Elementary Category Theory In Pictures

Dan Marsden

October 19, 2014

Proofs in Elementary Category Theory

Commuting Diagrams

$$
\begin{aligned}
& T^{\prime} F(X) \xrightarrow{T^{\prime} F(h)} T^{\prime} F(Y) \\
& \alpha_{X} \underbrace{\downarrow}(X) \xrightarrow{F T(h)} F T^{\downarrow}(Y) \\
& F(a) \downarrow F\left(a^{\prime}\right) \\
& F(X) \xrightarrow[F(h)]{ } F(Y)
\end{aligned}
$$

Proofs in Elementary Category Theory

Fokkinga and Meertens: Equational Proof

$$
\begin{aligned}
& F(h) \circ F(a) \circ \alpha_{X} \\
= & \{\text { functoriality }\} \\
& F(h \circ a) \circ \alpha_{X} \\
= & \{h \text { is a } T \text {-algebra homomorphism }\} \\
& F\left(a^{\prime} \circ T(h)\right) \circ \alpha_{X} \\
= & \{\text { functoriality }\} \\
& F\left(a^{\prime}\right) \circ F T(h) \circ \alpha_{X} \\
= & \{\text { naturality }\} \\
& F\left(a^{\prime}\right) \circ \alpha_{Y} \circ T^{\prime} F(h)
\end{aligned}
$$

Proofs in Elementary Category Theory

String Diagrams

Conventional Material

Adjunctions and Monads

An adjunction consists of functors and natural transformations:

satisfying the following "snake equations"

Conventional Material

Adjunctions and Monads

An exercise in wire bending from MacLane, given $F \dashv G$ and $F^{\prime} \dashv G^{\prime}$:

Conventional Material

Adjunctions and Monads

We can slide natural transformations around unit bends:

Similarly we can slide natural transformations around counit bends:

Conventional Material

Adjunctions and Monads

An endofunctor $T: \mathcal{C} \rightarrow \mathcal{C}$ with unit and multiplication:

With unit axioms:

Conventional Material

Adjunctions and Monads

An endofunctor $T: \mathcal{C} \rightarrow \mathcal{C}$ with unit and multiplication:

and associativity axioms:

Conventional Material

Distributive Laws - Artwork Matters

Given monads $(T: \mathcal{C} \rightarrow \mathcal{C}, \eta, \mu)$ and $(S: \mathcal{D} \rightarrow \mathcal{D}, \eta, \mu)$:

Conventional Material

Distributive Laws - Artwork Matters

Given monads $(T: \mathcal{C} \rightarrow \mathcal{C}, \eta, \mu)$ and $(S: \mathcal{D} \rightarrow \mathcal{D}, \eta, \mu)$:

Unconventional Material

Objects and Morphisms

"Ordinary" objects are functors $1 \rightarrow \mathcal{C}$ and "ordinary" morphisms are natural transformations between them:

Unconventional Material

Representables

$$
G \cong \mathcal{C}(S,-)
$$

We represent the isomorphism as boxes satisfying "push and pop" axioms:

Unconventional Material

Bifunctors

Bifunctors and naturality in multiple variables:

$$
[\mathcal{C} \times \mathcal{D}, \mathcal{E}] \cong[\mathcal{C},[\mathcal{D}, \mathcal{E}]]
$$

Naturality and functoriality equations:

Unconventional Material

Bifunctors

Bifunctors and naturality in multiple variables:

$$
[\mathcal{C} \times \mathcal{D}, \mathcal{E}] \cong[\mathcal{C},[\mathcal{D}, \mathcal{E}]]
$$

Witnessing identity 2-cells:

Naturality and functoriality equations:

Concrete Application

Coalgebras and coalgebraic logic commonly use:

- "Ordinary morphisms"
- Transformations of signature functors
- Monads
- Distributive laws
- Logical connections

$=\{$ Bifunctors $\}$

