(In)Completeness results for the ZX-calculus

Miriam Backens

Department of Computer Science, University of Oxford

10 Years of Categorical Quantum Mechanics, Oxford, 2014

Outline

Introduction

The zx-calculus is incomplete [Schröder \& Zamdzhiev 2014]

Completeness results
Stabilizer quantum mechanics
The single-qubit Clifford + T group

Outlook \& Conclusions

Outline

Introduction

The ZX-calculus is incomplete [Schröder \& Zamdzhiev 2014]

Completeness results

Stabilizer quantum mechanics
The single-qubit Clifford+T group

Outlook \& Conclusions

Elements of Zx-calculus diagrams

- green nodes with n inputs and m outputs, $\alpha \in(-\pi, \pi]$

- red nodes with n inputs and m outputs, $\beta \in(-\pi, \pi]$

- Hadamard nodes with one input and one output

Elements of Zx-calculus diagrams

- green nodes with n inputs and m outputs, $\alpha \in(-\pi, \pi]$
- red nodes with n inputs and m outputs, $\beta \in(-\pi, \pi]$

$$
\llbracket\left[\begin{array}{l}
\frac{m}{\cdots} \\
\underbrace{\ldots \beta}_{n} \beta
\end{array} \rrbracket:=|+\rangle^{\otimes m}\left\langle+\left.\right|^{\otimes n}+e^{i \beta} \mid-\right\rangle^{\otimes m}\left\langle-\left.\right|^{\otimes n},\right.\right.
$$

- Hadamard nodes with one input and one output

$$
\llbracket \stackrel{\text { 亗 }}{ } \rrbracket:=|+\rangle\langle 0|+|-\rangle\langle 1|
$$

Properties of the interpretation functor

- parallel composition:
- serial composition:
- to get the Hermitian adjoint of a diagram, turn it upside-down and flip all the phases: e.g.

Diagram jargon and conventions

- a phase label of zero is usually left out: e.g. $\downarrow:=\varnothing 0$

Diagram jargon and conventions

- a phase label of zero is usually left out: e.g. $\downarrow:=\varnothing 0$
- diagrams with no inputs are states: e.g. $\mathrm{O}-\mathrm{H}-\mathrm{O}-\mathrm{H}-\mathrm{O}$

Diagram jargon and conventions

- a phase label of zero is usually left out: e.g. $\downarrow:=\varnothing 0$
- diagrams with no inputs are states: e.g. $\mathrm{O}-\mathrm{H}-\mathrm{O}-\mathrm{H}-\mathrm{O}$
- diagrams with no outputs are effects: e.g. 9π

Diagram jargon and conventions

- a phase label of zero is usually left out: e.g. $\downarrow:=\varnothing 0$
- diagrams with no inputs are states: e.g. $\mathrm{O}-\mathrm{H}-\mathrm{O}-\mathrm{H}-\mathrm{O}$
- diagrams with no outputs are effects: e.g. 9π
- diagrams with no inputs or outputs are scalars: e.g. $\pi / 2$

Diagram jargon and conventions

- a phase label of zero is usually left out: e.g. $\downarrow:=\varnothing 0$
- diagrams with no inputs are states: e.g. $\mathrm{O}-\mathrm{H}-\mathrm{O}-\mathrm{H}-\mathrm{O}$
- diagrams with no outputs are effects: e.g. 9π
- diagrams with no inputs or outputs are scalars: e.g. $\frac{1 / 2}{}$
- a red or green node with one input and one output is also called phase shift: e.g. $\phi-\pi / 2$

Rules of the zX -calculus

- ignore non-zero scalar factors $(\llbracket \circ \pi \rrbracket \doteq 0 \doteq \llbracket \circ \pi \rrbracket)$
- only the topology matters

$$
{ }_{\square}^{\prime \prime}=d \cdot b
$$

$$
{\underset{o}{0} \pi}_{\cdots}^{\dot{\varphi}} \underset{o}{\cdots} \pi
$$

$$
\dot{H}=\begin{aligned}
& 0 \pi / 2 \\
& 0 \pi / 2 \\
& 0 \pi / 2
\end{aligned}
$$

Universality, soundness, and completeness

- universality: any pure state, post-selected pure projective measurement, and unitary operation can be expressed: to see this note that $\llbracket \downarrow \rrbracket \doteq|0\rangle, \llbracket \uparrow \rrbracket \doteq\langle 0|$,

$$
\llbracket \phi \alpha \rrbracket \doteq\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \alpha}
\end{array}\right), \quad \llbracket \phi-\phi \rrbracket \doteq\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Universality, soundness, and completeness

