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Abstract. We consider query answering on Description Logic (DL) on-
tologies with DBoxes, where a DBox is a set of assertions on individuals
involving atomic concepts and roles called DBox predicates. The exten-
sion of a DBox predicate is exactly defined in every interpretation by the
contents of the DBox, i.e., a DBox faithfully represents a database whose
table names are the DBox predicates and the tuples are the DBox asser-
tions. Our goals are (i) to find out whether the answers to a given query
are solely determined by the DBox predicates and, if so, (ii) to find a
rewriting of the query in terms of them. The resulting query can then be
efficiently evaluated using standard database technology. We have that
(i) can be reduced to entailment checking and (ii) can be reduced to find-
ing an interpolant. We present a procedure for computing interpolants in
the DL ALC with general TBoxes. We extend the procedure with stan-
dard tableau optimisations, and we discuss abduction as a technique for
amending ontologies to gain definability of queries of interest.

1 Introduction

We address the problem of concept query answering on databases with ontolo-
gies. An ontology provides a conceptual view of the database and it is composed
by constraints on a vocabulary extending the basic vocabulary (tables and at-
tributes) of the data. Querying a database using the terms in such a richer
ontology allows for more flexibility than using only the basic vocabulary of the
relational database directly.

Description Logics [1] (DLs) are a prominent formalism for representing on-
tologies. However, DLs such as ALC or OWL or DL-lite were not originally
developed with this use case in mind. In particular, the data in a DL knowl-
edge base is represented using an ABox, which can be seen as an incomplete
database. This means the extensions of the concepts and roles contain at least
the data mentioned in the ABox, but may contain additional data, and this may
vary among the models of the knowledge base. This is in contrast to relational
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databases, which are complete: the extensions of the predicates (i.e., the tables)
contain exactly the data in the database and nothing more.

We introduce in this paper the notion of a DBox, which is syntactically similar
to an ABox; it is a set of ground atomic concept and role assertions. However,
semantically it behaves like a database, i.e., the extensions of the concepts and
roles mentioned in the DBox are exactly defined by the contents of the DBox. We
call the concepts and roles appearing in the DBox the DBox predicates. Observe
that the DBox predicates are closed, i.e., their extensions are the same in every
interpretation, whereas the other predicates in the knowledge base are open, i.e.,
their extensions may vary among different interpretations. This has been called
also locally closed world [2] or exact views [3,4,5].

The queries we consider in this paper are concept expressions (and the an-
swers are their instances), and the ontologies are general ALC TBoxes. Our goals
are (i) to check whether the answers to a given query under a TBox are solely
determined by the extension of the DBox predicates and, if so, (ii) to find an
equivalent rewriting of the query in terms of the DBox predicates to allow the
use of standard database technology for answering the query. This means we
benefit from the low computational complexity in the size of the data of an-
swering first-order queries on relational databases. In addition, we would like as
much as possible to use standard techniques for DL reasoning to find rewritings.
As was pointed out recently also by [6], (i) corresponds to implicit definability
[7], and can be reduced to checking entailment and (ii) corresponds to explicit
definability [8]. Inspired by the results of [9], this problem can be reduced to
finding an interpolant.

Our contributions in this paper are as follows. We introduce the notion of
DBoxes as a faithful encoding of databases, and show how to find a query rewrit-
ing over DBoxes, using Beth definability and interpolation; we present a proce-
dure for calculating interpolants of ALC concepts under general TBoxes, using
an adaptation of standard DL tableau techniques; we extend the procedure to
deal with common tableau optimisation techniques found in implemented sys-
tems, in particular, non-atomic closure, semantic branching, lazy unfolding and
absorption, and backjumping; and we show how abduction techniques can be
used for amending TBoxes to gain definability of queries of interest.

2 ALC and DBoxes

ALC TBoxes. Let NC and NR be countably infinite sets of concept and role
names, respectively. The set of ALC concepts is the smallest set that includes
the atomic concepts NC ∪ {>}, and if C, D are concepts and R ∈ NR, then
¬C, C uD, and ∀R.C are concepts. As usual, ⊥, C tD, and ∃R.C are short for
¬>, ¬(¬C u¬D), and ¬∀R.¬C, respectively. An ALC TBox T is a finite set of
axioms of the form C v D, where C and D are ALC concepts.

