
A System for Retrieving Top-k Candidates to Job
Positions

Umberto Straccia1, Eufemia Tinelli2, Simona Colucci2, Tommaso Di Noia2 and
Eugenio Di Sciascio2

ISTI-CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy
SisInfLab-Politecnico of Bari, via Re David 200, I - 70125 Bari,Italy

straccia@isti.cnr.it
{e.tinelli,s.colucci, t.dinoia, disciascio}@poliba.it

1 Introduction

Nowadays more and more companies choose to employ e-recruiting systems to auto-
matically assign vacant job positions. Such systems allow for electronically managing
the whole recruitment process, reducing the related cost. E-recruiting systems efficiency
is therefore significantly affected by the efficacy of the framework underlying the match
between recruiters requests and candidates profiles stored. In available skill manage-
ment systems, information about candidates employment and personal data as well as
certifications and competence is usually modeled through relational databases with cus-
tomized and structured templates. Nevertheless, even though a Data Base Management
System (DBMS) is surely suitable for storage and retrieval, relational query languages
do not allow for the flexibility needed to support a discovery process as complex as
recruitment. The order by statement and the min and max aggregation operators
are generally used to retrieve the best tuples but, in real scenarios, there are no candi-
dates that are better than the others ones w.r.t. every selection criteria. Moreover, if exact
matches are lacking, worse alternatives must be often accepted or the original require-
ments have to be negotiated for compromises.

Logic-based techniques and technologies permit to make more efficient and flexible
the recruitment process. The system we present here automatically performs a match-
making process between available candidate profiles and vacant job positions according
to mandatory requirements and preferences provided by a recruiter. In order to perform
it, we need a language suitable for data intensive applications with a good compromise
between expressiveness and computational complexity. The system performs non-exact
match through top-k retrieval techniques: it uses a match engine which performs top-k
queries over a DLR-lite [1] Knowledge Base (KB) providing a ranked list of candidates.

In the remaining we proceed as follows: Section 2 motivates our proposal, also by
comparing it with relevant related work; Section 3 shortly recalls language and algo-
rithms we adopted. In Section 4 the proposed system is presented with particular refer-
ence to the evaluation of its performance. Finally, conclusions close the paper.

2 Why another system for HRM

Currently, several solutions for talent management1 and e-recruitment are available on
the market. Most of them are complete enterprise suites supporting human resource
management, including solutions that, even though improving the recruitment process
by means of innovative media and tools, do not bring a significant novelty charge with
them. Available solutions in fact exploit databases to store candidate personal and em-
ployment information, and do not ground on a logic-based structure.

One of the few logic-based solutions to recruitment and referral process is, to the
best of our knowledge, STAIRS2, a system in use at US Navy Department allowing to
retrieve referral lists of best qualified candidates w.r.t. a specific mansion, according to
the number of required skills they match. The commercial software supporting STAIRS
is RESUMIX3 an automated staffing tool making use of artificial intelligence techniques
and adopted only as an internal tool. The system allows also to distinguish skills in
required and desired ones in the query formulation: all required skills must be matched
by the retrieved candidate, differently from desired ones.

We propose here a logic-based solution to recruitment process, allowing for distin-
guishing in required and preferred skills and exploiting a Skills Ontology, designed in
(a subset of) OWL DL, to model experiences, education, certifications and abilities of
candidates. The system translates a user request into a union of conjunctive queries for
retrieving the best candidate to cover a given position. Hence, in order to perform a
match both the user request and candidates CVs (which we generally call profiles) are
defined w.r.t. the same Skills Ontology.

In order to understand the advantages of our system w.r.t. not logic-based solutions,
we provide here a tiny example: imagine you are a recruiter, with the following re-
quest:”I’m looking for an expert in Artificial Intelligence with an experience of at least
two years and he/she must have a doctorate”. Let us suppose that there are three can-
didates Sarah, Paul and Bill skilled as presented in Figure 2 and that the three of them
have a doctoral degree fulfilling the strict constraint of the user request. Looking both

Name Knowledge
Sarah Excellent experience in Business Intelligence (5 years) ...
Paul 1 years experienced in Knowledge Representation and Fuzzy Logic. Good

knowledge of OWL, DLs, DL-lite family, ...
Bill Skilled in ontology modeling with knowledge of semantic technologies ...

