Reality of the Quantum State: A Stronger ψ -ontology Theorem

Shane Mansfield

CQM 2014

The Quantum State ψ — Real or Phenomenal?

- Assume some space Λ of *ontic states*
- Preparation of *quantum states* ψ, φ ∈ ℋ induce probability distributions μ_ψ, μ_φ over Λ, etc.

- If distributions can overlap $\rightarrow \psi$ -epistemic
- If distributions never overlap \rightarrow Each $\lambda \in \Lambda$ encodes a *unique* quantum state, so ψ -ontic

The Quantum State ψ — Real or Phenomenal?

- Assume some space Λ of *ontic states*
- Preparation of *quantum states* ψ, φ ∈ ℋ induce probability distributions μ_ψ, μ_φ over Λ, etc.

- If distributions can overlap $\rightarrow \psi$ -epistemic
- If distributions never overlap \rightarrow Each $\lambda \in \Lambda$ encodes a *unique* quantum state, so ψ -ontic

The PBR Theorem*

The following assumptions

- 1. systems have an objective physical state
- 2. quantum predictions are correct
- 3. preparation independence

imply ψ -ontic.

*Pusey, Barrett & Rudolph, arXiv:1111.3328 [quant-ph]

The PBR Theorem*

The following assumptions

- 1. systems have an objective physical state
- 2. quantum predictions are correct
- 3. preparation independence

imply ψ -ontic.

Preparation Independence

The only reasonable option?

 $\mu(\lambda_A, \lambda_B \mid p_A, p_B) = \mu(\lambda_A \mid p_A) \times \mu(\lambda_B \mid p_B)$

Comparison with Bell Locality

An intuitive notion in measurement scenarios

 $p(o_A, o_B \mid m_A, m_B, \lambda) = p(o_A \mid m_A, \lambda) \times p(o_A \mid m_B, \lambda)$

(Ruled out by Bell's Theorem)

Comparison with Bell Locality

An intuitive notion in measurement scenarios

$$p(o_A, o_B \mid m_A, m_B, \lambda) = p(o_A \mid m_A, \lambda) \times p(o_A \mid m_B, \lambda)$$

(Ruled out by Bell's Theorem)

Weakening Preparation Independence

An intuitive notion of independence (from the analogy with Bell Locality)

Weakening Preparation Independence

An intuitive notion of independence (from the analogy with Bell Locality)

No-signalling

$$p(o_A \mid m_A, m_B) = p(o_A \mid m_A)$$
$$p(o_B \mid m_A, m_B) = p(o_B \mid m_B)$$

- Allows good notion of subsystem
- Consistent with SR

An Alternative to Preparation Independence

Idea: make the minimum assumption that will allow a reasonable notion of subsystem

$$\mu(\lambda_A \mid p_A, p_B) = \mu(\lambda_A \mid p_A)$$
$$\mu(\lambda_B \mid p_A, p_B) = \mu(\lambda_B \mid p_B)$$

Escaping PBR's Conclusion

A ψ -epistemic model realising PBR statistics:

Define $\mu_{00}, \mu_{0+}, \mu_{+0}, \mu_{++}$ by the table below and measurement response functions as on the right