An interpretation I is a pair 〈∆I , ·I〉 where ∆I is a non-empty set and ·I
is a function that maps concept names A to subsets AI of ∆I and role names
R to binary relations RI on ∆I ; ·I extends to concepts as follows: >I = ∆I ;
(¬C)I = ∆I \CI ; (C uD)I = CI ∩DI ; and (∀R.C)I = {δ ∈ ∆I | ∀δ′ (〈δ, δ′〉 ∈
RI → δ′ ∈ CI)}.



I is a model of a TBox T , written I |= T , iff CI ⊆ DI for all axioms
C v D ∈ T . Since C v D is equivalent to > v ¬C t D, we assume that all
axioms in T are of this form. We can thus view the TBox as a set of universal
concepts {C | > v C ∈ T }.

A concept C is satisfiable w.r.t. T iff there is some model I of T such that
CI 6= ∅; D subsumes C w.r.t. T , written C vT D, iff CI ⊆ DI for all models I
of T . We write C ≡T D if CI ⊆ DI and DI ⊆ CI .

For ease of presentation, we assume all concepts to be in negation normal
form (NNF), which means the negation signs appear only in front of atomic
concepts. The negation normal form of the complement of a concept C is written
¬̇C. With sig(C) (resp. sig(T )) we denote the set of all concept and role names
occurring in C (resp. T ), i.e., the signature of C (resp. T ). With sig(C, T ) we
denote the set of all concept and role names occurring in C or T .

DBoxes. Let NI be a countably infinite set of individual names. A DBox
D is a set of assertions of the forms A(a) and R(a, b), where A ∈ σD(C),
R ∈ σD(R), and a, b ∈ σD(I). The signature σD of D consists of the DBox
concepts σD(C) ⊆ NC , the DBox roles σD(R) ⊆ NR, and the DBox individuals
σD(I) ⊆ NI ; we call DBox predicates the set σD(P ) = σD(C)∪σD(R). The active
domain of D is the set of individuals in σD(I) appearing in the assertions.

An interpretation I = 〈∆I , ·I〉 is a model of D , written I |= D , iff aI = a
for every DBox individual a ∈ σD(I), and for every concept (resp., role) name P
in σD(P ) and every u ∈ ∆I (resp., (u, v) ∈ ∆I ×∆I), we have that u ∈ P I iff
P (u) ∈ D (resp., (u, v) ∈ P I iff P (u, v) ∈ D). In other words, in every model of
D the extensions of the DBox predicates are given by the contents of the DBox,
and are the same in every model. Please note that the domain ∆I of a model of
D is not fixed, but it includes all the DBox individuals in σD(I), which in turn
includes the active domain of D .

A DBox D is satisfiable with respect to a TBox T iff there is a model of D
that is also a model of T . An interpretation I is a model of C(a), where C is a
concept and a an individual name, written I |= C(a), iff aI ∈ CI . A pair (T ,D)
entails a membership expression C(a) – this is the instance checking problem,
or concept querying problem – written (T ,D) |= C(a), iff for every model I of
T and D it holds that I is a model of C(a). Finally, D entails C(a), written
D |= C(a), iff (∅,D) |= C(a).

The unique names assumption (UNA) holds for a DL L if for any interpre-
tation I considered in L , aI 6= bI whenever a 6= b, for any two a, b ∈ NI . If
we assume UNA, reasoning in a DL with DBoxes can be reduced to reasoning
in the same DL extended with nominals – i.e., concept expressions of the form
{a}, where a is an individual name, such that {a}I = {aI} – and vice versa.

Proposition 1. Given a description logic L with UNA that includes ALC, for
every DBox D and TBox T in L there exists a TBox T D in L extended with
nominals with size polynomially bounded by the size of T ∪ D , such that D is
satisfiable with respect to T iff T D is satisfiable, and vice versa.