Fig. 1. Example of candidate skills

at the three profile descriptions and at the original request, we will rank the three candi-
dates as (1) Paul; (2) Bill; (3) Sarah w.r.t. the preference expressed by the user. In fact,
reasonably, the skills of Paul are very close to the requested ones even if he does not

1 http://www.attract-hr.com/cm/about,
http://www.oracle.com/applications/human_resources/irecruit.
html

2 http://www.hrojax.navy.mil/forms/selectguide.doc
3 http://www.cpol.army.mil

fully satisfy the requested experience (in years). On the other side, since ontology and
semantic technologies relate to Artificial Intelligence Bill skills seems to be more useful
than Sarah ones. It is easy to see that the only way to automatically perform such a rank-
ing is exploiting a semantic-based approach, making use of a domain ontology modeling
competence hierarchies and relations. Moreover, thanks to the information modeled in
the ontology, the system is able to return all scores computed for each feature of the
retrieved profiles.

A relevant aspect of our work is the exploitation of classical relational database sys-
tems (RDBMS) and languages i.e., SQL, for storing the reference ontology and candi-
date CVs and to perform reasoning tasks. Using the system, both recruiters and candi-
dates refers to the same model of the domain knowledge. Several approaches ([2], [3],
[4], [5]) have been presented in which databases allow users and applications to access
both ontologies and other structured data in a seamless way. A possible optimization
consists in caching the classification hierarchy in the database and to provide tables
maintaining all the subsumption relationships between primitive concepts. Such an ap-
proach is taken in Instance Store (iS) [6], a system for reasoning over OWL KBs specif-
ically adopted in bio and medical-informatics domains. iS is also able –by means of a
hybrid reasoner/database approach– to reply to instance retrieval queries w.r.t. an ontol-
ogy, given a set of axioms asserting class-instance relationships. Nevertheless, iS reduces
instance retrieval to pure TBox reasoning and is able to return only exact matches (i.e.,
instance retrieval) whilst we use an enriched relational schema storing only the Abox
(i.e., facts) in order to provide a logic-based ranked list of results and the not classi-
fied ontology. Other systems using RDBMS in order to deal with large amounts of data
are QuOnto4 and Owlgres5. They are DL-Lite reasoners providing consistency checking
and conjunctive query services. Neither QuOnto nor OWLgres return a ranked list of re-
sults. SHER ([7],[8]) is a high-scalability OWL reasoner performing both membership
and conjunctive query answering by querying large relational datasets using ontologies
modeled in a subset of OWL-DL which excludes nominals. It relies on an indexing tech-
nique summarizing the instances data in the database into a compact representation used
for reasoning and works by selectively uncompressing portions of the summarized rep-
resentation relevant for the query, in a process called refinement. Internally, SHER uses
Pellet to reason over the summarized data and obtain justifications for data inconsis-
tency. SHER allows for getting fast incomplete answers to queries, but does not provide
a ranked list of results.

As hinted before, our system also allows for formulating queries by distinguishing
between preferred and required skills by exploiting top-k retrieval techniques. Top-k
queries [9] ensure an efficient ranking support in RDBMSs letting the system to provide
only a subset of query results, according to a user-specified ordering function (which
generally aggregates multiple ranking criteria).The general problem of preference han-
dling in RDBMS in information retrieval systems [10] has been faced from two com-
peting perspectives : quantitative– models, coping with preferences by means of utility
functions [9, 11] and qualitative– models, using logical formulas [12, 10, 13]. Various
approaches using numerical ranking in combination with either the top-k model [14–
16], the Preference SQL [17] or the Preference XPath [12] have been also devised.

4 http://www.dis.uniroma1.it/˜quonto/
5 http://pellet.owldl.com/owlgres/

Profile
profID FirstName LastName Genre BirthDate CityOfBirth Address City ZipCode Country . . .

2 Wayne Hernandez female 1979-10-04 Berlin Via Volta Terni 05100 Italy . . .
34 Hillary 156 Gadducci female 1978-01-27 Bangalore Church ST New York 10027 USA . . .

Fig. 2. The profile table.

