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Proofs in Elementary Category Theory
Commuting Diagrams
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Proofs in Elementary Category Theory
Fokkinga and Meertens: Equational Proof

F (h) ◦ F (a) ◦ αX

= { functoriality }
F (h ◦ a) ◦ αX

= { h is a T -algebra homomorphism }
F (a′ ◦ T (h)) ◦ αX

= { functoriality }
F (a′) ◦ FT (h) ◦ αX

= { naturality }
F (a′) ◦ αY ◦ T ′F (h)



Proofs in Elementary Category Theory
String Diagrams
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Conventional Material
Adjunctions and Monads

An adjunction consists of functors and natural transformations:
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satisfying the following “snake equations”
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Conventional Material
Adjunctions and Monads

An exercise in wire bending from MacLane, given F a G and
F ′ a G ′:
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Conventional Material
Adjunctions and Monads

We can slide natural transformations around unit bends:
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Similarly we can slide natural transformations around counit bends:
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Conventional Material
Adjunctions and Monads

An endofunctor T : C → C with unit and multiplication:
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With unit axioms:
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Conventional Material
Adjunctions and Monads

An endofunctor T : C → C with unit and multiplication:
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and associativity axioms:
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Conventional Material
Distributive Laws - Artwork Matters

Given monads (T : C → C, η, µ) and (S : D → D, η, µ):
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Conventional Material
Distributive Laws - Artwork Matters

Given monads (T : C → C, η, µ) and (S : D → D, η, µ):
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Unconventional Material
Objects and Morphisms

“Ordinary” objects are functors 1→ C and “ordinary” morphisms
are natural transformations between them:
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Unconventional Material
Representables

G ∼= C(S ,−)

We represent the isomorphism as boxes satisfying “push and pop”
axioms:
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Unconventional Material
Bifunctors

Bifunctors and naturality in multiple variables:

[C × D, E ] ∼= [C, [D, E ]]

Naturality and functoriality
equations:
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Unconventional Material
Bifunctors

Bifunctors and naturality in multiple variables:

[C × D, E ] ∼= [C, [D, E ]]

Naturality and functoriality
equations:
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Witnessing identity 2-cells:
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Concrete Application

Coalgebras and coalgebraic logic
commonly use:

I “Ordinary morphisms”

I Transformations of signature
functors

I Monads

I Distributive laws

I Logical connections
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