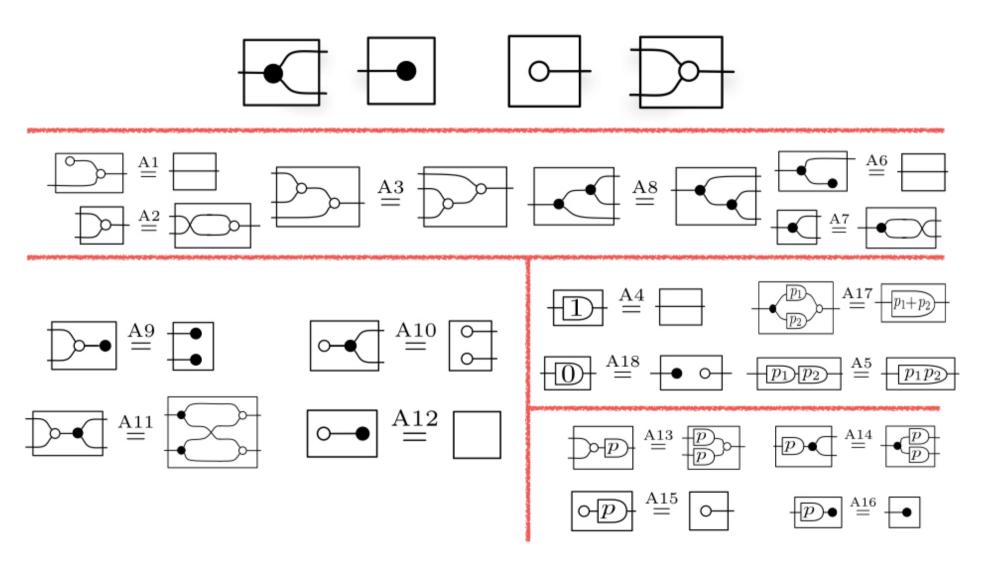
Graphical Linear Algebra

CQM 2014 Jericho Tavern, Oxford Pawel Sobocinski joint work with Filippo Bonchi and Fabio Zanasi 16/10/14

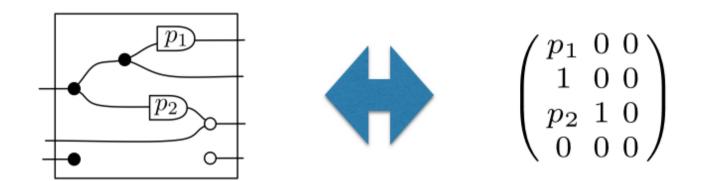
Recent work

- string diagrams as "denotational semantics" for signal flow graphs
 - Bonchi Sobocinski Zanasi, A categorical semantics of Signal Flow Graphs, CONCUR`14
 - Bonchi Sobocinski Zanasi, Full abstraction for Signal Flow Graphs, PoPL`15

Hopf Algebra = graphical theory of linear transformations



Example String diagrams = matrices

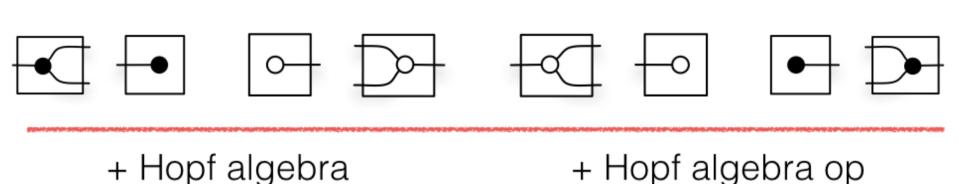


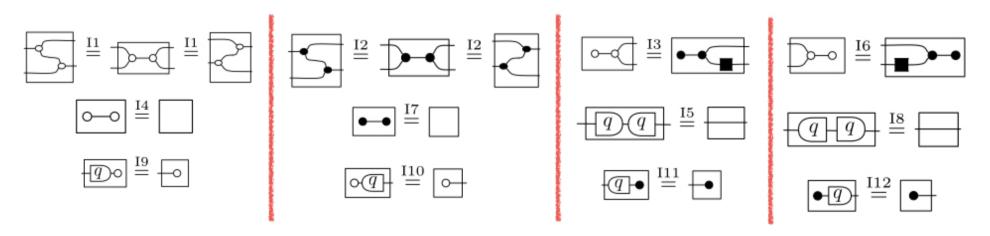
There is an **isomorphism of PROPs** between the free symmetric monoidal theory HA (Hopf Algebra) and Mat R, the PROP where arrows from m to n are mxm R-matrices

tl;dr this is the graphical theory of matrices

Interacting Hopf Algebras = graphical theory of (linear) spaces

Bonchi, Sobocinski, Zanasi. Interacting Hopf Algebras, Arxiv, March 2014.

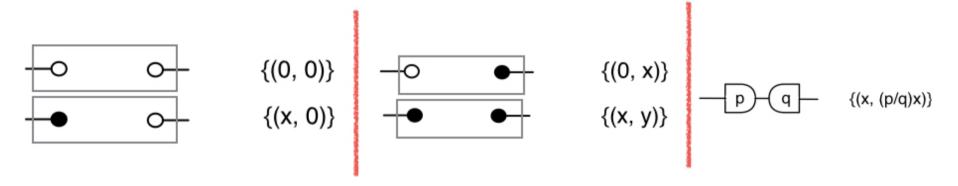




for q not 0

Example string diagrams = spaces

The combinatorics of subspaces of Q²



There is an **isomorphism of PROPs** between the free symmetric monoidal theory IH (Interacting Hopf Algebra) and LinRel k, where k is the field of fractions of R. LinRel k is the PROP where arrows from m to n are subspaces of k^m × kⁿ and composition is relational.

tl;dr this is the graphical theory of linear algebra

Lets redo linear algebra!

A linear transformation t is injective iff ker t = 0.

Textbook proof:

- Assume ker t = 0. If tf = tg then t(f-g)=0, so by assumption f-g = 0, hence f=g.
- Assume t injective and tx = 0. Since always t0=0, tx = t0 and so x=0.

Translating the statement

• t mono

$$\frac{m}{t}$$
 $\frac{n}{t}$ $\frac{m}{m}$ = $\frac{m}{m}$

• ker t = 0

$$\frac{m}{t}$$
 $=$ $\frac{m}{0}$

Graphical proof

$$\frac{m}{t}$$
 $\frac{n}{0}$ $=$ $\frac{m}{0}$

$$\frac{m}{t}$$
 $\frac{n}{0}$ $=$ $\frac{m}{t}$ $\frac{m}{t}$ $\frac{m}{0}$ $=$ $\frac{m}{0}$

$$\frac{m}{t} \frac{n}{t} = \frac{m}{m} = \frac{m}{m$$

Conclusion

- The compositional language of string diagrams as the language of linear algebra
 - no set theory a space is now a string diagram not a "set of vectors" closed under blah blah. No basis vectors etc.
 - no sudden change of language moving from linear transformations to subspaces — the classical language is a hack! String diagrams talk about both matrices and spaces.
 - previously hidden symmetries become apparent
 - closer to applications (e.g. signal flow graphs, electrical circuits, etc)