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We can make this precise using 2-categorical quantum mechanics.
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We now think about basic properties of copying, comparing and
deleting classical information:

= = =

Associativity Unit

= =

Frobenius law Commutativity

These are the laws obeyed by surfaces up to deformation!
So we change notation and use a 2d topological field theory.



Interactions

We now consider ‘interactions’ between our lines and surfaces.



Interactions

We now consider ‘interactions’ between our lines and surfaces.

We focus on 3 basic interaction types:

M

Measurement



Interactions

We now consider ‘interactions’ between our lines and surfaces.

We focus on 3 basic interaction types:

M

Measurement

P

Preparation



Interactions

We now consider ‘interactions’ between our lines and surfaces.

We focus on 3 basic interaction types:

M

Measurement

P

Preparation

C

Controlled
operation



Interactions

We now consider ‘interactions’ between our lines and surfaces.

We focus on 3 basic interaction types:

M

Measurement

P

Preparation

C

Controlled
operation

We require these to be invertible, because all processes in physics
and computer science are (arguably) reversible at a fundamental level.

Also, M and P are inverse.



Interactions

We now consider ‘interactions’ between our lines and surfaces.

We focus on 3 basic interaction types:

M

Measurement

P

Preparation

C

Controlled
operation

We require these to be invertible, because all processes in physics
and computer science are (arguably) reversible at a fundamental level.

Also, M and P are inverse.

This is a 0-1-2 topological field theory with defects.
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Topological structure

Here is the heuristic quantum teleportation diagram:

M

C

=

We make it rigorous with this equation between topological defects.
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Topological reasoning

We can use the topological formalism to prove interesting things.

Bend up the surface:

= C

M

This is dense coding!

So we have a topological proof of equivalence with teleportation,
independent of the Hilbert space formalism.
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Let’s think about the relationships between CQM and 2-CQM.

Early work on CQM (SA, BC) handled classical information
externally:

U∗
i

U †
i

=

U †
i

Ui
= =

Furthermore, extra notation is required to indicate the
measurement basis.



Comparison with 1-CQM

As CQM developed, Frobenius algebras, modules and
homomorphisms were introduced to handle classical data and
measurement (BC, DP):

= = = =

= = =

m
= m

m m
=

m = m
m
f

= m
f

Lots of non-geometrical data to check.
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Comparison with 1-CQM

There is an immediate connection to 2-CQM.

Definition (Linde Wester). Given a symmetric monoidal
dagger-category C, write 2[C] for the symmetric monoidal
bicategory of classical structures, dagger-bimodules and
homomorphisms in C.

Theorem. There is a symmetric monoidal equivalence
2[Hilb] ' 2Hilb.

So 2-CQM gives a notation for ordinary CQM—
just as 1-CQM gives a notation for QM.

Note 2-CQM is strictly more general, since it can be applied in any
symmetric monoidal bicategory, not necessarily of the form 2[C].
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2–Hilbert spaces

2Hilb has an independent definition that allows you to forget
about module theory.

Definition. The symmetric monoidal 2-category 2Hilb is built
from the following structures:

I 0-cells are natural numbers

I 1-cells are matrices of Hilbert spaces

I 2-cells are matrices of linear maps

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary Hilbert spaces.
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M

C

=



Quantum teleportation

Theorem. Solutions to the teleportation equation in 2Hilb
correspond exactly to quantum teleportation schemes.

M

C

=

classical information

quantum information



Quantum teleportation

Theorem. Solutions to the teleportation equation in 2Hilb
correspond exactly to quantum teleportation schemes.
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Quantum teleportation

Theorem. Solutions to the teleportation equation in 2Hilb
correspond exactly to quantum teleportation schemes.

M

C

=

((
1
0
0
1

))

(
1√
2

( 1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

))

(
( 1 0

0 1 )
(

1 0
0 −1

)
( 0 1

1 0 )
(

0 1
−1 0

) )T

(
( 1 0

0 1 )
)

( ( 1 1 1 1 )T )

This is exactly the data that would appear in a quantum
information textbook.
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Theorem. Structure-preserving maps T → 2Hilb correspond to
implementations of quantum teleportation.
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encryption

Theorem. Structure-preserving maps T → 2Gpd correspond to
implementations of encrypted communication via a one-time pad.
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combinatorics of finite groups

classical
encryption

Q

quantization

Theorem. The map Q transports encrypted communication into
quantum teleportation. Related to Werner’s combinatorial
construction—and Ben Musto has nice results generalizing this!
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Theorem (Krzysztof Bar, JV). Syntactic construction of
teleportation and dense coding from mutually-unbiased bases.
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Q

DC

∼

MUB

QKDfMUB
theory of families of

mutually-unbiased bases
theory of quantum
key distribution∼

2[CP∗[Hilb]]

Quantum and classical worlds unified in 2[CP∗[Hilb]]? Partial
results in QPL 2014 paper (Chris Heunen, JV and Linde Wester.)
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Orbifolding is an operation on a quantum field theory that
constructs its maximal extension. Recently it has been described in
terms of Frobenius algebras in bicategories:

Nils Carqueville and Ingo Runkel,
“Orbifold completion of defect
bicategories”, arXiv:1210:6363

This is formally identical to our 2[−] construction:

Chris Heunen, JV and Linde
Wester, “Mixed quantum states
in higher categories”, QPL 2014

This gives a surprising connection between 2-CQM and quantum
field theory.
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Connections
In subfactor theory, people are interested in understanding
connections in planar algebras. These are 2d operators satisfying
the following graphical condition:

Scott Morrison and Emily Peters,
“The little desert”,
arXiv:1205:2742

This is identical to our notion of ‘completely invertible’, which we used
to classify teleportation, dense coding and MUBs:

JV, “Higher quantum theory”,
arXiv:1207:4563

This gives a surprising link between quantum information and
subfactor theory, von Neumann algebras, and planar algebra.



Future directions

E

C• Extend results to
geometrical field theories



Future directions

E

C• Extend results to
geometrical field theories

• Treatment of mixed states and completely-positive maps



Future directions

E

C• Extend results to
geometrical field theories

• Treatment of mixed states and completely-positive maps

• Pursue connections with orbifolds and subfactor theory



Future directions

E

C• Extend results to
geometrical field theories

• Treatment of mixed states and completely-positive maps

• Pursue connections with orbifolds and subfactor theory

• Combinatorial models for other phenomena:
key distribution?



Future directions

E

C• Extend results to
geometrical field theories

• Treatment of mixed states and completely-positive maps

• Pursue connections with orbifolds and subfactor theory

• Combinatorial models for other phenomena:
key distribution?

• Information processing with
topological branes — can you
teleport a topological quantum
string?



Future directions

E

C• Extend results to
geometrical field theories

• Treatment of mixed states and completely-positive maps

• Pursue connections with orbifolds and subfactor theory

• Combinatorial models for other phenomena:
key distribution?

• Information processing with
topological branes — can you
teleport a topological quantum
string?

Thank you!


