surable functions D :
{
0,1

}×Ω → {
0,1

}
. Any element of M

(
{0,1}×Ω,

{
0,1

})
is called a

decision for obvious reasons given below. If D ∈ M
(
{0,1}×Ω,

{
0,1

})
then, for any ε ∈{

0,1
}
, D(ε) denotes the Bernoulli-distributed random variable D(ε) : Ω→ {

0,1
}

defined
for any given ω ∈ Ω by D(ε)(ω) = D(ε,ω). An n-dimensional test is hereafter any mea-
surable function f : Rn → {0,1} and M (Rn , {0,1}) stands for the set of all n-dimensional
tests. A measurable function X : {0,1}×Ω → Rn is hereafter called an observation and
M ({0,1}×Ω,Rn) denotes the set of all these observations. Given a test f ∈ M (Rn , {0,1})
and X ∈ M ({0,1}×Ω,Rn), D = f (X ) is trivially a decision: D ∈ M

(
{0,1}×Ω,

{
0,1

})
. If

X ∈ M ({0,1}×Ω,Rn) then, for any ε ∈ {0,1}, X (ε) = X (ε, ·) ∈ X (ε) ∈ M (Ω,Rn) is defined
for every ω ∈Ω by X (ε)(ω) = X (ε,ω).

Empirical means. We define the empirical mean of a given sequence y = (yn)n∈N of
real values as the sequence

(〈y〉n
)

n∈N of real values such that, ∀n ∈ N,〈y〉n := 1
n

∑n
i=1 yi .

By extension, the empirical mean of a sequence Y = (Yn)n∈N of random variables where
each Yn ∈ M (Ω,R) is the sequence (〈Y 〉n)n∈N of random variables where, for each n ∈ N,
〈Y 〉n ∈ M (Ω,R) is defined by 〈Y 〉n := 1

n

∑n
i=1 Yi . Therefore, for any ω ∈ Ω, 〈Y 〉n(ω) :=

〈Y (ω)〉n with Y (ω) = (Yn(ω))n∈N. If Y = (Yn)n∈N is a sequence of observations (∀n ∈ N,
Yn ∈ M ({0,1}×Ω,R)), we define the empirical mean of Y as the sequence (〈Y 〉n)n∈N of
observations such that, for ε ∈ {0,1}, 〈Y 〉n ∈ M ({0,1}×Ω,R) with〈Y 〉n(ε) = 〈Y (ε)〉n and
Y (ε) = (Yn(ε))n∈N.

2 Multiplicity Principle

2.1 General case

The multiplicity principle (MP) comes from [4]. It proposes a categorical approach to the
biological degeneracy principle which ensures a kind of flexible redundancy. Roughly, MP,
in a category C , ensures the existence of structurally non isomorphic diagrams which have
the same colimit. A formal definition relies on the notion of a cluster between diagrams in
a category C .
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Definition 1 (Cluster). Let D : D → C and E : E → C be two (small) diagrams. A cluster
G : D → E is a set G = {

f : D(d) → E(e) | d ∈D ,e ∈ E , f ∈C
}

such that:

(i) for all d ∈D there exist e ∈ E and g : D(d) → E(e) such that g ∈G

(ii) if g : D(d) → E(e) and g ′ : D(d) → E(e ′) are in the cluster, then e and e ′ ∈ E are in the
same connected component of E

(iii) if g : D(d) → E(e) ∈G and ε : e → e ′ ∈ E , then E(ε)◦ g ∈G

(iv) if δ : d ′ → d ∈D and g : D(d) → E(e), then g ◦D(δ) ∈G

For instance, a cone from c to D can be seen as a cluster from the constant functor∆(c)
to D ; and a cocone from E to c is a cluster E →∆(c).

Remark 1. Adjacent clusters can be composed: a cluster G : D → E0 and a cluster G0 : E0 →
E can be composed to a cluster G◦G0. We can then consider a category of clusters of C , whose
objects are the (small) diagrams D → C , and an arrow D → E is a cluster. This category is
isomorphic to the free cocompletion of C [4].

