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Elements of ZX-calculus diagrams
I green nodes with n inputs and m outputs, α ∈ (−π, π]

u
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. . .

α
. . .

m

n

}

��
~ := |0〉⊗m 〈0|⊗n + eiα |1〉⊗m 〈1|⊗n ,

I red nodes with n inputs and m outputs, β ∈ (−π, π]

u

ww
v

. . .

β
. . .

m

n

}

��
~ := |+〉⊗m 〈+|⊗n + eiβ |−〉⊗m 〈−|⊗n ,

I Hadamard nodes with one input and one output

r

H

z
:= |+〉 〈0|+ |−〉 〈1|
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Properties of the interpretation functor
I parallel composition:
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I serial composition:
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I to get the Hermitian adjoint of a diagram, turn it
upside-down and flip all the phases: e.g.
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Diagram jargon and conventions

I a phase label of zero is usually left out: e.g. := 0

I diagrams with no inputs are states: e.g.
H H

I diagrams with no outputs are effects: e.g. π

I diagrams with no inputs or outputs are scalars: e.g.
π/2

I a red or green node with one input and one output is also
called phase shift: e.g. −π/2
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Rules of the ZX-calculus
I ignore non-zero scalar factors (J π K .

= 0 .
= J π K)

I only the topology matters

. . . . . . . . . . . .
α =

. . . = α + β =
β =. . . . . .. . . . . .

= = =

. . .
. . .

π
=
π π

. . .
. . . π

α
=

−α
π

α = α
H H

H H

. . .

. . .

. . .

. . .

H π/2
π/2

π/2
=



Universality, soundness, and completeness

I universality: any pure state, post-selected pure projective
measurement, and unitary operation can be expressed: to
see this note that J K .

= |0〉, J K .
= 〈0|,

q
α

y .
=

(
1 0
0 eiα

)
,

r z
.

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



I soundness: any equality that can be derived graphically
can also be derived using matrices; to see this note that

JLHSK .
= JRHSK for all rewrite rules

I completeness: can any equality that can be derived using
matrices also be derived graphically, i.e.

does JD1K
.

= JD2K imply D1 = D2 ?
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Euler decomposition of arbitrary unitaries

I Any 2x2 unitary U can be written as

U .
=

(
1 0
0 eiα

)(
cosβ −i sinβ
−i sinβ cosβ

)(
1 0
0 eiγ

)

I

(
1 0
0 eiα

)
.

= J α K and
(

cosβ −i sinβ
−i sinβ cosβ

)
.

= J β K

I So if the ZX-calculus is complete, then for any U we have
to be able to find α, β, γ such that

U =

α

β

γ



Alternative interpretation functors

I define J−Kk by J H Kk := J H K and
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I if k is an odd integer, the interpretation J−Kk is sound



A counterexample for completeness

Consider diagrams D1 :=

π/3

π/3

2π/3

π/3

π/3

and D2 :=

α

β

γ

I By Euler decomposition of arbitrary unitaries, can find
α, β, γ such that

r
D1

z
.

=
r

D2

z

I Thus if ZX-calculus is complete, D1 = D2

I Then must also have
r

D1

z

−3

.
=

r
D2

z

−3

I But
r

D1

z

−3

.
= I and

r
D2

z

−3
is non-trivial =⇒

contradiction!
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Further notes on incompleteness

I counterexample involves only line graphs, i.e. very simple
structure

I can find similar counterexamples for other types of graphs
I might have to add infinitely many new rewrite rules to

complete the general ZX-calculus

But:
I Euler decomposition of general unitaries relies on arbitrary

phases being allowed
I can get completeness results for current ruleset by

restricting phases
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Stabilizer quantum mechanics
Stabilizer operations:

I preparation of qubits in state |0〉
I Clifford unitaries, generated by

S =

(
1 0
0 i

)
, H =

1√
2

(
1 1
1 −1

)
, ΛX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


I measurements in computational basis

ZX-calculus: S .
= J π/2 K, H .

= J H K, ΛX .
= J K

i.e. need to restrict phases to integer multiples of π/2

. . .

α
. . .

m

n

. . .

β
. . .

m

n

H where α, β ∈ {−π/2,0, π/2, π}
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Graph states in the ZX-calculus

Definition
Let G be a finite simple undirected graph. The ZX-calculus
diagram for the corresponding graph state consists of:

I for each node in G, a green node with one output, and
I for each edge in G, an edge with a Hadamard node on it.

E.g.