Proof (sketch). (⇒) T D is obtained from T by adding completion and closure
axioms. For every DBox concept A add the axiom A ≡ {a1} t · · · t {an}, such
that A(a1), . . . , A(an) are the assertions involving A in D . For every DBox role



R add the axioms {ai} v ∃R.{bj}, {ai} v ∀R.{b1} t · · · t {bn}, and ∃R.> v
{a1} t · · · t {am}, such that R(ai, bj) for i = 1, · · · ,m and j = 1, · · · , n are the
assertions involving R in D .
(⇐) For each occurrence of {a} in T D , the assertion Aa(a) is added to D , where
Aa is a new concept name; each occurrence of {a} in T D is replaced with Aa.

Please note that this reduction encodes the entire DBox into a TBox, and that,
although concept querying in ALCO has the same combined complexity as in
ALC, if we consider more expressive logics such as SHIQ we do get an increase in
combined complexity when nominals are added (from ExpTime to NExpTime).
It can also be shown that the data complexity of query answering with DBoxes
(i.e., with closed data predicates) is at least as hard as query answering with
ABoxes (i.e., with open data predicates), and that it is strictly harder if we
consider conjunctive query answering in simple description logics such as DL-lite
(it increases from LogSpace to coNP-hard, which can be shown by a reduction
from non-existence of 3-colourings).

3 Definability and Query Answering

We introduce in this Section implicit and explicit definability for queries, and dis-
cuss how explicit definitions can be used for concept query rewriting. In the fol-
lowing, given a TBox T and a DBox D , letQ be a query concept (i.e., a query ask-
ing for all the instances of the concept) and let sig(Q, T ) = {B1, . . . , Bm, D1, . . . , Dn}
be the combined signature where {D1, . . . , Dn} ⊆ σD(P ) and {B1, . . . , Bm} ∩
σD(P ) = ∅; {D1, . . . , Dn} is the set of DBox predicates appearing in T or in Q.

Definition 1 (Implicit definability). Let a concept ϕ′ (resp. a TBox T ′)
be like ϕ (resp. T ) but with occurrences of B1, . . . , Bm replaced by distinct
occurrences of B′1, . . . , B′m 6∈ sig(Q, T ). Then, Q is implicitly definable from
D1, . . . , Dn in T iff Q ≡T ∪T ′ Q′.

In other words, given a TBox, a concept Q is implicitly definable if the set
of all its instances depends only on the extension of the DBox predicates. This
means that it may be possible to find an expression using only predicates in the
DBox whose instances are the same as in the original concept: this would be its
explicit definition.

Definition 2 (Explicit definability). Q is explicitly definable from D1, . . . , Dn

in T iff there is some concept C such that Q ≡T C and sig(C) ⊆ {D1, . . . , Dn}.

Clearly, explicit definability implies implicit definability. [8] shows that the
converse also holds for the case of first-order logic: if Q is implicitly definable
from D1, . . . , Dn in T , then it is explicitly definable. To prove this property for
ALC with general TBoxes, we exploit interpolation.

Lemma 1 (Interpolation for ALC with TBoxes). Let Q be an ALC concept
and let T be an ALC TBox such that Q vT ∪T ′ Q′, where Q′ and T ′ are obtained
as above. Then, there exists some concept C, called the interpolant of Q and Q′
under T and T ′, such that sig(C) ⊆ sig(Q, T ) ∩ sig(Q′, T ′), Q vT ∪T ′ C, and
C vT ∪T ′ Q′.



Theorem 1 (Beth Definability for ALC with TBoxes). If Q is implicitly
definable from D1, . . . , Dn in T then Q is explicitly definable from D1, . . . , Dn

in T .

The proof of Beth definability for ALC with general TBoxes is constructive,
provided we have a constructive method of finding interpolants as defined in
Lemma 1. In Section 4 we present such a method, and we prove its correctness
and completeness.
We can now combine these results to reduce answering definable queries to query
answering using only the DBox.

Theorem 2. Let D be a DBox that is satisfiable with respect to a TBox T , let Q
be a concept and let a ∈ σD(I) be a DBox individual. If Q is implicitly definable
from σD(P ), then there is an ALC concept C with sig(C) ⊆ σD(P ) such that
(T ,D) |= Q(a) iff D |= C(a).