3 System background: Top-k Retrieval for DLR-Lite

For computational reasons the particular logic we adopt is based on an extension of
the DLR-Lite [1] Description Logic (DL) [18] without negation. DLR-Lite is different
from usual DLs as it supports n-ary relations (n > 1), whereas DLs support usual
unary relations (called concepts) and binary relations (called roles). The DL will be
used in order to define the relevant abstract concepts and relations of the application,
while data is stored into a database. On the other hand, conjunctive queries will be
used to describe the information needs of a user and to rank the answers according to a
scoring function. The logic extends DLR-Lite by enriching it with build-in predicates.
Conjunctive queries are enriched with scoring functions that allow to rank and retrieve
the top-k answers, that is, we support Top-k Query Answering [19–23], (find top-k scored
tuples satisfying query), e.g., “find candidates with excellent knowledge in DLR-Lite”,
where EXCELLENT is a function of the years of experience.

3.1 The query and representation language

A knowledge base K = 〈F ,O〉 consists of a facts component F and an Ontology com-
ponent (also called, DL component) O, which are defined below.

Facts Component. F is a finite set of expressions of the form R(c1, . . . , cn) , where R is
an n-ary relation, every ci is a constant. For each R, we represent the facts R(c1, . . . , cn)
in F by means of a relational n-ary table TR, containing the records 〈c1, . . . , cn〉. Fig. 2
shows an example of facts about Curricula Vitæ stored into the Profile relation.

Ontology Component. The ontology component is used to define the relevant abstract
concepts and relations of the application domain by means of axioms. But, before we
address the syntax of axioms, let us introduce the notion of concrete domains. In fact,
Top-k DLR-Lite supports concrete domains with specific predicates on it. The allowed
concrete predicates are relational predicates such as ([i] 6 1500) (e.g., the value of
the i-th column is less or equal than 1500) and ([i] = “Mayer′′) (e.g., the value of
the i-th column is equal to the string “Mayer”). Formally, a concrete domain in is a pair
〈∆D, ΦD〉, where ∆D is an interpretation domain and ΦD is the set of domain predicates
d with a predefined arity n and an interpretation dD : ∆n

D → {0, 1}.
Top-k DLR-Lite allows to specify an ontology by relying on axioms. Consider an al-

phabet of n-ary relation symbols (denoted R), e.g., Profiles as described in Table 2, and
an alphabet of unary relations, called atomic concepts (and denoted A), e.g., ItalianCity.
Now, the DL component O is a finite set of axioms having the form

(Rl1 u . . . uRlm v Rr)

where m > 1, all Rli and Rr have the same arity and where each Rli is a so-called left-
hand relation and Rr is a right-hand relation. As illustrative purpose, a simple ontology
axiom may be of the form

AjaxProgrammer v WebProgrammer

with informal reading “any AJAX programmer is also a Web programmer”. In such
an axiom, AjaxProgrammer and WebProgrammer are unary relations with signature
AjaxProgrammer(id) and WebProgrammer(id), respectively. But we may also involve
n-ary realtions in ontology axioms. For instance, suppose that from the profiles records,
we would like to extract just the profile ID and the last name, and call this new rela-
tion HasLastName with signature HasLastName(profID, LastName). In database ter-
minology this amounts in a projection of the Profile relation on the first and third col-
umn. In our language, the projection of an n-ary relation R on the columns i1, . . . , ik
(1 6 i1, i2, . . . , ik 6 n, 1 6 i 6 n), will be indicated with ∃[i1, . . . , ik]R. Hence, e.g.,
∃[1, 3]Profileis the binary relation that is the projection on the first and third column of
the Profile relation. So, for instance, the axiom

∃[1, 3]Profile v ∃[1, 2]HasLastName

states that the relation HasLastName contains the projection of the Profile relation on
the first and third column. In case of a projection, we may further restrict it according
to some conditions, using concrete predicates. For instance, ∃[1, 5]Profile.(([5] > 1979))
corresponds to the set of tuples 〈profID, BirthDate〉 such that the fifth column of the
relation Profile, i.e., the person’s birth date, is equal or greater than 1979. The exact
syntax of the relations appearing on the letf-hand and right-hand side of ontology axioms
is specified below (where h > 1):

Rr −→ A | ∃[i1, . . . , ik]R
Rl −→ A | ∃[i1, . . . , ik]R |

∃[i1, . . . , ik]R.(Cond1 u . . . u Condh)
Cond −→ ([i] 6 v) | ([i] < v) | ([i] > v) | ([i] > v) |

([i] = v) | ([i] 6= v)

where A is an atomic concept, R is an n-ary relation with 1 6 i1, i2, . . . , ik 6 n,
1 6 i 6 n and v is a value of the concrete interpretation domain of the appropriate type.