Definition 2 (Multiplicity principle (MP)). A category C satisfies the multiplicity principle
(MP) if there exist two diagrams D : D →C and E : E →C such that:

(i) Cocones (D) ∼= Cocones (E);

(ii) There is no cluster D → E nor E → D that is an isomorphism in the free cocompletion
of C (cf. Remark 1).

D and E having the same cocones translates the property of both systems to accom-
plish the same function. The absence of isomorphic clusters between D and E reflects
the structural difference between them, which is key to robustness and adaptability: if the
system described by E fails, then D may replace it.

2.2 Application to preorders

The main purpose of this paper is to find a meaningful instance of the multiplicity princi-
ple in some preorder. In the following, we do not distinguish between a preorder and its
associated category.

Proposition 1 (Multiplicity principle in a preorder). Let (E ,6) be a preorder. If there are
two disjoint subsets A,B ⊂ E such that the following conditions hold, then E verifies the
multiplicity principle:

(i) A and B have the same sets of upper bounds

(ii) There is an a ∈ A with no upper bounds in B

(iii) There is a b ∈ B with no upper bounds in A

Proof. Condition (i) ensures that A and B have isomorphic categories of cocones. Con-
ditions (ii) and (iii) respectively ensure that there is no cluster i A → iB nor iB → i A where
i A : A ,→ E and iB : B ,→ E are the inclusion functors.

Albeit trivial, the following lemma will be helpful.

Lemma 1. Given a preordered set (E ,¹), if A and B are two subsets of E such that sup(A, (E ,¹)) =
sup(B , (E ,¹)) and if A×B ∩¹= ;, then E satisfies MP.
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3 Statistical detection of a signal in noise

3.1 Problem statement

Let ε ∈ {0,1} be the unknown indicator value on whether a certain physical phenomenon
has occurred (ε = 1) or not (ε = 0). We aim at determining this value. It is desirable to
resort to something more evolved than tossing a coin to estimate ε. However, whatever D ,
the decision is erroneous for any ω ∈ Ω such that D(ε,ω) 6= ε. We thus have two distinct
cases.
False alarm probability: If ε= 0 and D(0,ω) = 1, we commit an error of the 1st kind false or
false alarm, since we have erroneously decided that the phenomenon has occurred while
nothing actually happened. We thus define the false alarm probability (aka size, aka error
probability of the 1st kind) of D as:

PFA [D]
def= P

[
D(0) = 1

]
(1)

Detection probability: If ε = 1 and D(1,ω) = 0, we commit an error of the 2nd kind, also
called missed detection since, in this case, we have missed the occurrence of the phe-
nomenon. As often in the literature on the topic, we prefer using the probability of cor-
rectly detecting the phenomenon by defining the detection probability:

PDET [D]
def= P

[
D(1) = 1

]
(2)

3.2 Decision with level γ ∈ (0,1) and oracles

Among all the possible decisions, the omniscient oracle D∗ ∈ M
(
{0,1}×Ω,

{
0,1

})
is de-

fined for any pair (ε,ω) ∈ {
0,1

}×Ω by setting D∗(ε,ω) = ε. Its probability of false alarm is
0 and its probability of detection is 1: PFA [D∗] = 0 et PDET [D∗] = 1. This omniscient ora-
cle has no practical interest since it knows ε. That’s not really fair! Since it is not possible
in practice to guarantee a null false alarm probability, we focus on decisions whose false
alarm probabilities are upper-bounded by a real number γ ∈ (0,1) called level. We state
the following definition.

Definition 3 (Level). We say that D ∈ M
(
{0,1}×Ω,

{
0,1

})
has level γ ∈]0,1[ if PFA [D] 6 γ.

The set of all decisions with level γ ∈]0,1[ is denoted by Cγ.

We can easily prove the existence of an infinite number of elements in Cγ that all have
a detection probability equal to 1. Whence the following definition.

Definition 4. Given γ ∈ (0,1), an oracle with level γ is any decision D ∈ Cγ such that
PDET [D] = 1. The set of all the oracles with level γ is denoted by D∗

γ .

Oracles with level γ have no practical interest either since they require prior knowledge
of ε! Therefore, we restrict our attention to decisions in Cγ that "approximate" at best the
oracles with level γ, without prior knowledge of ε, of course. To this end, we must preorder
decisions.