- universality: any pure state, post-selected pure projective measurement, and unitary operation can be expressed: to see this note that $\llbracket \downarrow \rrbracket \doteq|0\rangle, \llbracket \uparrow \rrbracket \doteq\langle 0|$,

$$
\llbracket \phi \alpha \rrbracket \doteq\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \alpha}
\end{array}\right), \quad \llbracket \phi-\phi \rrbracket \doteq\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

- soundness: any equality that can be derived graphically can also be derived using matrices; to see this note that

$$
\llbracket \mathrm{LHS} \rrbracket \doteq \text { RHS } \rrbracket \text { for all rewrite rules }
$$

Universality, soundness, and completeness

- universality: any pure state, post-selected pure projective measurement, and unitary operation can be expressed: to see this note that $\llbracket \downarrow \rrbracket \doteq|0\rangle, \llbracket \uparrow \rrbracket \doteq\langle 0|$,

$$
\llbracket \phi \alpha \rrbracket \doteq\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \alpha}
\end{array}\right), \quad \llbracket \phi-\phi \rrbracket \doteq=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

- soundness: any equality that can be derived graphically can also be derived using matrices; to see this note that

$$
\llbracket \mathrm{LHS} \rrbracket \doteq \llbracket \mathrm{RHS} \rrbracket \text { for all rewrite rules }
$$

- completeness: can any equality that can be derived using matrices also be derived graphically, i.e.

$$
\text { does } \llbracket D_{1} \rrbracket \doteq \llbracket D_{2} \rrbracket \text { imply } D_{1}=D_{2} \text { ? }
$$

Outline

Introduction

The zX-calculus is incomplete [Schröder \& Zamdzhiev 2014]

Completeness results
 Stabilizer quantum mechanics
 The single-qubit Clifford+T group

Outlook \& Conclusions

Euler decomposition of arbitrary unitaries

- Any $2 x 2$ unitary U can be written as

$$
U \doteq\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \alpha}
\end{array}\right)\left(\begin{array}{cc}
\cos \beta & -i \sin \beta \\
-i \sin \beta & \cos \beta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \gamma}
\end{array}\right)
$$

$-\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \alpha}\end{array}\right) \doteq \llbracket \phi \alpha \rrbracket$ and $\left(\begin{array}{cc}\cos \beta & -i \sin \beta \\ -i \sin \beta & \cos \beta\end{array}\right) \doteq \llbracket \phi \beta \rrbracket$

- So if the ZX-calculus is complete, then for any U we have to be able to find α, β, γ such that

$$
\dot{U}=\oint_{\phi}^{\alpha} \frac{\alpha}{\gamma}
$$

Alternative interpretation functors

- define $\llbracket-\rrbracket_{k}$ by \llbracket 审 $\rrbracket_{k}:=\llbracket$ 畁 \rrbracket and
- if k is an odd integer, the interpretation $\llbracket-\rrbracket_{k}$ is sound

A counterexample for completeness

- By Euler decomposition of arbitrary unitaries, can find α, β, γ such that $\llbracket\left[\begin{array}{|c}\dot{D_{1}} \\ \hline\end{array} \llbracket \overline{D_{2}}\right] \rrbracket$

A counterexample for completeness

- By Euler decomposition of arbitrary unitaries, can find α, β, γ such that $\llbracket \overline{D_{1}} \rrbracket \doteq \llbracket \overline{D_{2}} \rrbracket$
- Thus if ZX -calculus is complete, $\dot{D}_{1}=\dot{D}_{2}$

A counterexample for completeness

- By Euler decomposition of arbitrary unitaries, can find

- Thus if ZX -calculus is complete, $\dot{D}_{1}=\dot{D}_{2}$
- Then must also have $\llbracket\left|\stackrel{\mid D_{1}}{1} \rrbracket_{-3} \doteq \llbracket\right| \stackrel{D_{2}}{1} \rrbracket_{-3}$

A counterexample for completeness

- By Euler decomposition of arbitrary unitaries, can find

- Thus if ZX -calculus is complete, $\dot{D}_{1}=\dot{D}_{2}$
- Then must also have $\llbracket\left|\frac{D_{1}}{1} \rrbracket_{-3} \doteq \llbracket\right| \frac{D_{2}}{1} \rrbracket_{-3}$
 contradiction!