Here ∃[i1, . . . , ik]R is the projection of the relation R on the columns i1, . . . , ik (the
order of the indexes matters). Hence, ∃[i1, . . . , ik]R has arity k.

On the other hand, ∃[i1, . . . , ik]R.(Cond1 u . . . u Condl) further restricts the pro-
jection ∃[i1, . . . , ik]R according to the conditions specified in Condi. For instance,
([i] 6 v) specifies that the values of the i-th column have to be less or equal than
the value v.

Query language. Concerning queries, a query consists of a “conjunctive query”, with
a scoring function to rank the answers. A query is of the form

q(x)[s] ← ∃y R1(z1), . . . , Rl(zl),
OrderBy(s = f(p1(z

′
1), . . . , ph(z′h))

(1)

where

1. q is an n-ary relation, every Ri is an ni-ary relation,

2. x are the n distinguished variables;
3. y are so-called non-distinguished variables and are distinct from the variables in x;
4. zi, zj

′ are tuples of constants or variables in x or y. Any variable in x occurs in
some zi. Any variable in zj

′ occurs in some zi.;
5. pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple cj a score pj(cj) ∈

[0, 1]m. Such predicates are called expensive predicates in [24] as the score is not
pre-computed off-line, but is computed on query execution. We require that an n-ary
fuzzy predicate p is safe, that is, there is not an m-ary fuzzy predicate p′ such that
m < n and p = p′. Informally, all parameters are needed in the definition of p;

6. f is a scoring function f : ([0, 1]m)h → [0, 1]m, which combines the scores of the
h fuzzy predicates pj(c′′j) into an overall score to be assigned to the rule head q(c).
We assume that f is monotone, that is, for each v,v′ ∈ ([0, 1]m)h such that v 6 v′,
it holds f(v) 6 f(v′), where (v1, . . . , vh) 6 (v′1, . . . , v

′
h) iff vi 6 v′i for all i.

7. We also assume that the computational cost of f and all fuzzy predicates pi is
bounded by a constant.

Finally, a disjunctive query q is, as usual, a finite set of conjunctive queries in which all
the rules have the same head. We omit to write ∃y when y is clear from the context.
Ri(zi) may also be a concrete unary predicate of the form (z 6 v), (z < v), (z >
v), (z > v), (z = v), (z 6= v), where z is a variable, v is a value of the appropriate con-
crete domain. We call q(x)[s] its head, ∃y.R1(z1), . . . , Rl(zl),OrderBy(. . .) its body
and OrderBy(. . .) the scoring atom.

Top-k Retrieval. Given a knowledge baseK, and a disjunctive query q, retrieve k tuples
〈c, s〉 that instantiate the query relation q with maximal score (if k such tuples exist), and
rank them in decreasing order relative to the score s, denoted

ansk(K,q) = Topk ans(K,q) .

From a query answering point of view, it extends the DL-Lite/DLR-Lite reasoning
method [1] to the fuzzy case. The algorithm is an extension of the one described in [1,
20, 22]). Roughly, given a query q(x)[s]← ∃yφ(x,y),

1. by considering O, the user query q is reformulated into a set of conjunctive queries
r(q,O). Informally, the basic idea is that the reformulation procedure closely re-
sembles a top-down resolution procedure for logic programming, where each axiom
is seen as a logic programming rule.

2. from the set of reformulated queries r(q,O) we remove redundant queries;
3. the reformulated queries q′ ∈ r(q,O) are translated to ranked SQL queries and

evaluated. The query evaluation of each ranked SQL query returns the top-k answer
set for that query. Specifically, we use the RankSQL [14] system for this purpose;

4. all the n = |r(q,O)| top-k answer sets have to be merged into the unique top-k
answer set ansk(K,q). As k · n may be large, we apply a Disjunctive Threshold
Algorithm (DTA, see e.g., [22]) to merge all the answer sets.