2 3

1 4

1 2 3 4

7→
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Graph states in the ZX-calculus

Definition
Let G be a finite simple undirected graph. The ZX-calculus
diagram for the corresponding graph state consists of:

I for each node in G, a green node with one output, and
I for each edge in G, an edge with a Hadamard node on it.

E.g.

2 3

1 4

1 2 3 4
H

HH

H

H
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Results about graph states

The local Clifford group consists of all tensor products of the
single-qubit Clifford operators 〈S,H〉.

Theorem (Van den Nest et. al, 2004)
Any stabilizer state is local Clifford-equivalent to some graph
state.

Theorem (Van den Nest et. al, 2004)
Two graph states are local Clifford-equivalent if and only if they
are related by a sequence of local complementations.
A local complementation about a vertex v inverts the subgraph
generated by the neighbourhood of v : e.g.

1

2 3

4

3−→
1

2 3

4

2−→
1

2 3

4
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Local complementations in the ZX-calculus
Theorem (Duncan & Perdrix, 2009)
Denote the result of a local complementation about the vertex v
in the graph G by G ? v. The graph state diagrams for G and
G ? v satisfy

α1 . . . αv−1

G
=

αnαv+1 . . .π/2

G ? v
. . .

where αu = −π/2 if {u, v} is an edge, αu = 0 otherwise.
E.g. a local complementation about the 3rd qubit of the
previous graph state:

H

H

H

H

=

H

H

H

HH



Local complementations in the ZX-calculus
Theorem (Duncan & Perdrix, 2009)
Denote the result of a local complementation about the vertex v
in the graph G by G ? v. The graph state diagrams for G and
G ? v satisfy

α1 . . . αv−1

G
=

αnαv+1 . . .π/2

G ? v
. . .

where αu = −π/2 if {u, v} is an edge, αu = 0 otherwise.
E.g. a local complementation about the 3rd qubit of the
previous graph state:

H

H

H

H

= H

H

H

H

π/2−π/2−π/2

H



GS-LC diagrams

Definition
A diagram in the stabilizer ZX-calculus is called a GS-LC
diagram if it consists of a graph state diagram with arbitrary
single-qubit Clifford unitaries (i.e. combinations of phase shifts
and Hadamards) applied to each output.

E.g.

H

H

H

H

π/2−π/2−π/2

H



Every state diagram is equal to some GS-LC diagram

Theorem
Any stabilizer ZX-calculus diagram with no inputs and at least
one output can be rewritten to a GS-LC diagram.

Proof.
I Decompose the diagram into basic spiders

and single-qubit Clifford unitaries.
I Diagrams with no inputs must contain at least one copy of

, this is a GS-LC diagram.
I For each basic element, applying it to a GS-LC diagram

yields a diagram that can be rewritten into GS-LC form.
I Thus, by induction, the theorem holds.



Reduced GS-LC diagrams

Definition
A diagram in the ZX-calculus is called a reduced GS-LC
diagram if it is a GS-LC diagram and satisfies the following two
conditions:

1. All the single-qubit Clifford unitaries belong to the set

π/2
−π/2
π/2

{ }
.π −π/2

π/2
π/2

2. Two adjacent vertices must not both have single-qubit
Clifford unitaries that include red nodes.

Theorem
Any stabilizer ZX-calculus state diagram can be rewritten to a
reduced GS-LC diagram.



Comparing reduced GS-LC diagrams

Theorem (inspired by Elliott et al., 2008)
There exists a terminating algorithm that, given a pair of
reduced GS-LC diagrams on the same number of qubits,
rewrites them to a pair of identical diagrams if and only if the
two diagrams represent the same state.

Theorem
The ZX-calculus is complete for stabilizer state diagrams.



The Choi-Jamiołkowski isomorphism

Theorem (Choi-Jamiołkowski isomorphism)
For any operator A from n to m qubits and for any n + m-qubit
state B,

A
. . .

. . .

. . .

=
. . . . . .

B ⇐⇒ A
. . .

. . .
=

. . .

. . . . . .
B



The stabilizer ZX-calculus is complete

Theorem
The ZX-calculus is complete for all stabilizer diagrams.

Proof.
Given two ZX-calculus diagrams with n inputs and m outputs
each:

I Apply the Choi-Jamiołkowski isomorphism to get two
diagrams with n + m outputs each.

I Bring the diagrams into reduced GS-LC form.
I Apply the comparison algorithm for reduced GS-LC

diagrams.
I If this yields a pair of identical diagrams, use the

Choi-Jamiołkowski isomorphism to transform the sequence
of equal state diagrams back into operators.