Further notes on incompleteness

- counterexample involves only line graphs, i.e. very simple structure
- can find similar counterexamples for other types of graphs
- might have to add infinitely many new rewrite rules to complete the general ZX-calculus
But:
- Euler decomposition of general unitaries relies on arbitrary phases being allowed
- can get completeness results for current ruleset by restricting phases

Outline

Introduction

The ZX-calculus is incomplete [Schröder \& Zamdzhiev 2014]

Completeness results
Stabilizer quantum mechanics
The single-qubit Clifford+T group

Outlook \& Conclusions

Outline

Introduction

The zX-calculus is incomplete [Schröder \& Zamdzhiev 2014]

Completeness results
Stabilizer quantum mechanics
The single-qubit Clifford+T group

Outlook \& Conclusions

Stabilizer quantum mechanics

Stabilizer operations:

- preparation of qubits in state $|0\rangle$
- Clifford unitaries, generated by

$$
S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right), H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \Lambda X=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

- measurements in computational basis

Stabilizer quantum mechanics

Stabilizer operations:

- preparation of qubits in state $|0\rangle$
- Clifford unitaries, generated by

$$
S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right), H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \Lambda X=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

- measurements in computational basis

ZX-calculus: $S \doteq \llbracket \phi \pi / 2 \rrbracket, H \doteq \llbracket \underset{\dagger}{\dagger} \rrbracket, \Lambda X \doteq \llbracket \phi-\emptyset \rrbracket$
i.e. need to restrict phases to integer multiples of $\pi / 2$

부 where $\alpha, \beta \in\{-\pi / 2,0, \pi / 2, \pi\}$

Graph states in the zx-calculus

Definition

Let G be a finite simple undirected graph. The zx-calculus diagram for the corresponding graph state consists of:

- for each node in G, a green node with one output, and
- for each edge in G, an edge with a Hadamard node on it.
E.g.

Graph states in the zx-calculus

Definition

Let G be a finite simple undirected graph. The zx-calculus diagram for the corresponding graph state consists of:

- for each node in G, a green node with one output, and
- for each edge in G, an edge with a Hadamard node on it.
E.g.

Graph states in the zx-calculus

Definition

Let G be a finite simple undirected graph. The zx-calculus diagram for the corresponding graph state consists of:

- for each node in G, a green node with one output, and
- for each edge in G, an edge with a Hadamard node on it.
E.g.

Results about graph states

The local Clifford group consists of all tensor products of the single-qubit Clifford operators $\langle S, H\rangle$.
Theorem (Van den Nest et. al, 2004)
Any stabilizer state is local Clifford-equivalent to some graph state.

Results about graph states

The local Clifford group consists of all tensor products of the single-qubit Clifford operators $\langle S, H\rangle$.
Theorem (Van den Nest et. al, 2004)
Any stabilizer state is local Clifford-equivalent to some graph state.

Theorem (Van den Nest et. al, 2004)
Two graph states are local Clifford-equivalent if and only if they are related by a sequence of local complementations.
A local complementation about a vertex v inverts the subgraph generated by the neighbourhood of v : e.g.

Results about graph states

The local Clifford group consists of all tensor products of the single-qubit Clifford operators $\langle S, H\rangle$.
Theorem (Van den Nest et. al, 2004)
Any stabilizer state is local Clifford-equivalent to some graph state.

Theorem (Van den Nest et. al, 2004)
Two graph states are local Clifford-equivalent if and only if they are related by a sequence of local complementations.
A local complementation about a vertex v inverts the subgraph generated by the neighbourhood of v : e.g.

Results about graph states

The local Clifford group consists of all tensor products of the single-qubit Clifford operators $\langle S, H\rangle$.
Theorem (Van den Nest et. al, 2004)
Any stabilizer state is local Clifford-equivalent to some graph state.

Theorem (Van den Nest et. al, 2004)
Two graph states are local Clifford-equivalent if and only if they are related by a sequence of local complementations.
A local complementation about a vertex v inverts the subgraph generated by the neighbourhood of v : e.g.

