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1 Introduction

Model checking ([12, 20], c.f.[11]) is a technique for verifying finite-state systems, that
has been proven to be very effective in the verification of hardware and software pro-
grams. In model checking, a modelM , given as a set of state variablesV and their
next-state relations, is verified against a temporal logic formulaϕ. Whenϕ holds on all
computation paths ofM we writeM |= ϕ. The most commonly used temporal logics
are Linear Temporal Logic (LTL) [19] and Computation Tree Logic (CTL) [12].

Temporal logic specifications, whether given in LTL or in CTL, are roughly divided
into two basic categories [16, 1]: formulas that specifysafetyproperties and formulas
that specifylivenessproperties. Informally, a safety formula states that “somethingbad
never happens”, and a violation of it can be shown by a finite prefix of a computation
path, reaching a bad state. A liveness formula asserts that “somethinggoodwill even-
tually happen”, and a counterexample for it must contain an infinite path where a good
state never appears (acycle, in case of a finite model). A simple example of a liveness
property is the CTL formulaAFp asserting that the propositionp must appear even-
tually on every computation path of the model. In many cases, a liveness formulaϕ
is accompanied by a set offairness constraints: Boolean events that must appear infi-
nitely often on a path to make itfair. When fairness constraints are present,ϕ should
only be verified on fair paths, and a counterexample should demonstrate afair cycle: an
infinite computation path on whichϕ fails to hold, but each fairness constraint appears
infinitely often.

Symbolic model checking is performed using two main approaches. The first is
based on BDDs (e.g. SMV [17]), and the second is based on satisfiability solving (SAT)
technology [6]. For both methods, liveness formulas are considered more difficult to
verify than safety ones. Special attention has been devoted to detecting fair cycles in
recent years, both using BDDs methods [7, 8], and using SAT-based techniques [2, 14].

We consider a different approach for fair cycle detection, that makes use of Descrip-
tion Logic (DL) technology. We cast a modelM and the negation of the given liveness
specificationϕ as a satisfiability query in DL, such that if an interpretation is found, it
indicates an error inM . While a model and a liveness formula can be easily encoded as
a terminology inALC, this is not the case with fairness constraints. In order to express
fairness, more expressive dialects are needed (see, for example [15, 10]). We propose
a modification to theALC reasoning technique based on tableau construction, that al-
lows us to detect a fair cycle. When constructing a tableaux, cycles are represented by
blocking. A nodex is said to be blocked by a nodey if there exists a path of nodes from
y to x, and the label ofx is a subset of the label ofy. Given a cycle in the tableau, and
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a fairness constraintFC, we attempt to make the cycle fair by addingFC to the label of
a node in the cycle. To accomplish this, we extend the tableaux algorithm with a new
rule that we call afairness rule. We show that our method is sound and terminating, and
discuss how completeness can be achieved.

We have implemented our method in the Description Logic reasonerFaCT++ [22],
and we present experimental results comparing our method with runs using the model
checker VIS [9]. Although running on a few examples only, the results demonstrate the
potential of our method, as they significantly outperform VIS on some of the examples.

The rest of the paper is organized as follows. In the next section we give the neces-
sary definitions, and in Section 3 we present the translation of a liveness model checking
problem into a DL satisfiability query. Section 4 is the main section of the paper, where
we present our algorithm for fair cycle detection. Section 5 presents experimental re-
sults, and Section 6 concludes the paper.

2 Background and Definitions

2.1 Description Logic

Definition 1 (Description LogicALC) LetNC andNR be disjoint sets ofatomic con-
cepts{A1, A2, . . .} and atomic roles{R1, R2, . . .} respectively. The set ofconcepts
C is the smallest set includingNC such that ifC,D ∈ C andR ∈ NR, then so are
¬C,C uD and∃R.C.

Additional concepts are defined as syntactic sugaring of those above:
• C tD = ¬(¬C u ¬D) • ∀R.C = ¬∃R.¬C and • > = A t ¬A for some atomic
conceptA.

A general concept inclusion(GCI) is an expression of the formC v D, where
C andD are arbitrary concepts. Aterminology(or TBox) T consists of a finite set of
concept inclusions.