To enable rewriting C(a) to standard database query languages we first need
to prove its domain independence.

Definition 3 (Domain independence). Let C be a concept and let a be an
individual name. C(a) is said to be domain independent if for every interpre-
tation I = 〈∆I , ·I〉 such that I |= C(a) it is the case that I ′ |= C(a) for every
interpretation I ′ = 〈∆I′

, ·I′〉 with ∆I′ ⊇ ∆I and ·I = ·I′
.

Theorem 3. Let C be an ALC concept and let a be an individual name. Then,
C(a) is domain independent.

Consider a query C(a) with a ∈ σD(I) and sig(C) ⊆ σD(P ). Since C(a)
is domain independent, deciding D |= C(a) can be reduced to checking aI ∈
CI for an arbitrary model I of D ; in particular we choose the smallest model
ID = 〈∆ID

, ·ID 〉 of D , where ∆ID

is equal to the set of the DBox individuals
in σD(I) and ·ID

considers only the set of DBox assertions. In other words, the
entailment check reduces to model checking over ID and a standard database
query language over the DBox database can be used for deciding D |= C(a).

Given a query concept Q, a TBox T , and a DBox D , in order to find the
answer set {a | (T ,D) |= Q(a)} by means of the rewriting {a | D |= C(a)},
one can use the equivalent database query Q(x) :- CFO(x) ∧ >D(x) over the
database D , where CFO is the standard first order translation of C and >D is
the relation containing exactly the DBox individuals σD(I). It is possible to pre-
compute offline the rewriting of all definable atomic concepts in the ontology as
materialised SQL views, so that at run time query answering on ALC ontologies
with DBoxes is reduced to answering SQL queries over the DBox database with
materialised views.

4 Constructive Interpolation for ALC

[10] and [11] give constructive proofs using symmetric Gentzen systems, respec-
tively tableau calculi. [12] provides an algorithm for calculating interpolants be-
tween ALC concepts; however, he does not consider TBoxes, nor does he provide
a reference with standard or optimised implemented tableau algorithms.



The Ru rule
Condition: (x : C1 u C2)

λ ∈ L(g) and {(x : C1)
λ, (x : C2)

λ} 6⊆ L(g)
Effect: L(g′) = L(g) ∪ {(x : C1)

λ, (x : C2)
λ}

The Rt rule
Condition: (x : C1 t C2)

λ ∈ L(g) and {(x : C1)
λ, (x : C2)

λ} ∩ L(g) = ∅
Effect: L(g′) = L(g) ∪ {(x : C1)

λ}, L(g′′) = L(g) ∪ {(x : C2)
λ}

The R∃ rule
Condition: (x : ∃R.C)λ ∈ L(g), there is no variable y in L(g) such that

y : {Cλ} ∪ succ(x,R, S) ⊆ L(g)
Effect: L(g′) = L(g)∪ y : {Cλ} ∪ succ(x,R, S)∪T , where y is fresh for S

Fig. 1. Biased completion rules for ALC

Let NV be a countably infinite set of variable names and < a well-order
relation on NV . A biased constraint is an expression of the form (x : D)λ where
x ∈ NV , D is a concept, and λ ∈ {l, r} is a bias. A biased constraint system S
for 〈C, T 〉 is a finite, non-empty set of biased constraints.

We say a variable x ∈ NV is in S if S contains a mention of x; x is fresh for
S if x is not in S and y < x for all y in S. We assume that when a variable x is
in S, the constraints (x : >)l, (x : >)r are also in S.

Let x be a variable in S. The set of x-constraints of S is defined as {x :
C ∈ S}. For a role name R, with succ(x,R, S) we denote the set {Cλ | (x :
∀R.C)λ ∈ S}. If X is a set of labelled concepts, then x : X is a shorthand for
{(x : C)λ | Cλ ∈ X}.

S is said to contain a clash if for some variable x and some concept name A,
{(x : A)λ, (x : ¬A)κ} ⊆ S.