Local complementations in the zx-calculus

Theorem (Duncan \& Perdrix, 2009)
Denote the result of a local complementation about the vertex v in the graph G by $G \star v$. The graph state diagrams for G and $G \star v$ satisfy

where $\alpha_{u}=-\pi / 2$ if $\{u, v\}$ is an edge, $\alpha_{u}=0$ otherwise.
E.g. a local complementation about the 3rd qubit of the previous graph state:

Local complementations in the zx-calculus

Theorem (Duncan \& Perdrix, 2009)
Denote the result of a local complementation about the vertex v in the graph G by $G \star v$. The graph state diagrams for G and $G \star v$ satisfy

where $\alpha_{u}=-\pi / 2$ if $\{u, v\}$ is an edge, $\alpha_{u}=0$ otherwise.
E.g. a local complementation about the 3rd qubit of the previous graph state:

GS-LC diagrams

Definition

A diagram in the stabilizer ZX-calculus is called a GS-LC diagram if it consists of a graph state diagram with arbitrary single-qubit Clifford unitaries (i.e. combinations of phase shifts and Hadamards) applied to each output.
E.g.

Every state diagram is equal to some GS-LC diagram

Theorem
Any stabilizer zx-calculus diagram with no inputs and at least one output can be rewritten to a GS-LC diagram.

Proof.

- Decompose the diagram into basic spiders and single-qubit Clifford unitaries.
- Diagrams with no inputs must contain at least one copy of 0 , this is a GS-LC diagram.
- For each basic element, applying it to a GS-LC diagram yields a diagram that can be rewritten into GS-LC form.
- Thus, by induction, the theorem holds.

Reduced GS-LC diagrams

Definition

A diagram in the zx-calculus is called a reduced GS-LC diagram if it is a GS-LC diagram and satisfies the following two conditions:

1. All the single-qubit Clifford unitaries belong to the set

$$
\left\{\left\lvert\, \begin{array}{|cccc}
\dagger \pi / 2 & \oint \pi & \oint-\pi / 2 & \phi \pi / 2 \\
\oint \pi / 2 & \phi \pi / 2 \\
\dagger-\pi / 2
\end{array}\right.\right\} .
$$

2. Two adjacent vertices must not both have single-qubit Clifford unitaries that include red nodes.

Theorem

Any stabilizer zx-calculus state diagram can be rewritten to a reduced GS-LC diagram.

Comparing reduced GS-LC diagrams

Theorem (inspired by Elliott et al., 2008)

There exists a terminating algorithm that, given a pair of reduced GS-LC diagrams on the same number of qubits, rewrites them to a pair of identical diagrams if and only if the two diagrams represent the same state.

Theorem
The ZX-calculus is complete for stabilizer state diagrams.

The Choi-Jamiołkowski isomorphism

Theorem (Choi-Jamiołkowski isomorphism)
For any operator A from n to m qubits and for any $n+m$-qubit state B,

The stabilizer ZX-calculus is complete

Theorem

The zx -calculus is complete for all stabilizer diagrams.

Proof.

Given two zx-calculus diagrams with n inputs and m outputs each:

- Apply the Choi-Jamiołkowski isomorphism to get two diagrams with $n+m$ outputs each.
- Bring the diagrams into reduced GS-LC form.
- Apply the comparison algorithm for reduced GS-LC diagrams.
- If this yields a pair of identical diagrams, use the Choi-Jamiołkowski isomorphism to transform the sequence of equal state diagrams back into operators.
This yields a sequence of rewrites which transforms one of the original diagrams into the other.

Outline

Introduction

The ZX-calculus is incomplete [Schröder \& Zamdzhiev 2014]

Completeness results
Stabilizer quantum mechanics
The single-qubit Clifford+T group

Outlook \& Conclusions

The single-qubit Clifford+T group

An approximately universal group, generated by:

- single-qubit Clifford group $\mathcal{C}_{1}=\langle S, H\rangle$, where

$$
S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \quad \text { and } \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- T gate (note $T^{2}=S$)

$$
T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right)
$$

The single-qubit Clifford+T group

An approximately universal group, generated by:

- single-qubit Clifford group $\mathcal{C}_{1}=\langle S, H\rangle$, where

$$
S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \quad \text { and } \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- T gate (note $T^{2}=S$)

$$
T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right)
$$

zx-calculus: $T \doteq \llbracket \phi \pi / 4 \rrbracket$ and $H \doteq \llbracket$ 审】

- diagrams are restricted to line graphs (each node has one input and one output)
- phases are restricted to integer multiples of $\pi / 4$

The normal form for single-qubit Clifford+T diagrams

Following [Matsumoto \& Amano 2008], any single-qubit Clifford+T diagram is either pure Clifford or it can be written as

$$
\begin{aligned}
& \dot{U} \in\left\{\begin{array}{ll}
\dot{U} \pi / 4+\alpha & 0 \pi / 4+\gamma \\
0 \beta & 0 \pm \pi / 2 \\
0 \pi / 2
\end{array}\right\}
\end{aligned}
$$

with n a non-negative integer and $\alpha, \beta, \gamma \in\{0, \pi / 2, \pi,-\pi / 2\}$.

