
Filling the gap between OWL 2 QL and QuOnto:
ROWLKit

Claudio Corona, Marco Ruzzi, and Domenico Fabio Savo

Dipartimento di Informatica e Sistemistica
Sapienza Università di Roma
lastname @dis.uniroma1.it

Abstract. Ontologies are nowadays one of the most prominent for-
malisms used in the area of Semantic Web for knowledge representation.
Several efforts have been made by the W3C in order to define OWL
(Web Ontology Language) and by developers in order to develop reason-
ers able to deal with ontologies defined by means of OWL. Unfortunately,
the goals of the working groups for standard languages definition rarely
meet the ones of reasoners developers and viceversa. In this paper we
present ROWLKit , a query answering system for ontologies compliant
with OWL 2 QL, a profile of OWL 2 that is inspired by DL-LiteR, one of
the language of the DL-Lite family. In particular we show how to extend
QuOnto, a pre-existing reasoner for DL-LiteR in order to implement the
features of OWL 2 QL not natively supported by QuOnto thus bridging
the gap between the standard language and the system implementation.
We show the efficacy of our approach presenting experimental results
based on the University Ontology Benchmark.

1 Introduction

Ontologies are nowadays one of the most prominent formalisms for knowledge
representation and reasoning used in the area of Semantic Web (SW). Several
efforts have been made by the W3C in order to define OWL (Web Ontology
Language), a standard language for representing ontologies, and by developers
in order to build reasoners able to deal with ontologies defined by means of
OWL1. Unfortunately, the goals of the working groups for standard languages
definition rarely meet the ones of systems developers and viceversa. It follows
that OWL Full, the most expressive version of the Web Ontology Language, is
undecidable and OWL DL, a decidable restriction of OWL Full, requires very
high computational costs preventing its use in many practical cases.

In the very last years, several research efforts have been focused on the defi-
nition of languages with a limited expressive power but that allow reasoning and
query answering tasks to be performed in a very efficient way. In this direction,
the DL-Lite family [5] of languages based on Description Logics (DLs) [3] has
been proposed, providing languages featuring enough expressive power to allow
1 http://www.w3.org/TR/owl-ref/

http://www.w3.org/TR/owl-ref/�

2 C. Corona, M. Ruzzi, D.F. Savo

query answering and reasoning tasks to be first-order reducible. One of the main
advantages of DL-Lite ontologies is that query answering can be performed in
a modular way, first reformulating the user query with the aim of encoding the
intensional level of the ontology into the query, and then evaluating such new
query over the ontology estensional level generally stored by means of a rela-
tional DBMS. The effective practical utility of such languages led on one hand
developers to produce reasoners for DL-Lite ontologies (es. QuOnto [2], OWL-
Gres [8]), and on the other hand standard language working groups to introduce
in OWL 2 a profile called OWL 2 QL2 covering DL-LiteR, a notable member of
the DL-Lite family, plus some other useful constructs not natively supported by
DL-LiteR.

In this paper we exploit the knowledge earned developing the QuOnto sys-
tem, and present the implementation of ROWLKit , an efficient query answering
engine for OWL 2 QL, based on an extended version of the QuOnto reasoner to
perform query rewriting, and using standard DBMS technology to perform final
query evaluation. We then conducted some experiments comparing ROWLKit
with OWLGres, a system for efficient query answering based on DL-Lite. In
particular our contributions can be summarized as follows: we first highlight the
main OWL 2 QL features missing in current QuOnto implementation (Sec-
tion 2), then show ROWLKit , a new reasoner that fully implement the OWL
2 QL features extending the QuOnto reasoner for DL-LiteR (Section 3) and
eventually present some experimental results based on the UOBM benchmark [7]
(Section 4). We draw some conclusions and future works in Section 5.

2 Preliminaries: OWL 2 QL and DL-LiteR

OWL 2 QL is one of the recently presented OWL 2 profiles. This language is
based on the DL-Lite family of Description Logics (DLs), whose relevant charac-
teristic is that the query answering task is first-order reducible and hence can be
entirely delegated to a standard DBMS. In particular the complexity of query
answering w.r.t. the size of the ontology extensional level is in AC0. We now
briefly recall the basics of DL-LiteR, that is, the language of the DL-Lite family
that is closer to OWL 2 QL.