Let H, J be ALC concepts and T = T l ∪ T r a set of biased concepts with
T l being l- and T r being r-labelled concept. A biased tableau for 〈H u ¬̇J, T 〉
is a triple T = 〈V,E, L〉, where 〈V,E〉 is a finite tree, with g0 ∈ V being the
root node, and L is a labelling function associating with each node g ∈ V a
biased constraint system for 〈H u ¬̇J, T 〉 and with each edge 〈g, g′〉 ∈ E a
biased completion rule Rχ from Figure 1. In addition, we require L(g0) = x0 :
{H l}∪{(¬̇J)r}∪T ∪T ′. A biased tableau T0 for 〈H u¬̇J, T 〉 that contains only
the root node is called the initial biased tableau for 〈H u ¬̇J, T 〉. A completion
rule is applicable in a node g if its condition is satisfied in g.

A branch of a tableau is a path from the root down to a leaf. If in a tableau
there is some successor g′ of g such that L(〈g, g′〉) = Rt, then g is called a
branching point in the tableau. A branch is closed if the label of its leaf node
contains a clash; otherwise it is open. A tableau is closed if all its branches
are closed; otherwise it is open. A tableau is complete if no completion rule is
applicable in the leaf nodes of any of its open branches.

The biased tableau algorithm takes as input the initial biased tableau T0 for
〈H u ¬̇J, T 〉. T0 is then expanded by repeatedly applying the completion rules
given in Figure 1 with the following strategy: R∃ is applied only when Rt is
not applicable which in turn is applied only when Ru is not applicable. If the
obtained complete tableau is closed, the algorithm returns false, otherwise true.

If the biased tableau algorithm returns false, then a second phase is initiated
to extract an interpolant I.



C¬(ll)
(x : A)l, (x : ¬A)l ∈ L(g)

int(g)(x) := ⊥

C¬(rr)
(x : A)r, (x : ¬A)r ∈ L(g)

int(g)(x) := >

C¬(lr)
(x : A)l, (x : ¬A)r ∈ L(g)

int(g)(x) := A

C¬(rl)
(x : A)r, (x : ¬A)l ∈ L(g)

int(g)(x) := ¬A

Fig. 2. Atomic interpolant calculation rules for ALC

(x : C1 u C2)
λ ∈ L(g)

Cu(λ)
L(g′) = L(g) ∪ {(x : C1)

λ, (x : C2)
λ}

int(g) := int(g′)

(x : C1 t C2)
l ∈ L(g)

L(g′) = L(g) ∪ {(x : C1)
l}

Ct(l)
L(g′′) = L(g) ∪ {(x : C2)

l}
int(g) := int(g′) ·t int(g′′)

(x : C1 t C2)
r ∈ L(g)

L(g′) = L(g) ∪ {(x : C1)
r}

Ct(r)
L(g′′) = L(g) ∪ {(x : C2)

r}
int(g)(y) := int(g′)(y) ·t int(g′′)(y) (y 6= x)
int(g)(x) := int(g′)(x) ·u int(g′′)(x)

Fig. 3. Propositional interpolant calculation rules for ALC

Definition 4. Let g be a node in a tableau and let {(x : C1)l, . . . , (x : Cn)l, (x :
D1)r, . . . , (x : Dm)r} be the x-constraints of L(g). A concept I is called an
interpolant for this set under T if I is an interpolant for C1 u . . . u Cn and
¬D1 t . . . t ¬Dm under T l and T r. (Take the empty intersection to be > and
the empty union to be ⊥.)

Let C and D be concepts. We define the binary infix operator ·t as follows:
C ·t D = CtD, C ·t ⊥ = ⊥ ·t C = C, C ·t null = null ·t C = C, and null ·t null =
null. If ht1 and ht2 are hash tables, ht′ = ht1 ·t ht2 is defined as: ht′(x) =
ht1(x) ·t ht2(x), for every variable x. The operator ·u is defined analogously.