Lemma-Definition 1 (Total preorder (Cγ, ¹ )). For any givenγ ∈ (0,1) and any pair (D,D ′) ∈
Cγ×Cγ, we define a preorder (Cγ, ¹ ) by setting:

D ¹ D ′ if PDET [D]6PDET

[
D ′] . (3)

We write D ∼= D ′ if D ¹ D ′ and D ′ ¹ D.
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3.3 Observations

In practice, observations help us decide whether the phenomenon has occurred or not.
By collecting a certain number of them, we can expect to make a decision. Hereafter, ob-
servations are assumed to be elements of M ({0,1}×Ω,R) and corrupted versions of ε. We
suppose to have a sequence (Yn)n∈N of such random variables. As a first standard model,
we could assume that, for any n ∈ N and any (ε,ω) ∈ {0,1}×Ω, Yn(ε,ω) = ε+ Xn(ω) with

X1, X2, . . . , Xn , . . .
iid∼ N (0,1). In this additive model, Xn models noise on the nth observa-

tion. We could make this model more complicated and realistic by considering random
vectors instead of variables. However, with respect to our purpose, the significant im-
provement we can bring to the model is elsewhere. Indeed, we have assumed above that
the signal, regardless of noise, is ε. However, from a practical point of view, it is more re-
alistic to assume that the nth observation Yn captures ε in presence of some interference
∆n , independent of Xn . In practice, the probability distribution of∆n will hardly be known
and, as a means to compensate for this lack of knowledge, we assume the existence of a
uniform bound on the amplitude of all possible interferences. Therefore, we assume that,
for all (ε,ω) ∈ {0,1}×Ω, Yn(ε,ω) = ε+ Xn(ω)+∆n(ω) and the existence of q ∈ [0,∞) such
that∆n ∈B∞(q). After all, this model is standard in time series analysis: ε plays the role of
a trend, ∆n is the seasonal variation and Xn is the measurement noise.

For each q ∈ [0,∞), Seq[q] is hereafter the set of all the sequences Y [q] =
(
Y [q]

n

)
n∈N

where, ∀n ∈ N and ∀(ε,ω) ∈ {0,1}×Ω, Y [q]
n (ε,ω) = ε+∆n(ω)+ Xn(ω), where ∆n ∈ B∞(q)

and Xn ∼ N (0,1) are independant. Therefore, for all n ∈ N and all ε ∈ {0,1}, Y [q]
n (ε) =

ε+∆n +Xn , with X1, X2, . . . , Xn , . . .
iid∼N (0,1).

4 Selectivity, landscapes of tests and preordering

For any q ∈ [0,1/2[, any n ∈N and any Y [q] =
(
Y [q]

n

)
n∈N ∈ Seq[q], we set:

Y [q]
n = (

Y [q]
1 ,Y [q]

2 , . . . ,Y [q]
n

)
(4)

Definition 5 (Selectivity of a test). Given any n ∈ N and any test f ∈ M (Rn , {0,1}), the se-
lectivity of f at given level γ ∈ (0,1) is defined as the set:

Selγ
(

f
)

:=
{

q ∈ [0,1/2) : ∀Y [q] ∈ Seq[q], f
(
Y [q]

n

)
∈Cγ

}
Definition 6 (Landscape of a test). Given any n ∈ N and any test f ∈ M (Rn , {0,1}), the
landscape of f at given level γ ∈ (0,1) is the subset of Cγ defined by:

Dγ

(
f
)

:= ⋃
q∈Selγ( f )

{
f
(
Y [q]

n

)
: Y [q] ∈ Seq[q]

}
(5)

This notion of landscape makes it possible to compare tests via landscapes via the
following preorder. The proofs that the following definition is consistent and that the next
lemma holds true are left to the reader.