The semanticsof expressions is defined with respect to a structureI = (∆I , ·I),
called aninterpretation, where∆I is a non-empty set of individuals, and(·)I is an
interpretation function that maps atomic conceptsA to a subset of∆I and atomic roles
R to a subset of∆I ×∆I . The interpretation function is extended to arbitrary concepts
in a way that satisfies each of the following:

– (C uD)I = CI ∩DI ,
– (∃R.C)I = {e ∈ ∆I : ∃(e, e′) ∈ RI s.t.e′ ∈ CI}, and
– (¬C)I = ∆I \ CI .

An interpretationI satisfies a GCI(C v D) if CI ⊆ DI , and a TBoxT if it satisfies
each concept inclusion inT .

Theconcept satisfiability problemis to determine, for a given TBoxT and concept
C, if there exists an interpretationI that satisfiesT and for whichCI is non-empty,

writtenT |=dl C.

Tableaux Algorithms for Concept Satisfiability in ALC. The tableaux algorithm
works on a labeled tree, called acompletion tree, that has a close correspondence to
an interpretation. For a conceptC, we writennf(C) to denote the Negation Normal
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Form (NNF) ofC, write ¬̇C to denote the NNF of¬C, and writesub(C) to denote the
set of all subconcepts ofC (includingC) and their negation. For a TBoxT we define
sub(T ) =

⋃
(CvD)∈T sub(C) ∪ sub(D).

Definition 2 Let T be anALC TBox andC is a concept in NNF. Acompletion tree
for C with respect toT is a directed graphG = (V,E,L) where each nodex ∈ V is
labelled with a setL(x) ⊆ sub(T )∪ sub(C) and each edge〈x, y〉 ∈ E is labelled with
a role nameL(〈x, y〉) ∈ RN .

If 〈x, y〉 ∈ E, theny is called asuccessorof x andx is called apredecessorof y.
If, in addition,R = L(〈x, y〉), theny (x) is called anR-successor(R-predecessor) of
x (y). Ancestoris the transitive closure of predecessor, anddescendantis the transitive
closure of successor.

G is said to contain aclashif for someA ∈ NC and nodex ofG, {A,¬A} ⊆ L(x).

The tableaux algorithm for checking concept satisfiability ofC w.r.t. T starts with
the completion treeG = ({r0}, ∅,L) whereL(r0) = {nnf(C)}. G is then expanded
by repeatedly applying the expansion rules given in Figure 1, stopping if a clash occurs.
In order to ensure termination we need to restrict the creation of new nodes in the

v-rule: if 1. C1 v C2 ∈ T , and
2. {¬̇C1, nnf(C2)} ∩ L(x) = ∅

then setL(x) = L(x) ∪ {C} for someC ∈ {¬̇C1, nnf(C2)}
u-rule: if 1. C1 u C2 ∈ L(x), and

2. {C1, C2} 6⊆ L(x)
then setL(x) = L(x) ∪ {C1, C2}

t-rule: if 1. C1 t C2 ∈ L(x), and
2. {C1, C2} ∩ L(x) = ∅

then setL(x) = L(x) ∪ {C} for someC ∈ {C1, C2}
∃-rule: if 1.∃R.C ∈ L(x), x is not blocked, and

2. x has noR-successory with C ∈ L(y),
then create a new nodey with L(〈x, y〉) = R

andL(y) = {C}
∀-rule: if 1.∀R.C ∈ L(x), and

2. there is anR-successory of x such thatC /∈ L(y)
then setL(y) = L(y) ∪ {C}

Fig. 1.Tableaux expansion rules forALC

completion tree. The notion ofblockingis used for this purpose.

Definition 3 (Blocking) A nodex is label blockedif it has an ancestory such that
L(x) ⊆ L(y). In this case, we say thaty blocksx. A node isblockedif either it is label
blocked or its predecessor is blocked.

When nodes in a branch of the completion tree resemble ancestor nodes, a block is
established to ensure that further applications of∃-rule are not applied to the blocked
nodes (and therefore ensure termination).
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Definition 4 A completion treeG is calledcompleteif no expansion rule can be ap-
plied.G is clash-freeif no node contains a clash.

A tableaux algorithmfor checking concept satisfiability of anALC conceptC w.r.t.
a TBox T builds a completion tree forC. If a complete and clash-free tree can be
obtained, the algorithm returns “satisfiable”; otherwise, if it was unable to build such a
tree, it returns “unsatisfiable”.