This yields a sequence of rewrites which transforms one of the
original diagrams into the other.
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The single-qubit Clifford+T group

An approximately universal group, generated by:
I single-qubit Clifford group C1 = 〈S,H〉, where

S =

(
1 0
0 i

)
and H =

1√
2

(
1 1
1 −1

)
I T gate (note T 2 = S)

T =

(
1 0
0 eiπ/4

)

ZX-calculus: T .
= J π/4 K and H .

= J H K
I diagrams are restricted to line graphs (each node has one

input and one output)
I phases are restricted to integer multiples of π/4



The single-qubit Clifford+T group

An approximately universal group, generated by:
I single-qubit Clifford group C1 = 〈S,H〉, where

S =

(
1 0
0 i

)
and H =

1√
2

(
1 1
1 −1

)
I T gate (note T 2 = S)

T =

(
1 0
0 eiπ/4

)

ZX-calculus: T .
= J π/4 K and H .

= J H K
I diagrams are restricted to line graphs (each node has one

input and one output)
I phases are restricted to integer multiples of π/4



The normal form for single-qubit Clifford+T diagrams

Following [Matsumoto & Amano 2008], any single-qubit
Clifford+T diagram is either pure Clifford or it can be written as

W
Vn

V1

U

... where

W

Vk

U

∈

{

∈

{

∈

{

}
π/2

π/2

π/2

π/4 3π/4

π/2 π/2

}
}

π/4 + α

π/2

±π/2
π/4 + γ

β

for 1 ≤ k ≤ n

with n a non-negative integer and α, β, γ ∈ {0, π/2, π,−π/2}.



Rewriting diagrams into normal form

I write diagram in terms of α where α is a multiple of π/4,
and β with β a multiple of π/2

I diagrams are rewritten into normal form by pushing phase
shift towards the bottom of the diagram

I we say we can “push A past B” if there is A′ such that

A

B

B

A′
=

I can push α and π past π/4
I can push α and π past π/2

I can push π and π past V ∈
{

π/2 π/2

π/4 3π/4
}



Normal form diagrams act non-trivially
Lemma
No normal form diagram represents the identity operator.

I write any single-qubit density operator as xX + yY + zZ ,
where x , y , z ∈ R and X ,Y ,Z are the Pauli matrices

I Clifford unitaries act on the vectors (x , y , z) by permuting
the elements and adding minus signs; T sends

(x , y , z) 7→ 1√
2

(
x − y , x + y , z

√
2
)
.

I if D is a normal form operator, D |0〉 has vector

1√
2m

(
x1 + x2

√
2, y1 + y2

√
2, z1 + z2

√
2
)

where x1, x2, y1, y2, z1, z2 ∈ Z
I by parity arguments, can show none of them represent |0〉



Normal forms are unique

Lemma
The normal form of the inverse of a normal form diagram has
the same number of π/4 nodes as the original diagram.

Theorem
The normal form is unique.

I Suppose D and D′ are non-identical normal form diagrams
I Can then show that D−1 ◦ D′ has non-trivial normal-form
I Thus JDK 6= JD′K, and by soundness D 6= D′

Corollary
The ZX-calculus is complete for the single-qubit Clifford+T
group.
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Related work and open questions

I Stabilizer completeness proof carries over to a ZX-like
graphical calculus for Spekkens’ toy theory (joint work with
Ali Nabi Duman)

I can the two completeness results be combined into a
completeness proof for the multi-qubit Clifford+T group?

I zero-diagram completeness?
I what happens if we put the scalars back in (possibly still

ignoring complex phases)?
I can the completeness results be implemented in
Quantomatic?



Summary

I ZX-calculus is not complete in general but fragments of it
are complete, e.g.

I line graphs where all phases are multiples of π/4
(single-qubit Clifford+T group)

I diagrams where all phases are multiples of π/2 (stabilizer
quantum mechanics)

I ongoing work to extend completeness results

Thank you!



Summary

I ZX-calculus is not complete in general but fragments of it
are complete, e.g.

I line graphs where all phases are multiples of π/4
(single-qubit Clifford+T group)

I diagrams where all phases are multiples of π/2 (stabilizer
quantum mechanics)

I ongoing work to extend completeness results

Thank you!


	Introduction
	The zx-calculus is incomplete [Schröder & Zamdzhiev 2014]
	Completeness results
	Stabilizer quantum mechanics
	The single-qubit Clifford+T group

	Outlook & Conclusions