Rewriting diagrams into normal form

- write diagram in terms of $\phi \alpha$ where α is a multiple of $\pi / 4$, and $\phi \beta$ with β a multiple of $\pi / 2$
- diagrams are rewritten into normal form by pushing phase shift towards the bottom of the diagram
- we say we can "push A past B " if there is A^{\prime} such that

$$
\frac{\mid \dot{A}}{\frac{1}{1}}=\frac{1}{B}
$$

- can push $\phi \alpha$ and $\phi \pi$ past $\phi \pi / 4$
- can push $\phi \alpha$ and $\phi \pi$ past $\phi \pi / 2$
- can push $\phi \pi$ and $\phi \pi$ past $\overleftarrow{V} \in\left\{\begin{array}{ll}O^{\pi / 4} & O^{3 \pi / 4} \\ O_{\pi / 2} & 0_{\pi / 2}\end{array}\right\}$

Normal form diagrams act non-trivially

Lemma
No normal form diagram represents the identity operator.

- write any single-qubit density operator as $x X+y Y+z Z$, where $x, y, z \in \mathbb{R}$ and X, Y, Z are the Pauli matrices
- Clifford unitaries act on the vectors (x, y, z) by permuting the elements and adding minus signs; T sends

$$
(x, y, z) \mapsto \frac{1}{\sqrt{2}}(x-y, x+y, z \sqrt{2}) .
$$

- if D is a normal form operator, $D|0\rangle$ has vector

$$
\frac{1}{\sqrt{2^{m}}}\left(x_{1}+x_{2} \sqrt{2}, y_{1}+y_{2} \sqrt{2}, z_{1}+z_{2} \sqrt{2}\right)
$$

where $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2} \in \mathbb{Z}$

- by parity arguments, can show none of them represent $|0\rangle$

Normal forms are unique

Lemma
The normal form of the inverse of a normal form diagram has the same number of $\pi / 4$ nodes as the original diagram.

Normal forms are unique

Lemma
The normal form of the inverse of a normal form diagram has the same number of $\pi / 4$ nodes as the original diagram.

Theorem
The normal form is unique.

- Suppose D and D^{\prime} are non-identical normal form diagrams
- Can then show that $D^{-1} \circ D^{\prime}$ has non-trivial normal-form
- Thus $\llbracket D \rrbracket \neq \llbracket D^{\prime} \rrbracket$, and by soundness $D \neq D^{\prime}$

Normal forms are unique

Lemma
The normal form of the inverse of a normal form diagram has the same number of $\pi / 4$ nodes as the original diagram.

Theorem
The normal form is unique.

- Suppose D and D^{\prime} are non-identical normal form diagrams
- Can then show that $D^{-1} \circ D^{\prime}$ has non-trivial normal-form
- Thus $\llbracket D \rrbracket \neq \llbracket D^{\prime} \rrbracket$, and by soundness $D \neq D^{\prime}$

Corollary

The zx-calculus is complete for the single-qubit Clifford+T group.

Outline

Introduction

The zX-calculus is incomplete [Schröder \& Zamdzhiev 2014]

Completeness results
Stabilizer quantum mechanics
The single-qubit Clifford+T group

Outlook \& Conclusions

Related work and open questions

- Stabilizer completeness proof carries over to a ZX-like graphical calculus for Spekkens' toy theory (joint work with Ali Nabi Duman)
- can the two completeness results be combined into a completeness proof for the multi-qubit Clifford+T group?
- zero-diagram completeness?
- what happens if we put the scalars back in (possibly still ignoring complex phases)?
- can the completeness results be implemented in Quantomatic?

Summary

- ZX-calculus is not complete in general but fragments of it are complete, e.g.
- line graphs where all phases are multiples of $\pi / 4$ (single-qubit Clifford+T group)
- diagrams where all phases are multiples of $\pi / 2$ (stabilizer quantum mechanics)
- ongoing work to extend completeness results

Summary

- ZX-calculus is not complete in general but fragments of it are complete, e.g.
- line graphs where all phases are multiples of $\pi / 4$ (single-qubit Clifford+T group)
- diagrams where all phases are multiples of $\pi / 2$ (stabilizer quantum mechanics)
- ongoing work to extend completeness results

Thank you!