Theorem 5. (decision procedure, [21]) The tableaux algorithm always terminates for
a givenALC conceptC and TBoxT , and returns “satisfiable” iffC is satisfiable w.r.t.
a TBoxT .

2.2 Model Checking

Definition 6 (Kripke Structure) LetV be a set of Boolean variables. AKripke struc-
tureM overV is a quadrupleM = (S, I,R, L) where

1. S is a finite set of states.
2. I ⊆ S is the set of initial states.
3. R ⊆ S × S is a transition relation that must be total, that is, for every states ∈ S

there is a states′ ∈ S such thatR(s, s′).
4. L : S → 2V is a function that labels each state with the set of variables true in that

state.

We view each states as a truth assignment to the variables inV . We view a set of states
as a Boolean function overV , characterizing the set. For example, the set of initial
states,I, is considered as a Boolean function overV . Thus, if a states belongs toI,
we writes |= I. Similarly, if vi ∈ L(s) we writes |= vi, and if vi 6∈ L(s) we write
s |= ¬vi.

In practice, the full Kripke structure of a system is not explicitly given. Rather, a
model is described by a set of Boolean variablesV = {v1, ..., vn}, their initial values
and their next-state assignments. The definition we give below is an abstraction of the
input language ofSMV [17].

Definition 7 (Model Description) LetV = {v1, ..., vn} be a set of Boolean variables.
A tuple MD = (IMD , [〈c1, c′1〉, ..., 〈cn, c′n〉]) is a Model Descriptionover V where
IMD, ci, c′i are Boolean expressions overV .

The semantics of a model description defines a Kripke structureMMD = (S, IM , R, L),
whereS = 2V ,L(s) = s, IM = {s|s |= IMD}, andR = {(s, s′) : ∀1 ≤ i ≤ n, s |= ci
impliess′ |= ¬vi ands |= c′i ∧ ¬ci impliess′ |= vi}.
Intuitively, a pair〈ci, c′i〉 defines the next-state assignment of variablevi in terms of the
current values of{v1, ..., vn}. That is,

next(vi) =

0 if ci
1 if c′i ∧ ¬ci
{0, 1} otherwise

where the assignment{0, 1} indicates that for every possible next-state value of vari-
ablesv1, ...vi−1, vi+1, ..., vn there must exist a next-state withvi = 1, and a next-state
with vi = 0.
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Computation Tree Logic (CTL) [12]. Given a finite set AP of atomic propositions,
formulas of CTL are recursively defined as follows:

– Every atomic proposition is a CTL formula.

– If ϕ andψ are CTL formulas then so are:
• ¬ϕ • ϕ ∧ ψ • AXϕ
• EXϕ • A[ϕUψ] • E[ϕUψ]

Additional operators are defined as syntactic sugaring of those above:
• AFϕ = A[true Uϕ] • EFϕ = E[true Uϕ]
• AGϕ = ¬E[true U¬ϕ] • EGϕ = ¬A[true U¬ϕ]

The formal semantics of a CTL formula are defined with respect to a Kripke struc-
tureM = (S, I,R, L) over a set of variablesV = {v1, ..., vk}. A path inM is an
infinite sequence of states(s0, s1, ...) such that each successive pair of states(si, si+1)
is an element ofR. The notationM, s |= ϕ, means that the formulaϕ is true in states
of the modelM .

– M, s |= p iff s |= p
– M, s |= ¬ϕ iff M, s 6|= ϕ
– M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ
– M, s0 |= AXp iff for all paths(s0, s1, ...),M, s1 |= p
– M, s0 |= EXp iff there exists a path(s0, s1, ...),M, s1 |= p
– M, s0 |= A[ϕUψ] iff for all paths (s0, s1, ...), there existsi such thatM, si |= ψ

and for all0 ≤ j < i,M, sj |= ϕ
– M, s0 |= E[ϕUψ] iff there exists a path(s0, s1, ...), and there existsi such that
M, si |= ψ and for all0 ≤ j < i,M, sj |= ϕ

We say that a Kripke structureM = (S, I,R, L) satisfies a CTL formulaϕ (M |= ϕ)
if there exists a statesi such thatsi |= I andM, si |= ϕ.

Linear Temporal Logic (LTL) [19]. Linear temporal logic uses the same temporal
operators as CTL, but has no path quantifiers. An LTL formula is thus evaluated with
respect to a given path rather than a Kripke structure. A formulaϕ is said to hold in a
Kripke structureM if it holds along all paths that start from an initial state ofM .