The detailed description of the algorithm embedded in our system to solve top-k
retrieval problem is beyond the scope of this work. The algorithm is an extension of the
one described in [1, 20, 22]) and has been implemented as part of the SoftFacts system 6.

6 http://gaia.isti.cnr.it/˜straccia/software/SoftFacts/
SoftFacts.html

4 System evaluation

The proposed system has been implemented by plugging the Top-K DLR-Lite retrieval
approach into I.M.P.A.K.T. [25], a system for skills and knowledge management
developed by Data Over Ontological Models s.r.l.7 as a commercial solution imple-
menting to some extent the skill matching framework designed in [26]. The efficiency
and scalability of the approach has been tested using the skill ontology underlying
I.M.P.A.K.T.. Both requests and candidate profiles have been modeled w.r.t. to this
ontology containing 2594 relations, both unary (classes) and n-ary ones, and 5119 ax-
ioms. The main structure of the ontology is depicted in Figure 3.

Fig. 3. A graphical representation of the ontology structure.

Level represents profile education such as certifications, masters, doctorate, etc.;
Knowledge represents technical skill and specific competences of the candidate; Com-
plementarySkill represents abilities and hobbies of the candidate; JobTitle represents
work experiences of the candidate; Industry representing sectors (institutes, research
laboratories, companies, etc.) in which candidate works/worked; Language represents
the knowledge of foreign languages. Data properties, have been used to represent years
of experience, degree final mark and knowledge level of foreign languages.

The system exploits the user interface of I.M.P.A.K.T., shown in Figure 4. Pan-
els (a), (b) and (d) allow the recruiter to compose her semantic-based request. In fact,
in menu (a) all the entry points are listed whilst panel (b) allows to search for ontology
concepts according to their meaning and section (d) enables the user to explore both tax-
onomy and properties of a selected concept. Entry points in menu (a) represent, to some
extent, the main classes and relations represented in Figure 3. Once an item is selected
in panel (d), the corresponding panel, representing the item itself, is dynamically filled

7 http://www.doom-srl.it/

Fig. 4. Query composition GUI

and added to panel (e). This latter enumerates all the requested features in the query.
For each of them, the GUI of I.M.P.A.K.T. allows: (1) to define if the feature is
strict (crisp) or negotiable (fuzzy); (2) to delete the whole feature; (3) to complete the
description showing all the elements (concepts, object properties and data properties)
that could be added to the selected feature; (4) to edit each feature piece as well as exist-
ing data properties. Finally, panel (c) enables searches like “I’m searching a candidate
like John Doe” i.e., it is useful to model all those situations where you are looking for a
candidate whose skills and knowledge are similar to the ones of John Doe. In this case,
the job-seeker fills first and/or last name field of the known candidate and the system
consider her/his profile as starting request. The user can view the query –automatically
generated– and eventually she can edit it before starting a new search.

In the experiments we carried out, we considered 100.000 automatically generated
CVs and stored them into a database having 17 relational tables. In Figure 4 we show
the ontology axioms mapping the relational tables involved in the proposed queries, in
order to provide the reader with the alphabet of the query language. Each axiom renames
with the role name given as first parameter the table defined as second parameter with
all its fields. We build several queries, with/without scoring atom and submitted them
to the system, with different values for k in case of top-k retrieval (k ∈ {1, 10}). We
run the experiments using the top-k retrieval SoftFacts system as back-end. No indexes
have been used for the facts in the relational database. The concept and role hierarchy