Interpolants at nodes g are stored in hash tables int(g). Every key in int(g)
is a variable in L(g) and every value is a concept or the special symbol null.
With int(g)(x) we denote the value associated with the key x. The algorithm
used in the second phase starts from the leaves of the tableau tree and applies
the interpolant calculation rules Cχ(λ) in Figures 2, 3, and 4, which are if-then
rules. If the rules do not assign a value, it is assumed to be null.

Lemma 2 (Soundness). Let T be a closed biased tableau for 〈H u ¬̇J, T 〉, g
a node in the tableau, and x a variable in L(g). If int(g)(x) is not null, it is an
interpolant for the x-constraints of L(g).

Lemma 3 (Completeness). Let T be a closed biased tableau for 〈H u ¬̇J, T 〉
with root node g0. Then, int(g0)(x0) 6= null.



(x : ∃R.C)l ∈ L(g)

C∃(l)
L(g′) = L(g) ∪

`
y : {Cl} ∪X

´
int(g)(z) := int(g′)(z) (z 6= x & z 6= y)
int(g)(y) := null I := int(g′)(y)
int(g)(x) := int(g′)(x) [if I = null]
int(g)(x) := int(g′)(x) ·t ⊥ [if I = ⊥]
int(g)(x) := int(g′)(x) ·t ∃R.I [otherwise]

(x : ∃R.C)r ∈ L(g)

C∃(r)
L(g′) = L(g) ∪ (y : {Cr} ∪X)

int(g)(z) := int(g′)(z) (z 6= x & z 6= y)
int(g)(y) := null I := int(g′)(y)
int(g)(x) := int(g′)(x) [if I = null]
int(g)(x) := > [if I = >]
int(g)(x) := int(g′)(x) ·t ∀R.I [otherwise]

Fig. 4. Modal interpolant calculation rules for ALC

C¬̇(ll)
(x : C)l, (x : ¬̇C)l ∈ L(g)

int(g)(x) := ⊥

C¬̇(rr)
(x : C)r, (x : ¬̇C)r ∈ L(g)

int(g)(x) := >

C¬̇(lr)
(x : C)l, (x : ¬̇C)r ∈ L(g)

int(g)(x) := C

Fig. 5. Interpolant calculation rules for non-atomic clashes

Finally, we remark that the interpolant calculation algorithm can be made
more space-efficient by integrating it into the satisfiability checking algorithm
(one-pass) and generating the tableau in a depth-first manner: interpolants are
constructed for each subbranch while backtracking, so that the subbranch may
be discarded from memory before exploring the next subbranch. Interpolants are
combined at the branching points using the Ct(λ) rule. Please note that, in this
way, the final algorithm to compute the interpolant can be obtained by simply
adorning a standard tableau algorithm for ALC.

5 Integrating Tableau Optimisations

In this section, we extend the tableau algorithm with commonly used optimisa-
tions, which can be applied to the one-pass algorithm sketched above, so that
the process to compute the interpolant is just an adorned variant of the standard
and optimised implemented tableau algorithm for ALC.

Non-atomic Closure. One can relax the definition of the closure condition for a
tableau such that a constraint system S is said to contain a clash if for some
variable x and some concept C, {x : C, x : ¬̇C} ⊆ S. For example the unsatisfi-
ability of the constraint system S ⊇ {C uD, ¬̇(C uD)} can be detected without
branching for ¬̇(C u D). Figure 5 depicts the calculation rules for non-atomic
clashes, replacing the ones in Figure 2. Correctness is proved analogously to the
atomic case.



The RU1 rule
Condition: (x : A)κ ∈ L(g), A ≡ C is in TU (or T ′U ), and (x : C)l 6∈ L(g) (or

(x : C)r 6∈ L(g))
Effect: L(g′) = L(g) ∪ {(x : C)l} (or {(x : C)r})
The RU2 rule
Condition: (x : ¬A)κ ∈ L(g), A ≡ C is in TU (or T ′U ), and (x : ¬̇C)l 6∈ L(g)

(or (x : ¬̇C)r 6∈ L(g))
Effect: L(g′) = L(g) ∪ {(x : ¬̇C)l} (or {(x : ¬̇C)r})
The RU3 rule
Condition: (x : A)κ ∈ L(g), A v C is in TU (or T ′U ), and (x : C)l 6∈ L(g) (or