Fairness constraints and LTL model checking.Different definitions of fairness con-
straints exist in the literature [13]. The fairness definition used for model checking can
be presented as the LTL formulaGFp, describing a fair path as one on which the propo-
sitionp occurs infinitely often (or at least once in a loop).

Model checking of an LTL formulaϕ is commonly done by first building a B̈uchi
automatonA¬ϕ that accepts¬ϕ [23]. The composition ofA¬ϕ (presented as a state-
machine) with the modelM (denotedA¬ϕ||M ) should then be empty: a path, if found,
satisfies¬ϕ, and therefore demonstrate a counterexample forϕ. Note that the accep-
tance condition of a B̈uchi automaton requires that an accepting state is visited infi-
nitely often. Translated into model checking notation, the formulaF(false) is verified
onA¬ϕ||M , with fairness constraints that are the Büchi acceptance conditions. Thus
model checking of any LTL formula is reduced to model checking of a simpleFp for-
mula on fair paths.

Note that the LTL formulaFp and the CTL formulaAFp are equivalent. We some-
times use the CTL notation, since the description of an erroneous path, (EG¬p) is not
possible in LTL.
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2.3 Model description as a DL terminology

We show how a model description can be encoded as a TBox over the Description
Logic dialectALC. This translation is taken from [3], where it was used for bounded
model checking of safety formulas. In Section 3 we demonstrate how unbounded model
checking of liveness formulas can be achieved.

LetMD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉]) be a model description for the modelMMD =
(S, I,R, L), overV = {v1, ..., vn}. We generate a TBoxTMD , linear in the size ofMD .
For each variablevi ∈ V we introduce one primitive conceptVi, whereVi denotes
vi = 1 and¬Vi denotesvi = 0. We introduce one primitive roleR corresponding
to the transition relation of the model. Given a Boolean expressionp over the state
variablesv1, ..., vn, we denoteD(p) the conceptP derived fromp by replacing eachvi

in p with Vi, and∨,∧,¬ with u,t,¬ respectively. For example, ifp = (¬v1 ∧ v2), then
D(p) = (¬V1 u V2).

We define the conceptS0 to represent the set of initial states:S0 = D(I). We define
Ci = D(ci), C′i = D(c′i), for all 1 ≤ i ≤ n. We then introduce concept inclusions
describing the model: for each pair〈ci, c′i〉 we introduce the inclusions

Ci v ∀R.¬Vi

(¬Ci u C′i) v ∀R.Vi

The first inclusion ensures that in any interpretation, an individual that belongs toCi can
be related byR only to individuals that do not belong toVi. As we show in the sequel,
individuals correspond to states in the modelMMD . This means that whenci holds in a
states, all neighbor states ofs must havevi = 0. The above inclusions thus restrict the
roleR to agree with the definition ofR in the model description.

The TBox built above describes the model only, and does not consider the specifi-
cation to be verified. Legal interpretations include for example the empty interpretation,
and are not necessarily useful for verification. In order to use DL reasoning for model
checking we need to add axioms to the terminology, to stand for the specification. The
method we describe below adds concept inclusions that describe anerror in the model.
Interpretations will therefore be legal sub-models that demonstrate an erroneous behav-
ior.

3 Model Checking Liveness Formulas using DL

We first consider a liveness formula of the typeAF(p), with p being a Boolean expres-
sion. For our method to work, we need to define abuggypath, that is, a path on which
p never happens. We thus look for a representation ofEG(¬p).

The following is a known equation [12], that we use for our translation into DL:

EG(¬p) = ¬p ∧ EX(EG(¬p)) (1)

Let MD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉]) be a model description for the modelMMD =
(S, I,R, L) over V = {v1, ..., vn}, and letTMD be the terminology built for it as
described in Section 2.3. Letϕ = AF(p) be the formula to be verified, withp being
a Boolean expression over the variablesv1, ..., vn. Let P= D(p) the corresponding
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concept. We introduce a new concept calledEGnotP , and add the following concept
inclusion toTMD :

EGnotP v ¬Pu ∃R.EGnotP (2)

Note that the expression∃R.Ccan be seen as taking one step throughR, and thus corre-
sponds, in a sense, to the CTL expressionEX(C).