(MAP-ROLE Profile Profile (profID, FirstName, LastName, Genre,
BirthDate, CityOfBirth, Address, City, ZipCode, Country, IdentityCode,
PhoneNumber, Email, WebPage, Nationality, ResidentIn,
SuddenJobAvailability, JobLocation, FlexibleWorkHours,
TravelingAvailability, CertificationInstitute, Salary, CarAvailability))
(MAP-ROLE degreeName Degree (degID, Name))
(MAP-ROLE knowledgeName Knowledge (knowID, Name))
(MAP-ROLE knowledgeLevelName KnowledgeLevel (knowLevelID, Name))
(MAP-ROLE knowledgeTypeName KnowledgeType (knowTypeID, Name))
(MAP-ROLE knowledgeLevelName KnowledgeLevel (knowLevelID, Name))
(MAP-ROLE knowledgeTypeName KnowledgeType (knowTypeID, Name))
(MAP-ROLE hasDegree HasDegree (profID, classID, Mark))
(MAP-ROLE hasKnowledge HasKnowledge (profID, classID, Years, Type, Level))

Fig. 5. Excerpt of relational tables ontology mapping

used in the experiment queries is clarified in Figure 4. The queries at the basis of the

(IMPLIES Engineering_and_Technology Knowledge)
(IMPLIES Artificial_Intelligence Computer_Science_Skill)
(IMPLIES Information_Systems Computer_Science_Skill)
(IMPLIES Computer_Science_Skill Engineering_and_Technology)
(IMPLIES Engineering_Degree Degree)
(IMPLIES Fuzzy Artificial_Intelligence)
(IMPLIES Data_Mining Artificial_Intelligence)
(IMPLIES Machine_Learning Artificial_Intelligence)
(IMPLIES Knowledge_Rappresentation Artificial_Intelligence)
(IMPLIES Natural_Language Artificial_Intelligence)
(MAP-ROLE profileLastName Profile(profID,LastName))
(IMPLIES (SOME[1] profileLastName) Profile)

Fig. 6. Excerpt of concepts and roles hierarchy

experimentation are listed below, together with the corresponding encoding in Top-K
DLR-Lite for the most significant ones.

1. Retrieve CV’s with knowledge in Engineering Technology
2. Retrieve CV’s referred to candidates with degree in Engineering
3. Retrieve CV’s referred to candidates with knowledge in Artificial Intelligence and degree

final mark not less than 100/110
4. Retrieve CV’s referred to candidates with knowledge in Artificial Intelligence, degree in En-

gineering with final mark not less than 100/110

q(id, lastName, hasKnowledge, Years, degreeName, mark)
← profileLastName(id, lastName), hasKnowledge(id, classID, Years, Type, Level),

knowledgeName(classID, hasKnowledge), Artificial Intelligence(classID),
hasDegree(id, degreeID, mark), DegreeName(degreeID, hasDegree), Engineering Degree(degreeID),
(mark > 100)

5. Retrieve CV’s referred to candidates experienced in Information Systems (not less than 15
years) , with degree final mark not less than 100

q(id, lastName, hasKnowledge, Years, degreeName, mark)
← profileLastName(id, lastName), hasKnowledge(id, classID, Years, Type, Level),

knowledgeName(classID, hasKnowledge), Information Systems(classID), (Years > 15)
hasDegree(id, degreeID, mark), DegreeName(degreeID, hasDegree),
(mark > 100)

6. Retrieve top-k CV’s referred to candidates with knowledge in Artificial Intelligence and de-
gree final mark scored according to rs(mark; 100, 110)

q(id, lastName, degreeName, mark, hasKnowledge, years)
← profileLastName(id, lastName), hasDegree(id, degreeId, mark), degreeName(degreeId, degreeName),

hasKnowledge(id, classID, years, type, level), knowledgeName(classID, hasKnowledge),
Artificial Intelligence(classID), OrderBy(s = rs(mark; 100, 110))

7. Retrieve CV’s referred to candidates with degree in Engineering and final mark scored ac-
cording to rs(mark; 100, 110)

q(id, lastName, hasDegree, mark)
← profileLastName(id, lastName), hasDegree(id, classID, mark), DegreeName(classID, hasDegree),

Engineering Degree(classID), OrderBy(s = rs(mark; 100, 110))

8. Retrieve top-k CV’s referred to candidates with knowledge in Artificial Intelligence, degree
in Engineering with final mark scored according to rs(mark; 100, 110)

q(id, lastName, hasKnowledge, Years, degreeName, mark)
← profileLastName(id, lastName), hasKnowledge(id, classID, Years, Type, Level),

knowledgeName(classID, hasKnowledge), Artificial Intelligence(classID),
hasDegree(id, degreeID, mark), DegreeName(degreeID, hasDegree), Engineering Degree(degreeID),
OrderBy(s = rs(mark; 100, 110))