(x : C)r 6∈ L(g))
Effect: L(g′) = L(g) ∪ {(x : C)l} (or {(x : C)r})

Fig. 6. Lazy unfolding rules

Semantic Branching. The standard definition of Rt (cf. Figure 1), which is
based on syntactic branching, does not prevent the recurrence of unsatisfiable
disjuncts in different branches of the tree. Semantic branching is a technique
that allows the subtrees introduced by non-deterministic rules to be distinct in
the sense that the satisfiability of a disjunct is searched only in a single subtree
[13]. This requires a slight change in the Rt rule: the second effect becomes
L(g′′) = L(g) ∪ {x : ¬̇C1, x : C2}, obtaining the new rule Rt′ . Replacing Rt
with R′t in our tableau calculus requires modifying the third condition of Ct(λ)
in Figure 3 with L(g′′) = L(g) ∪ {(x : ¬̇C1)λ, (x : C2)λ}. However, the way the
interpolants are calculated does not change.

Lazy Unfolding and Absorption. Absorption is a TBox rewriting technique that
has been developed to address the problem of the high level of non-determinism
caused by general TBox axioms [13]. Being a rewriting technique, absorption of
general axioms into simple axioms is performed before the satisfiability algorithm
starts. For this reason, we are only concerned here with the structure of the
output TBox. Given a general TBox T , the absorption process rewrites and
partitions T into the general TBox TG and the unfoldable TBox TU [13] such
that a concept is satisfiable w.r.t. T iff it is satisfiable w.r.t. TU ∪ TG.

The implicit definability problem takes as input two TBoxes T and T ′. There-
fore, we assume w.l.o.g. that the absorption process is only applied to T , resulting
in TU and TG, and T ′U and T ′G are obtained analogously to T ′. R∃ is modified to
use only TG and T ′G and, in addition, we need the rules in Figure 6 that handle
unfoldable TBoxes. In the literature, these rules constitute what is known as the
lazy unfolding optimisation [13].

To complement these rules we use the interpolant calculation rules given in
Figure 7. One needs to verify the soundness of these rules. We show only CU1(l)
for TU . Suppose X = {(x : C1)l, . . . , (x : Cn)l, (x : D1)r, . . . , (x : Dm)r}, g′
is the result of applying RU1 to g for A ≡ C ∈ TU , and X ∪ {(x : A)κ, (x :
C)l} are the x-constraints of L(g′). Note that although κ may not be equal to
l, we can assume w.l.o.g. that κ = l since A ∈ sig(TU ). By our assumption,
int(g′)(x) is an interpolant for the x-constraints of L(g′) and by Definition 4,
AuC uC1 u . . .uCn vT int(g′)(x) vT ¬D1 t . . .t¬Dm. CU1 assigns int(g′)(x)
to int(g)(x). We have that (i) A u C1 u . . . u Cn vT int(g′)(x) follows from



CU1(λ)

(x : A)κ ∈ L(g)
A ≡ C ∈ TU (or T ′U )

L(g′) = L(g) ∪ {(x : C)λ}
int(g) := int(g′)

CU2(λ)

(x : ¬A)κ ∈ L(g)
(A ≡ C)λ ∈ TU (or T ′U )

L(g′) = L(g) ∪ {(x : ¬̇C)λ}
int(g) := int(g′)

CU3(λ)

(x : A)κ ∈ L(g)
(A v C)λ ∈ TU (or T ′U )

L(g′) = L(g) ∪ {(x : C)λ}
int(g) := int(g′)

Fig. 7. Lazy unfolding interpolant calculation rules

(A u C u C1 u . . . u Cn)I = (A u C1 u . . . u Cn)I , for all models I of T , since
A ≡ C ∈ TU and (ii) int(g′)(x) vT ¬D1 t . . . t ¬Dm follows from the fact that
L(g) has the same r-labelled x-constraints as L(g′).