Let T ′
MD be the terminology we get by adding Equation (2) toTMD . We define the

conceptCϕ by Cϕ v S0 u EGnotP . In order to verifyϕ, we now check whetherCϕ is

satisfiable with respect to our terminology:T ′
MD |=dl Cϕ ? A positive answer from the

DL reasoning tool will be accompanied by an interpretation forT ′
MD in whichCϕ is not

empty. This interpretation can serve as a witness toEG(¬p), or as a counterexample to
AF(p). The following proposition states our result formally.

Proposition 8. MMD 6|= ϕ if and only ifT ′
MD |=dl Cϕ.

The proof can be found in [4].

Example. Consider a model of a buggy three-bit counter, for which the least and most
significant bits behave as expected, but the middle bit has a bug: when its current value
is 0, it may assume any value in the next state, and when its current value is 1 it keeps
its value in the next state. This behavior can be described as a model description (using

S0 v (¬V1 u ¬V2 u ¬V3)
V1 v ∀R.¬V1

¬V1 v ∀R.V1

V2 v ∀R.V2

(V1 u V2 u V3) v ∀R.¬V3

(¬V3 u (¬V1 t ¬V2)) v ∀R.¬V3

(V1 u V2 u ¬V3) v ∀R.V3

(V3 u (¬V1 t ¬V2)) v ∀R.V3

Fig. 2.Terminology and Kirpke Structure for “Counter”

> for v1 ∨ ¬v1 and⊥ for v1 ∧ ¬v1) in the following way.
Counter = (I, [〈v1,>〉, 〈⊥, v2〉, 〈(v1 ∧ v2 ∧ v3) ∨ (¬v3 ∧ (¬v1 ∨ ¬v2)),>〉]) with
I = ¬v1 ∧¬v2 ∧¬v3. Figure 2 describes the Kripke structure forCounter . Note that
in the figure,v1 is the right-most bit.

The description of the model as a TBoxTCounter overALC has three concepts
V3,V2,V1 and one roleR. The concept inclusions forTCounter are given in Figure 2.
For convenience we broke the concept inclusions describing the behavior ofV3 into two
parts. Note that there is only one concept inclusion describing the behavior ofV2, since
it is free to change when its value is 0.

Let the formula to be verified beϕ = AF(v1 ∧ ¬v2 ∧ v3), asserting that the state
(101) should be reachable on every path. Translated into DL, we add the following
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inclusion toTCounter (presented in Fig. 2):

EGnotP v (¬V1 t V2 t ¬V3) u ∃R.EGnotP

and defineCϕ v S0uEGnotP . Note that since the formula does not hold in the model,

running the DL queryTCounter |=dl Cϕ is expected to be satisfiable. A possible model
(or counterexample to the formula) could be the loop (000),(001),(000)...

As discussed in Section 2.2, liveness formulas are usually accompanied by one or
more fairness constraints, and need to be verified on fair paths only. In our example, let
the fairness constraint beFairness (v1 ∧ v2 ∧ v3), asserting that only paths on which
the state (111) occurs infinitely often should be considered. The loop (000),(001),(000)
is not a fair counterexample, and a different path should be sought . A fair counterex-
ample will then be (000),(011),(110),(111),(010),(011). In the section below we discuss
how fairness can be implemented in DL.

4 Realizing Fairness in Tableaux Reasoning

While a model and a liveness formula can be encoded as a terminology overALC, this
is not the case for a fairness proposition. If, as in our case, the proposition is mapped to
a primitive conceptFC and we are using tableaux reasoning, then no bound is known
a-priori on the depth in which the conceptFC may appear in a completion tree. Thus
expressing the existence of a fairness condition can be seen asreachability, which can
not be expressed in first order logic.

We propose a modification to the tableaux procedure to support fairness. Our proce-
dure is both terminating and sound: if a fair cycle is found, it is a correct one. However,
the procedure is not complete, that is, there are cases where a fair cycle exits, but our
procedure fails to find it. We show that by an iterative application of the algorithm,
completeness can also be achieved. In the remainder of this section we discuss the the-
oretical and implementation considerations for realizing fairness in DL reasoning.

Recall from Section 2.2 that fairness constraints in model checking are variables
that should be satisfied over all cycles in the model. In tableaux reasoning, a model is
represented by a completion tree, and cycles in the model are represented by blocked
nodes. If nodex is blocked by the nodex0 then there exists a path of nodesx0, . . . , xn

such thatL(〈x0, x1〉) = R0, . . . ,L(〈xn, x〉) = Rn andRi are the roles occurring in a
terminology. This represents the blocking loop(x0, . . . , xn)∗.