As presented in [5], DL-LiteR concepts and roles are formed according to the
following syntax:

B −→ A | ∃R
C −→ B | ¬B

R −→ P | P−

E −→ R | ¬R

where A denotes an atomic concept, P an atomic role, and P− the inverse of the
atomic role P ; B denotes a basic concept that can be either an atomic concept or
a concept of the form ∃R, the standard DL construct of unqualified existential
quantification on roles (and their inverse); finally, C denotes a (general) concept,
which can be a basic concept or its negation, and E denotes a (general) role,
which can be a basic role or its negation.
2 http://www.w3.org/2007/OWL/wiki/Profiles

http://www.w3.org/2007/OWL/wiki/Profiles�

Filling the gap between OWL 2 QL and QuOnto: ROWLKit 3

As usual, an ontology O = 〈T ,A〉 expressed in any logic of the DL-Lite
family is constituted by a TBox T and an ABox A, where the first component
specifies general properties of concepts and roles, and the second component
specifies the instances of concepts and roles.

A TBox is formed by a set of inclusion assertions of the form: B v C and
R v E, that specify the properties of concepts and roles, stating that every
instance of a concept (resp., role) is also an instance of another concept (resp.,
role). Precisely we refer to assertions of the form B1 v B2 (resp. R1 v R2)
as positive inclusion assertions (PIs), and to assertions of the form B1 v ¬B2

(resp. R1 v ¬R2) as negative inclusion assertions (NIs). Therefore general con-
cepts (resp., roles) may only occur on the right-hand side of inclusion assertions.

An ABox is formed by a set of membership assertions on atomic concepts
and on atomic roles, of the form A(a) and P (a, b), stating respectively that the
object denoted by the constant a is an instance of A and that the pair of objects
denoted by the pair of constants (a, b) is an instance of the role P .

A union of conjunctive queries (UCQ) q over a DL-LiteR ontology O is an
expression of the form

q(x) ← ∃y1.conj1(x, y1) ∨ · · · ∨ ∃yn.conjn(x,yn)

where x are the so-called distinguished variables, y1, . . . , yn are existentially
quantified variables called the non-distinguished variables, and each conji(x, yi)
is a conjunction of atoms of the form α(z), β(z, z′), z = z′, where α (resp., β) is
a unary (resp., binary) atomic symbol occurring in O, and z, z′ are constants in
O or variables in x or yi for some i ∈ {1, . . . , n}. Given an interpretation I, qI

is the set of tuples of domain elements that, when assigned to the distinguished
variables x, make the formula ∃y1.conj1(x, y1) ∨ · · · ∨ ∃yn.conjn(x,yn) true in
I (cf. [1]). Then, the set cert(q,O) of certain answers to q over O is the set of
tuples a of constants appearing in O such that aI ∈ qI , for every model I of O.
In the following, instead of query answering, we consider, w.l.o.g., boolean query
entailment O |= q, i.e., checking whether 〈〉 ∈ cert(q,O), where q is a Boolean
UCQ (that is a UCQ with no distinguished variables) and 〈〉 denotes the empty
tuple.

We now briefly highlight the more relevant differences between OWL 2 QL
and the language implemented in QuOnto, which have led to the implementa-
tion of a new system called ROWLKit (see Section 3) by suitably extending the
QuOnto reasoner. Such differences can be summarized as follows:

(i) existential quantification to a class (ObjectSomeValuesFrom) and existential
quantification to a data range (DataSomeValuesFrom);

(ii) symmetric property axioms (SymmetricObjectProperty) and asymmetric
property axioms (AsymmetricObjectProperty);

(iii) reflexive property axioms (ReflexiveObjectProperty) and irreflexive property
axioms (IrreflexiveObjectProperty).

Notice that, although (i) and (ii) are not natively supported by QuOnto
they are actually expressible in DL-LiteR by suitably processing the intensional
level of the ontology. Conversely, reflexivity and irreflexivity axioms requires the

4 C. Corona, M. Ruzzi, D.F. Savo

QuOnto system to be extended with brand new features as will be shown in
the next section.