Backjumping. Our tableau decision procedure forALC, upon discovering a clash,
backtracks to the last branching point to which Rt is applicable. Blindly pro-
gressing in this way may be very inefficient if the given concept causes a lot
of branching but the source of unsatisfiability does not depend on this branch-
ing (cf. [13]). Backjumping addresses this problem by identifying the causes of
clashes and it is one of the most effective optimisation techniques, along with
absorption + lazy unfolding, to deal with non-determinism. It works by associ-
ating a constraint to a branching point in the tableau such that the introduction
of the constraint depends on that branching point. Because of this, tableau
rules are equipped with dependency propagating information [13]. When a clash
{x : A, x : ¬A} is discovered, the dependencies of both of these constraints are
combined, and the algorithm backjumps to the deepest branching point in the
set. As a consequence, backjumping is an optimisation that modifies the shape
of the tableau generated by the satisfiability checking algorithm by eliminating
redundant branches from the tree. For this reason, no modification is required
in our interpolant calculation rules.

6 Abduction

In our framework, finding the rewriting of a query in terms of the DBox predi-
cates is possible only if the query is implicitly definable. However, not always a
given query concept is implicitly definable given a TBox. To gain definability of
queries of interest, it is necessary to modify the ontology by adding axioms to the
TBox such that they become implicitly definable. We propose to use techniques
from the area of abduction to find such axioms.

[14,15] define abductive reasoning tasks in DLs. Among these, we consider
TBox abduction problems.

Definition 5 (TBox Abduction Problem). Let T be a TBox, and let C and
D be concepts such that both are satisfiable w.r.t. T and C 6vT D. A TBox



abduction problem (TAP) is denoted by 〈T , C,D〉. A TBox TA is a solution to
a TAP 〈T , C,D〉 if T ∪ TA is satisfiable and C vT ∪TA

D.

We look for solutions with particular syntactic shapes.

Definition 6 (Sub-concept Solution). Let P = 〈C,D, T 〉 be a TAP. We say
that a solution TA to P is a sub-concept solution to P iff TA is a set of axioms
of the form E1 v ¬E2, where concepts E1, E2 are sub-formulae of C, D, or T .

Since the concepts in sub-concept solutions appear in the abduction problem,
we conjecture that such amendment to the TBox are more easily understandable
than amendments involving arbitrary concepts. Moreover, among sub-concept
solutions we identify semantically minimal ones – i.e., the ones that minimally
change the TBox in order to obtain definability of a query. With subSol(P) we
denote the set of all sub-concept solutions to a TAP P and withM(T ) the set
of all models of the TBox T .

Definition 7. Let P = 〈C,D, T 〉 be a TAP, let ≺ be a preference order, and let
TA, TB ∈ subSol(P). Then TA ≺ TB iff M(T ) \ M(TA) is a subset of M(T ) \
M(TB). A sub-concept solution TA is minimal iff there is no other sub-concept
solution TB such that TA ≺ TB.

The idea behind this minimality criteria is that it favours a solution TA over
TB whenever TA has more common models with the original TBox T than TB .
In a way, TA, when added to T , changes the models of T in a minimal way. Note
that ≺ is a partial order since (M(T ) \M(TA)) ⊆ (M(T ) \M(TB)) does not
always hold for arbitrary two sub-concept solutions TA and TB

7 Conclusions

In this paper we considered the basic propositionally closed DL ALC. However,
several languages currently in use, e.g., OWL, are based on more expressive
DLs, with constructs such as inverse roles and qualified cardinality restrictions.
For example, in the presence of inverse roles, standard DL tableau algorithms
may propagate concepts back and forth between individuals. Therefore, proving
interpolation constructively by induction over the tableau is problematic. But
one can overcome this problem by adapting a calculus with analytic cut rules
[16] for inverse roles. Techniques like algebraic reasoning seem promising in the
case of qualified cardinality restrictions [17].

Another interesting research direction is to increase the expressiveness of the
query language beyond concept expressions towards, e.g., conjunctive queries.
Deciding implicit definability reduces to checking query containment under De-
scription Logic constraints [18]. However, standard Description Logic tableau
techniques are not easily extended in this direction. One would need to develop
new interpolation calculation methods or use techniques for first-order logic (e.g.,
[9]).
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