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Recent work

e string diagrams as “denotational semantics” for
signal flow graphs

* Bonchi Sobocinski Zanasi, A categorical
semantics of Signal Flow Graphs, CONCUR 14

e Bonchi Sobocinski Zanasi, Full abstraction for
Signal Flow Graphs, PoPL 15



Hopf Algebra = graphical
theory of linear transformations
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Example
String diagrams = matrices

" p1 00
- 1 00
2No | p2 10
0 00
There is an isomorphism of PROPs between the free

symmetric monoidal theory HA (Hopf Algebra) and Mat R,
the PROP where arrows from m to n are mxm R-matrices
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tl:dr this is the graphical theory of matrices



Interacting Hopt Algebras =
graphical theory of (linear) spaces

Bonchi, Sobocinski, Zanasi. Interacting Hopf Algebras, Arxiv, March 2014,
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Example
string diagrams = spaces

* The combinatorics of subspaces of Q2
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There is an isomorphism of PROPs between the free symmetric
monoidal theory IH (Interacting Hopf Algebra) and LinRel k, where k is
the field of fractions of R. LinRel k is the PROP where arrows from m
to n are subspaces of km X k" and composition is relational.

tl;dr this is the graphical theory of linear algebra




| ets redo linear algebra!

* A linear transformation t is injective iff ker t = 0.
- Textbook proof:

- Assume ker t = 0. If tf = tg then t(f-g)=0, so by
assumption f-g = 0, hence f=g.

- Assume t injective and tx = 0. Since always t0=0,
tx = 10 and so x=0.



Translating the statement
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Graphical proof

"D = *
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Conclusion

* The compositional language of string diagrams as the language
of linear algebra

* no set theory — a space is now a string diagram not a “set of
vectors” closed under blah blah. No basis vectors etc.

* no sudden change of language moving from linear
transformations to subspaces — the classical language is a
hack! String diagrams talk about both matrices and spaces.

* previously hidden symmetries become apparent

 closer to applications (e.g. signal flow graphs, electrical
circuits, etc)