3 ROWLKit

ROWLKit is a simple graphic user interface enabling the user to reason and
pose query over ontologies written in the OWL 2 QL profile of OWL 2. It allows
to load an ontology, both locally stored or accessible via URI, and check for
compliance with the OWL 2 QL language restrictions. Basic consistency check,
reasoning services and mainly sound and complete query answering are the ser-
vices provided by ROWLKit . ROWLKit is written in JAVA, uses the OWLAPI3

as input file parser, and makes the user able to choose one of the supported
DBMS for storing the extensional level of the ontology and for the evaluation
of union of conjunctive queries written in the SPARQL4 query language. The
reasoning module of ROWLKit is based on QuOnto [2], an efficient reasoner
for DL-Lite ontologies. Due to the differences existing between the OWL 2 QL
and the language implemented inQuOnto, the reasoning module of ROWLKit
has been built by extending and modifying the QuOnto reasoner. In particular,
in this section we show how we choose to implement in ROWLKit the support
for qualified existential quantification, reflexive and irreflexive property axioms,
and symmetric and asymmetric property axioms.

3.1 Native handling of qualified existential quantification

OWL 2 QL provides the use of qualified existential quantification on object (and
data) property as super-class in the SubClassOf axioms, with the qualifying class
being a named class. In terms of DLs, it means that it is possible to have in-
clusion assertions of the form B v ∃R.A in the TBox. As shown in [4], these
kind of TBox assertion can be handled by means of a preprocessing step that
substitute them through the use of unqualified existential quantification, aux-
iliary roles, and inclusions between roles. More in details, in [4], each inclusion
assertion α in the TBox such that α is of the form B v ∃R.A is replaced with
translation(α) = {B v ∃Raux, Raux v R, ∃R−aux v A}, with Raux appearing
only in translation(α). This approach has two disadvantages: (i) it changes the
ontology alphabet, since it adds new auxiliary roles; (ii) the output of Perfec-
tRef [5] may contain conjunctive queries (CQs) involving auxiliary role atoms
(causing the CQ in which they appear to be empty). An obvious approach to the
second disadvantage is to postprocess the output of PerfectRef by deleting all
the CQs containing at least one auxiliary role atom. Conversely, our approach
aims to: (i) preserve the original ontology alphabet (ii) keep clean the output
of PerfectRef, without the need of performing any postprocess on its output.
The second point is achieved by introducing new rewriting rules in PerfectRef,
in order to natively handle SubClassOf axioms involving qualified existential
3 http://owlapi.sourceforge.net/
4 http://www.w3.org/TR/rdf-sparql-query/

Filling the gap between OWL 2 QL and QuOnto: ROWLKit 5

quantification as super-class. We start the presentation of such approach by
giving some preliminary definitions.

We say that an argument of an atom in a query is bound if it corresponds
to either a distinguished variable, i.e., a variable appearing in the head of the
query, or a shared variable, i.e., a variable occurring at least twice in the query
body, or a constant. Instead, an argument of an atom in a query is unbound
if it corresponds to a non-distinguished non-shared variable and, as usual, it is
denoted by the symbol ‘ ’.

We say that a PI I is applicable to a set of atoms Σ if:

– I is not of the form B v ∃R.A and Σ contains one atom A(x) and I has A
in its right-hand side;

– I is not of the form B v ∃R.A and Σ contains one atom P (x1, x2) and
if: (i) x2 = and the right-hand side of I is ∃P , or (ii) x1 = and the
right-hand side of I is ∃P−, or (iii) I is a role inclusion assertion and its
right-hand side is either P or P−;

– I is of the form B v ∃R.A and Σ is formed as follow:
• Σ = {R(x, y), A(y)}, with y appearing only in Σ;
• Σ = {R(x,), A()};
• Σ = {R(x,)}
• Σ = {A()}

When I is applicable to Σ, we indicate with ngr(Σ, I) the atom obtained
from the set of atoms Σ by applying I. Formally:

Definition 1. Let I be an inclusion assertion that is applicable to the set of
atoms Σ. Then, ngr(Σ, I) is the atom defined as follows:

1. if Σ = {A(x)} and I = A1 v A, then ngr(Σ, I) = A1(x);
2. if Σ = {A(x)} and I = ∃P v A, then ngr(Σ, I) = P (x,);
3. if Σ = {A(x)} and I = ∃P− v A, then ngr(Σ, I) = P (, x);
4. if Σ = {P (x,)} and I = A v ∃P , then ngr(Σ, I) = A(x);
5. if Σ = {P (x,)} and I = ∃P1 v ∃P , then ngr(Σ, I) = P1(x,);
6. if Σ = {P (x,)} and I = ∃P−1 v ∃P , then ngr(Σ, I) = P1(, x);
7. if Σ = {P (, x)} and I = A v ∃P−, then ngr(Σ, I) = A(x);
8. if Σ = {P (, x)} and I = ∃P1 v ∃P−, then ngr(Σ, I) = P1(x,);
9. if Σ = {P (, x)} and I = ∃P−1 v ∃P−, then ngr(Σ, I) = P1(, x);

10. if Σ = {P (x1, x2)} and either I = P1 v P or I = P−1 v P−, then
ngr(Σ, I) = P1(x1, x2);

11. if Σ = {P (x1, x2)} and either I = P1 v P− or P−1 v P , then ngr(Σ, I) =
P1(x2, x1);

12. if Σ = {R(x, y), A(y)} with y appearing only in Σ and I = B v ∃R.A, then
ngr(Σ, I) = B(x);

13. if Σ = {R(x,), A()}, then ngr(Σ, I) = B(x);
14. if Σ = {R(x,)} and I = B v ∃R.A, then ngr(Σ, I) = B(x);
15. if Σ = {A()} and I = B v ∃R.A, then ngr(Σ, I) = B();

6 C. Corona, M. Ruzzi, D.F. Savo

Note that the rewriting rules 1-11 correspond to the ones performed by the
function gr in PerfectRef, as described in [5]. In the following, we define a new al-
gorithm, called NewPerfectRef, obtained by extending PerfectRef with the rewrit-
ing rules 12-15.

By [4] and [5], it follows that when the TBox contains qualified existential
quantifications appearing in the right-hand side of PIs, query answering can
be handled in a sound and complete way by transforming those PIs into pure
DL-LiteR PIs, and by simply considering the old algorithm PerfectRef. We now
show that, considering the original TBox, in which no transformations are per-
formed and no auxiliary roles are introduced, also NewPerfectRef is sound and
complete. In particular, we show that disregarding the CQs containing auxiliary
roles, the outputs of PerfectRef and NewPerfectRef are equivalent. Intuitively,
considering the reformulation tree generated by PerfectRef on a input CQ q, we
show that for every CQ qout, different from q and without auxiliary roles, a CQ
qanc (ancestor query), without auxiliary roles, too, is generated before qout in
PerfectRef, such that NewPerfectRef, taken in input qanc, produces qout in one
reformulation iteration. After applying for a finite number of times the same
property on qanc, we finally obtain q.

In the following, we denote by Tex a set {α1, . . . , αm} of PIs of the form
B v ∃R.A, by Tr a generic DL-LiteR TBox (hence not including PIs of the form
B v ∃R.A), and by T ′

ex the set of DL-LiteR PIs obtained by transforming the
assertions in Tex as described in [4]. Moreover, cq1 ≡ cq2 means that the CQ cq1

is isomorphic (or equivalent) to the CQ cq2[?].

Lemma 1. Given two TBoxes T = Tr ∪ Tex and Tt = Tr ∪ T ′
ex, and given two

different CQs defined over the alphabet of T q, qout, then qout ∈ PerfectRef(Tt, q)
iff a CQ qanc 6= qout, defined over the alphabet of T , exists in PerfectRef(Tt, q)
such that

1. an atom a exists in qout and a PI I exists in T such that qanc ≡ qout[a/Σ]
and qanc[Σ/ngr(Σ, I)] ≡ qout; or

2. a couple of atoms a1, a2 exists in qanc such that reduce(qanc, a1, a2) ≡ qout.