Definition 7 (Preorder (2Cγ , ¹∗ )). Given any levelγ ∈ (0,1), we define the preorder (2Cγ , ¹∗ )
via the three following properties:

(P1) ∀n ∈N, ∀( f , g ) ∈M (Rn , {0,1})×M (Rn , {0,1}), Dγ

(
f
) ¹∗ Dγ

(
g
)

if:

Selγ
(

f
)= Selγ

(
g
)

and ∀q ∈ Selγ
(

f
)

,∀Y [q] ∈ Seq[q], f
(
Y [q]

n

)
¹ g

(
Y [q]

n

)
(P2) ∀(D,D′) ∈

(
Dγ∪D∗

γ

)
×D∗

γ , D¹∗ D′ with:
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Dγ := ⋃
n∈N

{
Dγ

(
f
)

: f ∈M
(
Rn , {0,1}

) }
and D∗

γ := 2D
∗
γ

(P3) ∀D ∈ 2Cγ \
(
Dγ∪D∗

γ

)
, D ¹∗ D

Lemma 2. ∀(D,D′) ∈
(
Dγ∪D∗

γ

)
×

(
Dγ∪D∗

γ

)
, D¹∗ D′ ⇒D×D′ ⊂ ¹ .

Henceforth, given a preordered set (E ,¹) and A ⊂ E , the set of maximal elements of A
is denoted by max(A, (E ,¹)), the set of upper bounds is denoted by upper(A, (E ,¹)) and
the set of least upper bounds of A in (E ,¹) is denoted by sup(A, (E ,¹)).

Theorem 1 (Approximation of oracles in (2Cγ , ¹∗ )). Given γ ∈ (0,1), let a set Xγ and a
family of tests

(
fξ,n

)
ξ∈Xγ,n∈N such that:

(i) ∀(ξ,n) ∈Xγ×N, fξ,n ∈M (Rn , {0,1});

(ii) ∃Qγ ⊂ [0,∞), ∀(ξ,n) ∈Xγ×N, Selγ
(

fξ,n
)=Qγ;

(iii) ∀(ξ, q) ∈Xγ×Qγ, ∀Y [q] ∈ Seq[q], lim
n→∞PDET

[
fξ,n

(
Y [q]

n

)]
= 1;

then, by setting D′
γ =

{
Dγ

(
fξ,n

)
: n ∈N,ξ ∈Xγ

}
, we have:

D∗
γ = upper

(
D′
γ ,

(
2Cγ , ¹∗ ))= sup

(
D′
γ ,

(
2Cγ , ¹∗ ))

(6)

Proof. For any (ξ,n) ∈Xγ×N and anyD ∈D∗
γ , (P2) in Definition 7 straightforwardly implies

that Dγ

(
fξ,n

) ¹∗ D. As a consequence:

D∗
γ ⊂ upper

(
D′
γ ,

(
2Cγ , ¹∗ ))

(7)

To prove the converse inclusion, consider some D ∈ upper
(
D′
γ ,

(
2Cγ , ¹∗ ))

. We thus have

∀(ξ,n) ∈N×Xγ,Dγ

(
fξ,n

) ¹∗ D. According to Lemma 2, we have∀(ξ,n) ∈Xγ×N,Dγ

(
fξ,n

)×
D⊂ ¹ . Therefore, ∀(ξ,n) ∈N×Xγ, ∀q ∈ Selγ

(
fξ,n

)
, ∀Y [q] ∈ Seq[q] and∀D ∈D, fξ,n

(
Y [q]

n

)
¹D.

It follows from the definition of ¹ and assumption (ii) above that:

∀(ξ,n) ∈N×Xγ,∀q ∈Qγ,∀Y [q] ∈ Seq[q],∀D ∈D,PDET

[
fξ,n

(
Y [q]

n

)]
6PDET [D]

We derive from assumption (iii) that PDET [D] = 1 and thus that D ∈ D∗
γ . It follows that

D ∈ D∗
γ . We thus obtain that upper

(
D′
γ ,

(
2Cγ , ¹∗ )) ⊂ D∗

γ and therefore, from (7), D∗
γ =

upper
(
D′
γ ,

(
2Cγ , ¹∗ ))

. The second inequality in (6) is straightforward since the elements

of D∗
γ are isomorphic in the sense of ¹∗ .