$$\begin{split} \boldsymbol{\xi}_{\neg(\boldsymbol{\psi},\boldsymbol{\psi})}(\boldsymbol{\lambda}) &:= \begin{cases} 1 & \text{if } \boldsymbol{\lambda} = (\lambda_{\boldsymbol{\phi}-\boldsymbol{\psi}},\lambda_{\boldsymbol{\phi}-\boldsymbol{\psi}}) \\ 1/2 & \text{if } \boldsymbol{\lambda} \in \{(\lambda_{\boldsymbol{\psi}\wedge\boldsymbol{\phi}},\lambda_{\boldsymbol{\phi}-\boldsymbol{\psi}}),(\lambda_{\boldsymbol{\phi}-\boldsymbol{\psi}},\lambda_{\boldsymbol{\psi}\wedge\boldsymbol{\phi}})\} \\ 0 & \text{otherwise} \end{cases} \\ \boldsymbol{\xi}_{\neg(\boldsymbol{\psi},\boldsymbol{\phi})}(\boldsymbol{\lambda}) &:= \begin{cases} 1 & \text{if } \boldsymbol{\lambda} = (\lambda_{\boldsymbol{\phi}-\boldsymbol{\psi}},\lambda_{\boldsymbol{\psi}-\boldsymbol{\phi}}) \\ 1/2 & \text{if } \boldsymbol{\lambda} \in \{(\lambda_{\boldsymbol{\psi}\wedge\boldsymbol{\phi}},\lambda_{\boldsymbol{\psi}-\boldsymbol{\phi}}),(\lambda_{\boldsymbol{\phi}-\boldsymbol{\psi}},\lambda_{\boldsymbol{\psi}\wedge\boldsymbol{\phi}})\}\} \\ 0 & \text{otherwise} \end{cases} \\ \boldsymbol{\xi}_{\neg(\boldsymbol{\phi},\boldsymbol{\psi})}(\boldsymbol{\lambda}) &:= \begin{cases} 1 & \text{if } \boldsymbol{\lambda} = (\lambda_{\boldsymbol{\psi}-\boldsymbol{\phi}},\lambda_{\boldsymbol{\phi}-\boldsymbol{\psi}}) \\ 1/2 & \text{if } \boldsymbol{\lambda} \in \{(\lambda_{\boldsymbol{\psi}-\boldsymbol{\phi}},\lambda_{\boldsymbol{\psi}\wedge\boldsymbol{\phi}}),(\lambda_{\boldsymbol{\psi}\wedge\boldsymbol{\phi}},\lambda_{\boldsymbol{\phi}-\boldsymbol{\psi}})\}\} \\ 0 & \text{otherwise} \end{cases} \\ \boldsymbol{\xi}_{\neg(\boldsymbol{\phi},\boldsymbol{\phi})}(\boldsymbol{\lambda}) &:= \begin{cases} 1 & \text{if } \boldsymbol{\lambda} = (\lambda_{\boldsymbol{\psi}-\boldsymbol{\phi}},\lambda_{\boldsymbol{\psi}\wedge\boldsymbol{\phi}}),(\lambda_{\boldsymbol{\psi}\wedge\boldsymbol{\phi}},\lambda_{\boldsymbol{\phi}-\boldsymbol{\psi}})\} \\ 1/2 & \text{if } \boldsymbol{\lambda} \in \{(\lambda_{\boldsymbol{\psi}-\boldsymbol{\phi}},\lambda_{\boldsymbol{\psi}\wedge\boldsymbol{\phi}}),(\lambda_{\boldsymbol{\psi}\wedge\boldsymbol{\phi}},\lambda_{\boldsymbol{\psi}-\boldsymbol{\phi}})\}\} \\ 0 & \text{otherwise} \end{cases} \end{cases}$$

The Crux of the Matter (Outline)

One step of the PBR argument:

- Suppose μ_ψ and μ_φ have overlapping supports, such that a device that can prepare p ∈ {ψ, φ} results in an ontic state in the overlap region with probability at least q
- Then with two such preparation devices, there is probability at least q^2 that *both* ontic states lie in the overlap region

This does not hold under our weakened notion of independence.

The Crux of the Matter (Outline)

One step of the PBR argument:

- Suppose μ_ψ and μ_φ have overlapping supports, such that a device that can prepare p ∈ {ψ, φ} results in an ontic state in the overlap region with probability at least q
- Then with two such preparation devices, there is probability at least q^2 that *both* ontic states lie in the overlap region

This does not hold under our weakened notion of independence.

A Stronger ψ -ontology Theorem

• Uniformly sample *n* preparations from *m* preparation devices

• Even allowing for the loophole in PBR, we prove a bound on the probability of being in the overlap region

$$q \leq \frac{1}{\left\lceil \frac{n}{m-1} \right\rceil}$$

•
$$q \rightarrow 0$$
 as $m \rightarrow \infty$

Conclusion

- Take a reasonable weaker notion of independence
- ψ can be interpreted statistically

BUT!!!

- The degree to which systems may be composed limits the degree to which ψ may be statistical
- Fine for simple toy theories, but not for fully fledged physical theories
- ψ is still real!

Appendix: The Quantum State ψ — Real or Phenomenal?

ψ -ontic:

- A real physical wave (on configuration space?)
- Easiest way to think about interference
- PBR theorem

ψ -epistemic:

- ψ gives probabilistic information
- Collapse \rightarrow Bayesian updating
- Can't reliably distinguish non-orthogonal ψ, ϕ
- *ψ* is exponential in the number of systems
- Can't be cloned
- Can be teleported