In order to implement reasoning with fairness, we need to reject those completion
trees that corresponds to unfair computations. LetFC be a fairness constraint. Comple-
tion treeG is unfair w.r.t. FC if there is loop(x0, . . . , xn)∗ such thatFC /∈ L(xi) for
all 0 ≤ i ≤ n. G is calledfair modelof a conceptC w.r.t. fairness constraintFC if G
is a model ofC which is not unfair w.r.t.FC.

Modifying Tableaux to Support Fairness Our approach to implementing fairness is
to build a complete and clash-free completion tree and, if it is unfair, to attempt to make
it fair by adding the fairness constraint to the label of some node involved in a cycle.
To accomplish this, the tableaux algorithm is extended with the new rule illustrated in
Figure 3. (Note that this new rule must also have a lower priority than all existing rules.)
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fairness-rule: if 1. x is a node blocked byx0, (x0, . . . , xn)∗ is a cycle corresponding tox,
2. FC is a fairness constraint such that for everyi, 0 ≤ i ≤ n, FC /∈ L(xi)

then setL(xi) = L(xi) ∪ {FC} for somei : 0 ≤ i ≤ n

Fig. 3.Expansion rule for fairness

It might be the case that there is no fair model. For example, the conceptC is
satisfiable w.r.t. TBoxT1 = {C v ∃R.C u ¬B} without any fairness constraint but
not satisfiable w.r.t. fairness constraintFC = B. Indeed, every node of the completion
tree forC will be labeled with¬B, and it is not possible to addB to a cycle without a
resulting clash.

Theorem 9. The tableaux algorithm withfairness-rule terminates and is sound (if a
complete clash-free fair completion tree forC is found thenC is satisfiable).

Proof Outline.Soundness is straightforward. To prove termination, assume WLOG that
the completion tree is a single path. There are three cases to consider after a first ap-
plication of fairness-rule to a given blocking loop: (1) it is subsequently possible
to compute a complete clash-free fair completion tree before a second application of
fairness-rule, (2) a clash occurs before a second application of thefairness-rule, or
(3) a subsequent application offairness-rule is required. Both cases (1) and (2) lead to
termination. Case (3) implies that the addition of anFC to a label inside the cycle breaks
the blocking condition and leads to a new cycle. The algorithm therefore proceeds by
adding anFC inside the next loop. Again, there are three possible outcomes, with two
resulting in termination. Ultimately, there is a sequence of case (3) that transpire for
which adding anFC forces unblocking the last node and moving the blocking loop for-
ward. However, after a finite number of occurrences of case (3), there must eventually
be two nodes labeled by the sameFC for which the labels are the same (since the TBox
is finite). One of these nodes will then block the other, and the fair loop must then be
established. ut

Note that there is no guarantee of completeness, that is, if a concept is satisfiable
w.r.t. FC, that the tableaux procedure builds a complete clash-free fair completion tree.
This is a consequence of the way blocking is defined. To illustrate, consider a TBox
consisting of two GCIs:T2 = {C v ¬B,> v ∃R.>}. ConceptC is satisfiable w.r.t.
T2 since there exists a complete and clash-free completion treeG = (V,E,L) such that
V = {x, y}, E = {〈x, y〉},L(x) = {C,¬B,∃R.>},L(y) = {∃R.>},L(〈x, y〉) = R.
Here, nodey is blocked byx. However, the fair algorithm withFC = B will return
“unsatisfiable” since the clash appears immediately following the addition ofFC to the
only possible nodex. However, there is complete and clash-free fair completion tree
for this case:G′ = (V ′, E′,L′) with V ′ = {x, y, z}, E′ = {〈x, y〉, 〈y, z〉},L′(x) =
{C,¬B,∃R.>},L′(y) = {B,∃R.>},L′(z) = {∃R.>},L′(〈x, y〉) = L′(〈y, z〉) =
R. Here, nodez can be label blocked by eitherx or y. To address this problem, we
introduce the notion ofn-blocking.