For later use, given J ⊂ [0,∞), n ∈N and F⊂M (Rn , {0,1}), we hereafter set:

D
J
γ (F) :=

{
Dγ

(
f
) ∈Dγ : f ∈F , Selγ

(
f
)=J

}
(8)

5 The Neyman-Pearson (NP) solution

When n spans N, the Neyman-Pearson (NP) Lemma makes it possible to pinpoint a max-
imal element in each (D{0}

γ (F), ¹ ) with F = M (Rn , {0,1}). These maximal elements are
hereafter called NP decisions. Specifically, we have the following result.
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Lemma 3 (Maximality of the NP decisions). For any γ ∈ (0,1) and any n ∈N,

Dγ

(
f NP(γ)

n

)
= max

(
D{0}
γ

(
M

(
Rn , {0,1}

))
, ¹∗

)
(9)

where f NP(γ)
n ∈M (Rn , {0,1}) is the n-dimensional NP test with size γ defined by:

∀(y1, y2, . . . , yn) ∈Rn , f NP(γ)
n (y1, y2, . . . , yn) =

{
1 if

∑n
i=1yi >

p
nΦ−1(1−γ)

0 otherwise
(10)

and satisfies, ∀Y [0] ∈ Seq[0],
PFA

[
f NP(γ)

n

(
Y [0]

n

)]
= γ

PDET

[
f NP(γ)

n

(
Y [0]

n

)]
= 1−Φ(

Φ−1(1−γ)−p
n

)
Proof. A direct application of the Neyman-Pearson Lemma [8, Theorem 3.2.1, page 60],

followed by some standard algebra to obtain PDET

[
f NP(γ)

n Y [0]
n

]
.

The next result states that it suffices to increase the number of observations to approx-
imate oracles with level γ by NP decisions.

Theorem 2 (Approximation of oracles with level γ by NP decisions in (2Cγ , ¹∗ )).

Setting DNP(γ) :=
{
Dγ

(
f NP(γ)

n

)
: n ∈N

}
for any γ ∈ (0,1), we have:

D∗
γ = upper

(
DNP(γ) ,

(
2Cγ , ¹∗ ))= sup

(
DNP(γ) ,

(
2Cγ , ¹∗ ))

Proof. According to Lemma 3, lim
n→∞PDET

[
f NP(γ)

n Y [0]
n

]
= 1. The set DNP(γ) ⊂Dγ satisfies the

conditions of Theorem 1 for any γ ∈ (0,1) and Xγ =;. Thence the result.

6 The RDT solution

6.1 An elementary RDT problem

Problem statement. The RDT theoretical framework is exposed in full details in [9, 10].
To ease the reading of the present paper, we directly focus on the particular RDT problem
that can be used in connection with the detection problem at stake.

In this respect, suppose that Y =Θ+ X ∈ M (Ω,Rn), where Θ and X are independent
elements of M (Ω,Rn). In the sequel, we assume that X ∼N (0,In), In being the n×n iden-
tity matrix, and consider the mean testing problem of deciding on whether |〈Θ〉n(ω)|6 τ

(null hypothesis H0) or |〈Θ〉n(ω)| > τ (alternative hypothesis H1), when we are given
Y (ω) =Θ(ω)+ X (ω), for ω ∈Ω. The idea is that Θ oscillates uncontrollably around 0 and
that only sufficient large deviations of the norm should be detected. This is a particular
Block-RDT problem, following the terminology and definition given in [10]. This problem
is summarized by discarding ω and writing:

Observation: Y =Θ+X ∈M (Ω,Rn) with

{
Θ ∈M (Ω,Rn), X ∼N (0,IN ),
Θ and X are independent,

H0 : |〈Θ〉n |6 τ,
H1 : |〈Θ〉n | > τ.

(11)

Standard likelihood theory [8, 1, 2] does not make it possible to solve this problem. For-
tunately, this problem can be solved as follows via the Random Distortion Testing (RDT)
framework.
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Size and power of tests for mean testing. We seek tests with guaranteed size and optimal
power, in the sense specified below.