9. Retrieve CV’s referred to candidates with knowledge in Information Systems and with degree
final mark and years of experience both scored according to rs(mark; 100, 110) · 0.4 +
rs(years; 15, 25) · 0.6;

q(id, lastName, hasKnowledge, Years, degreeName, mark)
← profileLastName(id, lastName), hasKnowledge(id, classID, Years, Type, Level),

knowledgeName(classID, hasKnowledge), Information Systems(classID), (Years > 15)
hasDegree(id, degreeID, mark), DegreeName(degreeID, hasDegree),
OrderBy(s = rs(mark; 100, 110) · 0.4 + rs(years; 15, 25) · 0.6)

10. Retrieve CV’s referred to candidates with good knowledge in Artificial Intelligence, and with
degree final mark, years and level of experience scored according to rs(mark; 100, 110) ·
0.4 + rs(years; 15, 25) · pref(level; Good/0.6, Excellent/1.0) · 0.6;

q(id, lastName, degreeName, mark, hasKnowledge, years, kType)
← profileLastName(id, lastName), hasDegree(id, degreeId, mark), degreeName(degreeId, degreeName),

hasKnowledge(id, classID, years, type, level), knowledgeLevelName(level, kType), Good(level),
knowledgeName(classID, hasKnowledge), Artificial Intelligence(classID),
OrderBy(s = rs(mark; 100, 110) · 0.4 + rs(years; 15, 25) · pref(level; Good/0.6, Excellent/1.0) · 0.6)

Queries 1-5 are crisp queries. There is no preference expressed and no actual rank-
ing. As each answer has score 1.0, we would like to verify whether there is a retrieval
time difference between retrieving all records, or just the k answers. The other queries
are top-k queries. In query 9, we show an example of score combination, with a pref-
erence on the number of years of experience over the degree’s mark, but scores are
summed up. In query 10, we use the preference scoring function

pref(level; Good/0.6, Excellent/1.0)

that returns 0.6 if the level is good, while returns 1.0 if the level is excellent. In this way
we want to privilege those with an excellent knowledge level over those with a good
level of knowledge. In Fig.7 we report the output of query 10.

The tests have been performed on a MacPro machine with Mac OS X 10.5.5, 2 x 3
GHz Dual-Core processor and 9 GB or RAM and the results are shown in Fig. 8 (time
is measured in seconds). Let us consider few comments about the results:

Fig. 7. Retrieval output of query 10.

Size 100000
Query All top-1 top-10 |ans(K, q)|

1 12.344 3.596 6.182 3985
2 0.375 0.116 0.125 445
3 0.366 0.117 0.118 19
4 4.263 3.877 3.897 8
5 0.397 0.325 0.357 19
6 0.104 0.103 0.099 40
7 0.209 0.178 0.189 128
8 4.086 3.895 3.998 20
9 0.471 0.422 0.395 201
10 0.391 0.357 0.373 19

Average 2.301 1.295 1.573 488
Median 0.394 0.341 0.365 30

Fig. 8. Retrieval times.

– overall, the response time is quite good (almost fraction of second) taking into ac-
count the non negligible size of the ontology, the number of CVs and that we did
not consider any index for the relational tables;

– if the answer set is large, e.g., query 1, then there is a significant drop in response
time, for the top-k case;

– for each query, the response time is increasing while we increase the number of
retrieved records.

5 CONCLUSION AND FUTURE WORK

We presented an innovative and scalable logic-based system for efficiently managing
skills and experiences of candidates in the e-recruitment field. The system grounds on
a Skill Ontology in order to return a ranked list of profiles and on scoring functions in
order to weight each feature of the retrieved profiles. Differently from existing recruit-
ment systems, our approach allows to express a user request as the composition of both
mandatory requirements and preferences, by means of top-k retrieval techniques. The
implemented retrieval framework was embedded into an existing system for skill man-
agement and experiments conduced on a preliminary profiles dataset show a satisfiable
behavior. Future work aims at evaluating system performance on several datasets and at
providing user-friendly explanation facilities to better clarify scores of obtained results.

