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All-versus-Nothing

This style of argument was first conceptualised by Mermin.

See in particular his paper
“A Simple Unified Form For the Major No-Hidden-Variables Theorems” (PRL
1990)

Many papers subsequently, with many examples.

However, no general definition of what an AvN argument is.

We shall provide such a definition, and formulate a conjecture of a simple
characterisation of when such arguments can be made.

Motivation:

Understand where AvN sits in the hierarchy of contextuality properties

Characterise the quantum states which give rise to maximal degrees of
non-locality/contextuality.
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The XOR Game

Alice Bob

⊕
0/1 0/1
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Motivating Example: GHZ

GHZ =
|↑↑↑〉 + |↓↓↓〉√

2

+ + + + +− +−+ +−− −+ + −+− −−+ −−−

XXX 1 0 0 1 0 1 1 0

XYY 0 1 1 0 1 0 0 1

YXY 0 1 1 0 1 0 0 1

YYX 0 1 1 0 1 0 0 1

Strongly contextual: no assignment

{X1,Y1,X2,Y2,X3,Y3} −→ {+1,−1}
consistent with this support.

Note that the eigenvalues of the operators XXX etc. are +1 and −1.

The expected values of these measurements give information about the parity of
the support.
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Mermin’s AvN Argument

The XYY , YXY and YYX operators all stabilise the GHZ state, i.e. leave it fixed.

Note that
〈A〉v = 〈v |A|v〉, 〈v |A|v〉 = 1 ⇐⇒ A|v〉 = |v〉.

Thus the expected value of measuring any of these operators on GHZ is +1.

This says that the support of the outcomes of measuring XXX on GHZ should
have even parity.

However, their product is −XXX , which also stabilises GHZ.

X1 Y2 Y3 = 1

Y1 X2 Y3 = 1

Y1 Y2 X3 = 1

X1 X2 X3 = −1

However, this can never be the case for any assignment

{X1,Y1,X2,Y2,X3,Y3} −→ {+1,−1}
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Logical version of the AvN argument

Use the isomorphism
({+1,−1},×) ∼= ({0, 1},⊕)

We can translate the stabilisers into parity assertions:

X1 ⊕ Y2 ⊕ Y3 = 0

Y1 ⊕ X2 ⊕ Y3 = 0

Y1 ⊕ Y2 ⊕ X3 = 0

X1 ⊕ X2 ⊕ X3 = 1

Clearly, these are inconsistent.
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General Setting

We can define everything for general empirical models (i.e. “generalized probability
tables”) over a measurement scenario (X ,M) (with dichotomic measurements).

To each such model e, we can associate an XOR theory T⊕(e).

For each measurement context C ∈M, this will have the assertion⊕
x∈C

x = 0

when the support of eC is even, and⊕
x∈C

x = 1

when the support is odd.

We say that the model is AvN if this theory is inconsistent.

Proposition

If an empirical model e is AvN, then it is strongly contextual.
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The Stabiliser World

To see how such AvN models can arise from quantum mechanics, we generalise
Mermin’s argument.

The natural setting for this is stabilisers.

The Pauli n-group Pn: a list of n Pauli operators (from {X ,Y ,Z , I}), with a
global phase from {±1,±i}.

A Galois correspondence between Pauli operators and states/vectors in the Hilbert
space Cn:

gRv ⇐⇒ gv = v .

Closure operators on sets of group elements and of vectors:

S⊥ := {v | ∀g ∈ S . gRv}, V⊥ := {g | ∀v ∈ V . gRv}.

The closed sets (X = X⊥⊥) are subgroups and subspaces respectively.

The subgroups of Pn which stabilise non-trivial subspaces must be commutative,
and only contain elements with global phases ±1.
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Mermin’s argument.

The natural setting for this is stabilisers.
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The Galois Correspondence

S ⊂ - T

V
?

6

� ⊃ W
?

6

The subgroups are constraints on states: the more constraints, the fewer states
satisfy them.

Akin to the Galois correspondence of theories and models in logic.

Note that the correspondence is tight: a rank k subgroup determines a dimension
2n−k subspace.
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Stabiliser subgroups induce XOR theories

We can associate an XOR theory T⊕(S) to each stabiliser subgroup S .

For each element P1 · · ·Pn of S , Pi ∈ {X ,Y ,Z , I}, with global phase +1, we have
the formula

n⊕
i=1

Pi = 0

and for each such element with global phase −1, we have the formula

n⊕
i=1

Pi = 1

We say that S is AvN if T⊕(S) is inconsistent.

Question:

How can we characterise when this happens?
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AvN Triples

Define an AvN triple in Pn to be (e, f , g) (order is important) with global phases
+1, which pairwise commute, and additionally satisfy the following conditions:

(A1) For all i = 1, . . . , n at least two of ei , fi , gi are the same.

(A2) The number of i such that ei = gi 6= fi , all distinct from I , is odd.

So in (A2) these are triples PQP of Pauli matrices, all distinct from I , Q 6= P.

Now the claim is that such a triple yields an AvN argument.

Note that the conditions imply that the product e.f .g = −h , which translates
into a condition of odd parity on the support of any state stabilised by these
operators for the measurement h.

On the other hand, condition (A1) implies that under any global
assignment/section on the variables, we can cancel the repeated items in each
column, and deduce an even parity for h.

This means that any state in VS , where S is the subgroup generated by {e, f , g},
admits an AvN argument. Note that this is a 2n−3-dimensional space, assuming
e, f , g are independent.
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The AvN Triple Conjecture

The further conjecture is that having an AvN triple is necessary as well as
sufficient for an AvN argument.

More precisely, any AvN subgroup S must contain an AvN triple.

Example from Mermin, yielding a GHZ argument:

X Y Y

Y X Y

Y Y X

Example of 1-dimensional cluster state, n = 4:

X I X Z

Z Y Y Z

X I Y Y
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