Definition 8 (Size for the mean testing problem). The size of f ∈ M (Rn , {0,1}) for testing
the empirical mean of the signals Θ ∈M (Ω,Rn) such that P

[|〈Θ〉n |6 τ
] 6= 0, given the pro-

cessesΘ+X ∈M (Ω,Rn) with X independent of Θ, is defined by:

α[n]( f ) = sup
Θ∈M (Ω,Rn ) :P [ |〈Θ〉n |6τ ] 6=0

P
[

f (Θ+X ) = 1
∣∣ |〈Θ〉n |6 τ

]
(12)

We say that f ∈ M (Rn , {0,1}) has level (resp. size) γ if α[n]( f ) 6 γ (resp. α[n]( f ) = γ). The
class of all the tests with level γ is denoted by K [n]

γ :

K [n]
γ = {

f ∈M
(
Rn , {0,1}

)
:α[n]( f )6 γ

}
Definition 9 (Power for the mean testing problem). The power of f ∈M (Rn , {0,1}) for test-
ing the empirical mean of Θ ∈ M (Ω,Rn) such that P

[|〈Θ〉n | > τ
] 6= 0 when we are given

Y =Θ+X ∈M (Ω,Rn), with X independent of Θ, is defined by:

β[n]
Θ

( f ) =P[
f (Θ+X ) = 1

∣∣ |〈Θ〉n | > τ
]

(13)

RDT solution. We can easily construct a preorder
(
K [n]

γ , ¹¦
)

by setting:

∀( f , f ′)∈K [n]
γ ×K [n]

γ , f ¹¦ f ′ if ∀Θ∈M (Ω,Rn),P
[|〈Θ〉n |>τ

] 6= 0⇒β[n]
Θ

( f )6β[n]
Θ

( f ′)

No maximal element exists in
(
K [n]

γ , ¹¦
)
. However, we can exhibit C[n]

γ ⊂ K [n]
γ whose

elements satisfy suitable invariance properties with respect to the mean testing problem

and prove the existence of a maximal element in
(
C[n]
γ , ¹¦

)
.

Set S = {
id,−id

}
where id is the identity of R. Endowed with the usual composition

law ◦ of functions, (S ,◦) is a group. Let A be the group action that associates to each
given s ∈ S the map As : Rn → Rn defined for every x = (x1, x2, . . . , xn) ∈ Rn by As (x) =
(s(x1), s(x2), . . . , s(xn)). Readily, the mean testing problem is invariant under the action of
A in that As (Y ) = As (Θ)+ X ′ where X ′ = (X ′

1, X ′
2, . . . , X ′

n) ∼ N (0,In) is independent of
As (Θ). Therefore, As (Y ) satisfies the same hypotheses as Y . We also have |〈As (Θ)〉n | =
|〈Θ〉n |. Hence, the mean testing problem remains unchanged by substituting As (Θ) for Θ
and X ′ for X . It is thus natural to seek A -invariant tests, that is, tests f ∈ M (Rn , {0,1})
such that f (As (x)) = f (x) for any s ∈S and any x ∈Rn .

On the other hand, since we can reduce the noise variance by averaging observations,
we consider A -invariant integrator tests, that is, A -invariant tests f ∈ M (Rn , {0,1}) for
which exists f ∈ M

(
R1, {0,1}

)
, henceforth called the reduced form of f , such that f (x) =

f (〈x〉n) for any x ∈Rn . Reduced forms of A -invariant integrator tests are also A -invariant:
∀x ∈ R, ∀s ∈ A , f (s(x)) = f (x). We thus define C[n]

γ ⊂ K [n]
γ of all A -invariant integrator

tests. We thus have f ∈C[n]
γ if:

[Size]: α[n]( f )6 γ;

[A -invariance]: ∀(s, x) ∈S ×Rn , f (As (x)) = f (x);

[Integration]: ∃ f ∈M
(
R1, {0,1}

)
, ∀x ∈Rn , f (x) = f (〈x〉n).

The following result derives from the foregoing and [9, 10].

Proposition 2 (Maximal element of
(
C[n]
γ , ¹¦

)
). For any γ ∈ (0,1) and any n ∈N,{

f RDT(γ)
n,τ

}
= max

(
C[n]
γ , ¹¦

)
(14)
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where f RDT(γ)
n,τ ∈M (Rn , {0,1}) is defined by setting:

∀(y1, y2, . . . , yn) ∈Rn , f RDT(γ)
n,τ (y1, y2, . . . , yn) =

{
1 if

∣∣∑n
i=1 yi

∣∣6p
nλγ(τ

p
n)

0 otherwise

and λγ(τ
p

n) is the unique solution in x to the equation Q1/2(τ
p

n, x) = γ
RDT and NP tests are structurally different because dedicated to two different testing

problems and optimal with respect to two different criteria. This structural difference will
be enhanced by coming back to our initial detection problem.