Acknowledgments

We wish to acknowledge partial support of Projects PS 092 and PS 121 .

References

1. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Proc. of KR’06. (2006) 260–270

2. Das, S., Chong, E.I., Eadon, G., Srinivasan, J.: Supporting ontology-based semantic matching
in RDBMS. In: Proc. of VLDB’04, VLDB Endowment (2004) 1054–1065

3. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF Storage and Retrieval in
Jena2. In: Proc. of SWDB’03. (2003) 131–150

4. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing
and Querying RDF and RDF Schema. In: Proc. of ISWC ’02. (2002) 54–68

5. Pan, Z., Heflin, J.: DLDB: Extending Relational Databases to Support Semantic Web Queries.
In: Proc. of PSSS1. Volume 89., CEUR-WS.org (2003) 109–113

6. Bechhofer, S., Horrocks, I., Turi, D.: The OWL Instance Store: System Description. In: Proc.
of CADE ’05. (2005) 177–181

7. Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The summary abox:
Cutting ontologies down to size. In: Proceedings of 5th International Semantic Web Confer-
ence(ISWC 2006). (2006) 343–356

8. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Ma, L.:
Scalable semantic retrieval through summarization and refinement. In: Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence (AAAI 2007). (2007)

9.
10. Chomicki, J.: Querying with Intrinsic Preferences. In: Proc. of Advances in Database Tech-

nology - EDBT 2002. (2002) 34–51
11. P. Bosc and O. Pivert: SQLf: a relational database language for fuzzy querying. IEEE Trans-

actions on Fuzzy Systems 3(1) (Feb. 1995) 1–17
12. Kießling, W.: Foundations of preferences in database systems. In: Proc. of VLDB-02. (2002)

311–322
13. Hafenrichter, B., Kießling, W.: Optimization of relational preference queries. In: Proc. of

ADC ’05, Darlinghurst, Australia, Australian Computer Society, Inc. (2005) 175–184
14. Li, C., Soliman, M.A., Chang, K.C.C., Ilyas, I.F.: RankSQL: supporting ranking queries in

relational database management systems. In: Proc. of VLDB-05, VLDB Endowment (2005)
1342–1345

15. Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER: A system for the efficient execution
of multi-parametric ranked queries, ACM (2001) 259–270

16. Yu, H., Hwang, S.W., Chang, K.C.C.: RankFP: A Framework for Supporting Rank Formula-
tion and Processing. In: Proc. of ICDE-2005. (2005) 514–515

17. Kießling, W., Köstler, G.: Preference SQL - design, implementation, experiences. In: Proc.
of VLDB-02. (2002) 990–1001

18. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.: The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press (2003)

19. Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under vagueness
for the semantic web. In: Proc. of SUM-07. Number 4772 in LNCS, Springer Verlag (2007)

20. Straccia, U.: Answering vague queries in fuzzy DL-Lite. In: Proc. of IPMU-06, E.D.K., Paris
(2006) 2238–2245

21. Straccia, U.: Towards top-k query answering in deductive databases. In: Proc. of SMC-06,
IEEE (2006) 4873–4879

22. Straccia, U.: Towards top-k query answering in description logics: the case of DL-Lite. In:
Proc. of JELIA-06. Number 4160 in LNCS, Springer Verlag (2006) 439–451

23. Straccia, U.: Towards vague query answering in logic programming for logic-based informa-
tion retrieval. In: Proc. of IFSA-07. Number 4529 in LNCS, Springer Verlag (2007) 125–134

24. Chang, K.C.C., won Hwang, S.: Minimal probing: Supporting expensive predicates for top-k
queries. In: SIGMOD Conference. (2002)

25. Tinelli, E., Cascone, A., Ruta, M., Noia, T.D., Sciascio, E.D., Donini, F.M.: I.M.P.A.K.T.: an
innovative, semantic-based skill management system exploiting standard SQL. In: Proc. of
ICEIS’09. Volume AIDSS. 224–229

26. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Ragone, A.: Semantic-based skill
management for automated task assignment and courseware composition. J. Univ. Comp.
Sci. 13(9) (2007) 1184–1212