Proof. ⇒ If qout 6≡ q, then a CQ q∗ must exist in PerfectRef(Tt, q) such that one
of the following conditions holds:

– two atoms a1 and a2 exist in q∗ such that reduce(q∗, a1, a2) ≡ qout. In this
case, known as a reduce step[5], since the condition 2 holds for q∗, qanc = q∗;

– an auxiliary role atom a of the form Raux(x,) appears in q∗ such that qout =
q∗[a/gr(a, B v ∃Raux)]. In this case, in order to find qanc, we have to go
back the way one came to the atom Raux(x,) in q∗ through PerfectRef. The
CQ q∗ may be obtained by means of a reduce step performed by PerfectRef
on a CQ q∗1 , in which two atoms a1 and a2 involving Raux appear, such that
reduce(q∗1 , a1, a2) ≡ q∗. Note that, in order to let the reduce step produce
q∗, the two atoms a1 and a2 must be such that the variable appearing as
the first argument of the one is different from the variable appearing as
the right argument of the other one, and both the variables appearing as
right argument in a1 and a2 must not occur elsewhere. Obviously, these

Filling the gap between OWL 2 QL and QuOnto: ROWLKit 7

kind of reduce steps may be repeated for a whatever, but finite, number n of
iterations of PerfectRef, so to lead to a CQ q∗n containing a set Γaux of n+1
atoms involving Raux. To summarize, in this backwards path of q∗ inside
PerfectRef(Tt, q), if no reduce steps are performed, Γaux will contain only
Raux(x,); if n reduce steps are performed, Γaux will contain n + 1 atoms
involving Raux, respecting the constraint that for each couple (not necessarily
different) of atoms Raux ∈ Γaux, the variable appearing as left argument of
one atom is different from the variable appearing as right argument of the
other one, and all the variables appearing as right argument do not occur
outside Γaux. Now, each atom Raux in Γaux must have been obtained by
applying a rewriting step involving one among ∃R−aux v A and Raux v R.
In this way, we obtain a new set of atoms Γ by performing n + 1 steps of
PerfectRef, through which each Raux atom in Γaux is backwards rewritten
in a R atom or in a A atom. Let us indicate with qΓ the so obtained CQ
appearing in PerfectRef(Tt, q) containing Γ . Note that qΓ does not contain
anymore auxiliary roles. In the following, we denote by α the PI B v ∃R.A in
T such that Raux is the auxiliary role introduced in translation(B v ∃R.A)
in T ′

ex. The set of atoms Γ must assume one of the following forms:
1. Γ = R(x1, y1), ..., R(xn+1, yn+1), xi (yi) denoting the variable appear-

ing as left (right) argument in the i-th Raux atom in Γaux. Now, if
qΓ is in PerfectRef(Tt, q), then, by applying n iterations of PerfectRef,
PerfectRef(Tt, q) will also contain a CQ qR such that qR ≡ q∗[Raux \R].
Since ngr({R(x,)}, α) = B(x) (rule 14), qanc = qR;

2. Γ = A(y1), ..., A(yn+1), yi denoting the variable appearing as right ar-
gument in the i-th Raux atom in Γaux. In this case, by following a way
similar to the previous case, PerfectRef(Tt, q) will contain a CQ qA such
that qA ≡ q∗[Raux(x,)/A()]. Since ngr({A()}, α) = B() (rule 15),
qanc = qA;

3. Γ = R(x1, y1), ..., R(xm, ym), A(ym+1), ..., A(yn), yi (xi) denoting the
variable appearing as right (left) argument in the i-th Raux atom
in Γaux. In this case, by following a way similar to both the previ-
ous cases, PerfectRef(Tt, q) will contain a CQ qRA such that qRA ≡
q∗[Raux(x,)/{R(xi, yj)A(yk)}]. Since ngr({R(xi, yj), A(yk)}, α) =
B(xi) (rule 12 if yj = yk, rule 13 otherwise), qanc = qRA;

– an atom a not of the form Raux(x,) exists in q∗ such that qout =
q∗[a/gr(a, I)], for some I ∈ Tr. In this case, since ngr({a}, I) = gr(a, I),
qanc = q∗;

⇐ Let qanc and qout be two different CQ defined over the alphabet of T and
appearing in PerfectRef(Tt, q). Then:

- if the condition 1 holds, since the rules 1-15 can be trivially simulated by
PerfectRef, qout is in PerfectRef(Tt, q);

- if the condition 2 holds, since the reduce steps are performed by PerfectRef,
too, qout is in PerfectRef(Tt, q). ut

Corollary 1. If in Lemma 1 we have that qanc is equivalent to q, then a CQ q′

exists in NewPerfectRef(T, q) such that qout is equivalent to q′.