6.2 Application to Detection

Consider again the problem of estimating ε ∈ {0,1}, when we have a sequence Y [q] ∈ Seq[q]

of observations. We thus have:

∀n ∈N,∀(ε,ω) ∈ {
0,1

}×Ω,Y [q]
n (ε,ω) = ε+∆n(ω)+Xn(ω) (15)

where X1, X2, . . .
iid∼ N (0,1) and ∀n ∈ N, ∆n ∈ B∞(q) with q ∈ [0,∞). The empirical mean

of Y [q] satisfies: ∀n ∈N,〈Y [q]〉n(ε) = 〈Y [q](ε)〉n = ε+〈∆〉n +〈X 〉n . We thus have |〈∆〉n |6 q
(a-s). Set Θn = ε+∆n for every n ∈ N. In the sequel, we assume q < 1/2 because, in this
case, we straightforwardly verify that{

ε= 0 ⇔ |〈Θ〉n |6 q
ε= 1 ⇔ |〈Θ〉n |> 1−q

(16)

Therefore, when q ∈ [0,1/2), deciding on whether ε is zero or not when we are given

Y [q]
n (ω) amounts to testing whether |〈Θ〉n(ω)| 6 τ or not for τ ∈ [q,1− q]. We thus can

use the decision f RDT(γ)
n,τ

(
Y [q]

n

)
, where f RDT(γ)

n,τ is given by Proposition 2.

We can calculate the false alarm probability of f RDT(γ)
n,τ

(
Y [q]

n

)
defined by (1) and the

theoretical results in [9] yield that ∀τ ∈ [q,1−q],PFA

[
f RDT(γ)

n,τ

(
Y [q]

n

)]
6 γ. In the sequel, for

the sake of simplifying notation, we assume that both τ and q are in [0,1/2). In this case,
we have:

∀τ ∈ [0,1/2) ,


Selγ

(
f RDT(γ)

n,τ

)
= [0,τ]

Dγ

(
f RDT(γ)

n,τ

)
= ⋃

q∈[0,τ]

{
f RDT(γ)

n,τ

(
Y [q]

n

)
: Y [q] ∈ Seq[q]

} (17)

We can then state the following lemma, which is the counterpart to Lemma 3.

Theorem 3 (Maximality of RDT decisions). For any γ ∈ (0,1), any n ∈ N and any 0 6 q 6

τ< 1/2, Dγ

(
f RDT(γ)

n,τ

)
= max

(
D

[0,τ]
γ

(
C[n]
γ

)
, ¹∗

)
.

Proof. It results from Definition 6 that Dγ

(
f
)

:=
{

f
(
Y [q]

n

)
: Y [q] ∈ Seq[q], q ∈ [0,τ]

}
. Ac-

cording to (8), we also have D[0,τ]
γ

(
C[n]
γ

)
=

{
Dγ

(
f
) ∈ Dγ : f ∈ C[n]

γ , Selγ
(

f
) = [0,τ]

}
. Given

q ∈ [0,τ] and Y [q] ∈ Seq[q], set
Y = Y [q]

n =
(
Y [q]

1 ,Y [q]
2 , . . . ,Y [q]

n

)
(see (4))

X = (X1, X2, . . . , Xn)∼N (0,In)
Θ = (1+∆1,1+∆2, . . . ,1+∆n)
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We basically have Y =Θ+ X . Consider now the mean testing problem (11) with Θ, X and
Y defined as above. For any f ∈ M (Rn , {0,1}), it follows from Eqs. (15) , (16), (2) and (12)
that:

β[n]
Θ

( f ) =PDET

[
f
(
Y [q]

n

)]
(18)