Definition 10 (n-Blocking) Let n be a non-negative integer. Nodex is n-blockedby
nodex0 with blocking loopx0, . . . , xm if x is blocked byx0 by the same blocking loop
andn ≤ m, that is, there are at leastn nodes in the blocking loop.
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Observe that normal blocking can be viewed as a 0-blocking. Also note that re-
placing normal blocking withn-blocking in the (fair) tableaux algorithm will clearly
preserve termination, soundness and (in the unfair case) completeness.

In the example above the algorithm with 1-blocking will find thatC is satisfiable
w.r.t. T2, producing the completion treeG′, with nodez being blocked byx.

Theorem 11. Let C denote a concept,T a TBox,FC a fairness condition andn a
non-negative integer. Then there is a tableaux-based decision procedure that returns
“satisfiable” iff C is satisfiable w.r.t.T andFC with a fair blocking loop with length
not exceedingn.

Proof Outline.Check the unfair satisfiability ofC using tableaux. If it is unsatisfi-
able, return “unsatisfiable”. Then, for each0 ≤ k ≤ n, run the fair algorithm with
k-blocking. Return “satisfiable” if the algorithm returns “satisfiable” for some suchk;
otherwise return “unsatisfiable”. Termination and soundness are a simple consequence
of Theorem 9. Completeness follows from the fact that no fair blocking loops for any
possible length not exceedingn were found. ut

This approach can be used for detecting fair cycles in model checking. The length
of a cycle cannot exceed the number of states in the model. Since models are finite, for
every modelM and specificationϕ there must existn such that ifM |= ϕ thenM
contains a fair cycle with length not exceedingn. Thus, it is possible to build the TBox
T using the technique from Section 3 and run the procedure suggested in our proof
outline for Theorem 11 to get a decision procedure for fair model checking.

5 Experimental Evaluation

We implemented the modified tableaux reasoning procedure described in Section 4 on
top of FaCT++ [22], a state-of-the-art description logic reasoner. In order to run real
examples, we wrote a translator from the AIGER [5] format, that builds a terminology
as described in Section 3. Liveness formulas were translated in the AIGER models into
Büchi automata (see section 2.2), and the fairness constraints were passed toFaCT++
using a new construct in the interface language.

The models we acquired were originally written in the VIS [9] input language, and
were translated into AIGER using different tools. We present results running three sets
of benchmarks with fairness constraints. The “amba” benchmark encodes an Advanced
High Performance Bus. The “vsa” benchmarks encode a simple architecture for a mi-
croprocessor. In each of the vsa benchmarks, the number indicates the datawidth of the
microprocessor. The “Vending” example is part of the VIS distribution.

Experimental Results. Figure 4 summarizes our proof-of-concept results. The exam-
ples were run on Intel CoreDuo computer, 3.4 HGz, 2Gb RAM, Linux SuSE 11.0.
Times reported are in seconds and a time of DNF indicates that the run did not finish in
the alloted time of 1 hour.

It is evident from Figure 4 that our approach is efficacious in certain scenarios. For
the “amba” benchmark, our system could not finish in the given time, while VIS was
easily able to handle it in a fraction of a second. However, the “vsaR” benchmarks
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Benchmark Result Size (vars) FaCT++ VIS

vsaR - 6 Fail 170 9.9s DNF
vsaR - 8 Fail 204 12.3s DNF
vending Pass 64 DNF 1.1s
amba2 - G3 Pass 63 DNF 0.7s
amba3 - G3 Pass 77 DNF 17.7s

Fig. 4. RUN TIMES FOR THE FAIRNESS VERIFICATION TASKS.

proved simple for our reasoner while VIS was unable to finish in the given time. It
seems that our method works better when a fair cycle does exist in the model. This
can be explained by the fact that when a clash is found applying the fairness-rule, the
n-blocking algorithm should be applied again with increasedn.

6 Conclusion

We have proposed a novel approach to fair cycle detection in model checking, using
tableaux-based DL technology. While encoding of fairness constraints can not be ex-
pressed as a terminology overALC, we showed how the tableaux reasoning procedure
can be modified to support it.

Experiments, comparing our method to the model checker VIS [9], show mixed
results. On some models our method significantly outperform VIS, while other models
demonstrate the opposite. This is not too surprising. In the model checking community
it has been recognized that no single method can outperform others on all models [18].
State of the art model checkers invoke multiple algorithms for each model checking
problem, to speed up verification. Our method can fit nicely in such a platform, speeding
up verification time for part of the models.
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