8 C. Corona, M. Ruzzi, D.F. Savo

Proof. Trivial. The step from qanc to qout in Lemma 1 just corresponds to an
iteration step of NewPerfectRef. It follows that NewPerfectRef, on input T and
q, is able to reach a CQ equivalent to qout.

Theorem 1. Given two TBoxes T = Tr ∪ Tex and Tt = Tr ∪ T ′
ex, and

given a CQ q defined over the alphabet of T , then, disregarding the CQs in
PerfectRef(Tt, q) in which at least one auxiliary role appears, PerfectRef(Tt, q)
and NewPerfectRef(T, q) are equivalent.

Proof. We first prove that PerfectRef(Tt, q) ⊆ NewPerfectRef(T, q). By contra-
diction.

Let qt be a CQ appearing in PerfectRef(Tt, q) different from q such that a
CQ qn does not exist in NewPerfectRef(T, q) such that qt ⊆ qn. From Lemma 1,
qt ∈ PerfectRef(Tt, q) iff a CQ qanc 6= qt, defined over the alphabet of T , exists
in PerfectRef(Tt, q) such that

1. an atom a exists in qt and a PI exists in T such that qanc ≡ qt[a/Σ] and
qanc[Σ/ngr(Σ, I)] ≡ qt; or

2. a couple of atoms a1, a2 exist in qanc such that reduce(qanc, a1, a2) ≡ qt.

Note that for qanc there are two possibilities:

1. qanc ≡ q. In this case, from Corollary 1 it follows that a CQ q′t exists in
NewPerfectRef(T, q) such that q′t = qt. Contradiction.

2. qanc 6≡ q. In this case, being qanc a CQ belonging to PerfectRef(Tt, q), and
defined over the alphabet of T , Lemma 1 holds recursively by considering
qanc as the new qt, until qanc ≡ q. Again, from Corollary 1 it follows that a
CQ q′t exists in NewPerfectRef(T, q) such that q′t ≡ qt, for every qt for which
Lemma 1 has held. Contradiction.

We now prove that NewPerfectRef(T, q) ⊆ PerfectRef(Tt, q). According to
Lemma 1, each rewriting rules in NewPerfectRef can be simulated (in at most
three iterations) by PerfectRef. ut
Theorem 2. Given a TBox T = Tr∪ Tex and a CQ q defined over the alphabet
of T , then NewPerfectRef(T , q) is sound and complete.

Proof. Let Tt be the DL-LiteR TBox obtained by replacing Tex with T ′
ex.

Since PerfectRef(Tt, q) is sound and complete, from Theorem 1 it follows that
NewPerfectRef(T , q) is sound and complete, too. ut

Note that all the results above can be extended so that they hold even for
existential quantification on data property appearing as super-class in the Sub-
ClassOf axioms.

3.2 Symmetric and asymmetric object property axioms

To support SymmetricObjectProperty axiom and AsymmetricObjectProerty ax-
iom it is not necessary to modify the reformulation algorithm, since those axioms
can be treated by translating them into suitable intensional axioms. To be more
precise:

Filling the gap between OWL 2 QL and QuOnto: ROWLKit 9

– each axiom SymmetricObjectProperty(R) in the ontology is treated as if it
was an axiom SubObjectProperty(R InverseOf(R)), which in DL-LiteR can
be written as R v R−;

– each axiom AsymmetricObjectProperty(R) in the ontology is treated as if it
was an axiom DisjointObjectProperties(R InverseOf(R)), which in DL-LiteR

can be written as R v ¬R−.