Suppose now that f ∈ C[n]
γ with Selγ

(
f
) = [0,τ]. We derive from Proposition 2, (18) and

its application to f RDT(γ)
n,τ , that PDET

[
f
(
Y [q]

n

)]
6 PDET

[
f RDT(γ)

n,τ

(
Y [q]

n

)]
. Since q 6 τ < 1/2

implies that q ∈ Selγ
(

f
)

and since Selγ
(

f
) = Selγ

(
f RDT(γ)

n,τ

)
= [0,τ], we can rewrite the

foregoing equality as f
(
Y [q]

n

)
¹ f RDT(γ)

n,τ

(
Y [q]

n

)
. This holding true for any q ∈ Selγ

(
f
)
, any

Y [q] ∈ Seq[q] and since f and f RDT(γ)
q,n have same selectivity [0,τ], we derive from the fore-

going and Definition 7 that Dγ

(
f
) ¹∗ Dγ

(
f RDT(γ)

n,τ

)
.

We now prove that the oracles with level γ are approximated by RDT decisions.

Lemma 4 (Approximation of oracles with γ by RDT decisions in (2Cγ , ¹∗ )).

Setting DRDT(γ)
τ :=

{
Dγ

(
f RDT(γ)

n,τ

)
: n ∈N

}
for any given γ ∈ (0,1), we have:

D∗
γ = upper

(
D

RDT(γ)
τ ,

(
2Cγ , ¹∗ ))= sup

(
D

RDT(γ)
τ ,

(
2Cγ , ¹∗ ))

Proof. According to (2) and [9, Theorem 2], we obtain:

∀(q,τ) ∈ [0,1/2)× [0,1/2),∀n ∈N,PDET

[
f RDT(γ)

n,τ

(
Y [q]

n

)]
>Q1/2

(
(1−q)

p
n,λγ(τ

p
n)

)
In [7], we proved that lim

σ→0
Q1/2(ρ/σ,λγ(τ/σ)) = 1]τ,∞[(ρ). Therefore, since τ< 1−q , we have

lim
n→∞Q1/2

(p
n(1− q),λγ(τ

p
n)

) = 1. Thus, lim
n→∞PDET

[
f RDT(γ)

n,τ

(
Y [q]

n

)]
= 1. The set DRDT(γ)

τ ⊂
Dγ satisfies Theorem 1 conditions for any γ ∈ (0,1) and Xγ = {τ}.

7 Multiplicity Principle in (2Cγ, ¹∗ )

To state the MP in (2Cγ , ¹∗ ), we need the following lemma.

Lemma 5 (Selectivity of NP tests). ∀n ∈N, Selγ
(

f NP(γ)
n

)
= {0}

Proof. A consequence of [9, Section B., p. 6.].

We have now all the material to state the main result.

Theorem 4 (Multiplicity Principle in (2Cγ , ¹∗ )). For any given τ ∈ [0,1/2), the MP is satis-

fied in (2Cγ , ¹∗ ) by the pair
(
DNP(γ),DRDT(γ)

τ

)
.

Proof. According to Theorems 2 and 3, the subsets DNP(γ) and D
RDT(γ)
τ of 2Cγ are such

that sup
(
DNP(γ) ,

(
2Cγ , ¹∗ )) = sup

(
DRDT(γ) ,

(
2Cγ , ¹∗ )) = D∗

γ . In addition, Lemma 5 im-

plies that DNP(γ) ×DRDT(γ)
τ ∩ ¹∗ =;. The conclusion follows from Lemma 1.
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8 Conclusions and Perspectives

In this paper, via the framework provided by the Multiple Principle (MP), which is mo-
tivated by the concept of degeneracy in biology, and by introducing the notions of test
landscapes and selectivity, we have established that this principle is satisfied when we
consider the standard NP tests and the RDT tests applied to a detection problem. One
interest of this result is that it opens prospects on the construction of Memory Evolutive
Systems [4, 5] via tests.

More elaborated statistical decision problems should be considered beyond this pre-
liminary work. Sequential tests are particularly appealing because they collect informa-
tion till they can decide with guaranteed performance bounds. On the one hand, the Se-
quential Probability Ratio Test (SPRT) established in [11] is proved to be optimal; on the
other hand, in [7], we have exhibited non-optimal tests with performance guarantees in
presence of interferences.In the same way as NP and RDT tests satisfy MP, we conjecture
that these two types of sequential tests satisfy MP as well.
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