3.3 Reflexive and irreflexive object property axioms

We now present how ROWLKit deals with the IrreflexiveObjectProperty ax-
iom. We point out that, since (i) the asymmetry axiom on a property implies
the irreflexivity axiom on the same property; and (ii) the asymmetry axiom
influences only the consistency check on the ontology; the irreflexivity axiom
influences only the consistency check, too. It means that to treat an irreflexivity
axiom on a property on which an asymmetry axiom does not exist, we need only
to identify a suitable CQ qI to add to the boolean union of CQs used to check
the consistency of the ontology (see [5]). We now show how to identify such a
CQ. Let O be a consistent OWL 2 QL ontology without irreflexivity axioms, α
be an irreflexivity axiom on a object property OP , and suppose we add α to O.
We want to know if O′ = O∪α is consistent. We have that O′ is unsatisfiable iff
O |= ¬α. In other words, the ontology O′ is unsatisfiable iff O |= ∃x.OP (x, x).
Therefore, O′ is consistent iff the CQ qI():-OP (x, x) is false over O. Note that
the boolean CQ qI can also be seen as a denial constraint [6] over O.

Unlike the irreflexivity axiom, the reflexivity axiom is not painless from the
reformulation algorithm point of view. Intuitively, a reflexivity axiom on an
object property OP acts as if the extensional level of the ontology would contain
a certain number of object property assertion axioms OP (x, x), being in OWL
2 the reflexivity axiom defined over the (non empty) domain of interpretation.
For the lack of space, we focus on the case of boolean CQs. As for generic CQs,
the handling of irreflexivity axiom can be conveniently extended. Informally, if
an object property is defined as reflexive, then every atom of the kind OP (x, x)
can be deleted from the query, since it is implied to be true by the ontology.

We now describe more precisely how the reflexivity axiom can be handled
in PerfectRef. When PerfectRef analyzes a CQ q, for each atom α involving an
object property OP in the body of q such that OP (or InverseOf(OP)) is a
reflexive object property, if:

1. α is of the form OP (x, x) (or OP (′a′,′ a′)), then the atom is deleted from q;
2. α is of the form OP (x, y), then a new CQ is obtained from q, and added to

PerfectRef, by applying and propagating the unification x = y;
3. α is of the form OP (x,′ a′) (or OP (′a′, x)), then a new CQ is obtained from

q, and added to PerfectRef, by applying and propagating the unification
x =′ a′;

Note that, differently from what happened without reflexivity axioms, the
version of PerfectRef supporting the reflexivity axioms returns an output in
which some CQs may have an empty body. If PerfectRef(T , q) contains some
CQs with an empty body, then it simply means that 〈T ,A〉 |= q.

10 C. Corona, M. Ruzzi, D.F. Savo

(a) Query reformulation time (b) Overall query evaluation time

Fig. 1. Experimental results

4 Experiments with ROWLKit

In this Section we presents the results of some experiments we conducted with
ROWLKit in order to test the practical applicability of the techniques presented
in Section 3. To this aim we set up an experimental scenario based on the
University Ontology Benchmark (UOBM)[7], an extension of the well known
Lehigh University Benchmark5 (LUBM), that provide a test ontology using a
set of constructs that are relevant for OWL 2 QL and hence for ROWLKit .

We decided to compare our techniques with the one implemented in OWL-
Gres since, as far as we know, it is the only system besides QuOnto admittedly
based on DL-LiteR that provides query answering techniques over ontologies
with a big number of individuals. As for the ontology used for experiments we
point out that, since UOBM is expressed by means of OWL DL, we manually
deleted from the UOBM ontology all constructs not expressible in the OWL 2
QL profile (e.g. transitive object properties and functional object properties).
The resulting ontology, whose language is fully supported by both OWLGres
and ROWLKit , contains about 280.000 individuals. We used Derby6 as rela-
tional DBMS for handling the extensional level of the ontology and to perform
final evaluation of the rewritten queries, since currently is the only DBMS na-
tively supported by both the systems involved in the tests. The size of the DBMS
storing the individuals is 80 MB for OWLGres and 160 MB for ROWLKit .

We performed the experiments running 15 queries (all the 14 queries of
the UOBM benchmark, plus a custom query) on both systems, measuring the
query reformulation and overall query evaluation times. Figure 1 shows the re-
sults. First of all we noticed that the reformulation step is performed faster by
ROWLKit in all the queries except query Q10. We argue that the native man-
agement of the qualified existential quantification on object and data properties
provides two benefits: (i) in general a lower number of subclass assertion implies

5 http://swat.cse.lehigh.edu/projects/LUBM/
6 http://db.apache.org/derby/

http://swat.cse.lehigh.edu/projects/LUBM/�
http://db.apache.org/derby/�

Filling the gap between OWL 2 QL and QuOnto: ROWLKit 11

a lower number of queries generated during the reformulation process, and hence
in the final rewriting and (ii) we don’t have to further process the rewritten query
in order to delete useless queries. As a consequence of such a new technique, the
number of rewritten queries generated by ROWLKit is always sensibly lower, or
at least equal, w.r.t. the number of queries generated by OWLGres. Secondly,
the overall query evaluation process is performed faster by ROWLKit in almost
all queries: this is mainly due to the way ROWLKit stores the individuals into
the DBMS. However, OWLGres appears to be more efficient from the disk usage
point of view. It is important to note that, due to the high complexity of the
structure of query Q8, the corresponding rewriting cannot be evaluated over the
Derby database although we verified that other DBMS can handle it.

As a final remark we point out that all queries from Q1 to Q14 returned
the same number of answers on both systems, whereas ROWLKit retrieved 34
answers for query Q15, against the 31 retrieved by OWLGres. This is due to
the fact that ROWLKit implements a sound and complete query answering
algorithm whereas OWLGres is sound and complete under the ground semantics
only.

5 Conclusion and Future Works

In this paper we presented the main techniques implemented in the ROWLKit
system. ROWLKit is a new system, based on an extension of the QuOnto
reasoner, suitably developed for answering queries over ontologies expressed by
means of OWL 2 QL, one of the recently proposed OWL2 profiles.

In particular we highlighted the main differences between OWL 2 QL and
DL-LiteR, the core language which QuOnto is based on, and extended the
rewriting technique of QuOnto in order to natively handle some of the new
features provided with OWL 2 QL. In order to test the effectiveness of the
presented techniques, we performed some query answering tests based on the
UOBM benchmark, and compared the performance of ROWLKit and OWLGres,
another system for query answering based on the DL-LiteR language. The results
of experiments confirmed that the reformulation step is a crucial task for such
kind of systems and has to be performed as efficiently as possible, in order to
lighten the workload of the DBMS in charge for the final evaluation of the queries
over the instance level.

As future works we plan to extend ROWLKit in several directions: first of
all we plan to broaden the set of DBMS supported by the system for the indi-
viduals storage and perform a comparison between such DBMS. Then we plan
to extend to non-boolean conjunctive queries the technique for the handling of
reflexive object and data properties presented in Section 3, and implement new
optimizations in the reformulation process. Eventually, is also worth investigat-
ing the different ways of storing the ontology individuals into the DBMS in order
to speed up the final query evaluation process.

12 C. Corona, M. Ruzzi, D.F. Savo

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. 1995.
2. Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,

Maurizio Lenzerini, Mattia Palmieri, and Riccardo Rosati. QuOnto: Querying
ontologies. pages 1670–1671, 2005.

3. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation
and Applications. 2003.

4. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Data complexity of query answering in description logics. pages
260–270, 2006.

5. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Tractable reasoning and efficient query answering in description
logics: The DL-Lite family. 39(3):385–429, 2007.

6. Claudio Corona, Emma Di Pasquale, Antonella Poggi, Marco Ruzzi, and
Domenico Fabio Savo. When OWL met DL-Lite... In SWAP, 2008.

7. Li Ma, Yang Yang, Zhaoming Qiu, Guo Tong Xie, Yue Pan, and Shengping Liu.
Towards a complete owl ontology benchmark. In ESWC, pages 125–139, 2006.

8. Markus Stocker and Michael Smith. Owlgres: A scalable owl reasoner. In OWLED,
2008.

