
A Tableaux-based calculus for Abduction in Expressive
Description Logics: Preliminary Results

Tommaso Di Noia (1), Eugenio Di Sciascio (1), Francesco M. Donini (2)

(1) SisInfLab, Politecnico di Bari, Bari, Italy (2) Università della Tuscia , Viterbo, Italy
{t.dinoia,disciascio}@poliba.it,donini@unitus.it

1 Introduction

Abduction [12] is a well-known form of common-sense reasoning that has been widely
exploited in Artificial Intelligence applications, including formalization of Diagnostic
Reasoning [13] and Scene Interpretation [14]. Abduction has been also proposed as
a logical tool for formalizing hypothetical reasoning in E-Commerce [7], Negotiation
[15] and Web-service Discovery [10], among others. The computation of Propositional
Abduction (PA) has been extensively studied, for nearly all criteria that can be adopted
for choosing the preferred hypotheses [6]. Also Abductive Logic Programming is well
established [9], and its computation resorts on a modification of SLD-resolution. Yet,
when the representation language chosen for the application domain is a Description
Logic (DL), the picture is far from being complete. Since concepts in a DL are in fact
monadic predicates, the definition of Abduction should be extended from a proposi-
tional to a first-order setting. A possible definition has been proposed by Di Noia et al.
[7]: given concepts C (prior facts), D (target), and a TBox T (background knowledge),
a Concept Abduction Problem is finding another concept H such that both (i) the con-
junction of C and H—denoted in DL by C u H—is satisfiable in T , and (ii) in all
models of T , C u H is subsumed by D (denoted by T |= C u H v D). A tableaux-
based calculus for computing Concept Abduction in the DL ALN was devised in [5].
However, although ALN is computationally simple, it is a rather inexpressive DL. We
propose here a form of Concept Abduction which is computed extending the frame-
work of Concept Matching [2]. In a nutshell, we identify places in the description of
C where a hypothesis can be added, and name such places with (all distinct) concept
variables H0, H1, H2, . . . We denote Ch the resulting concept. Then a solution to such
an Abduction Problem is a substitution σ of concept variables with concepts, such that
T |= σ(Ch) v D. Note that in Concept Matching the concept with variables is D, and
a solution is a substitution σ such that T |= C v σ(D). The remaining of this paper is
structured as follows. In the next section, we lay out some definitions and other prelim-
inary notions. Then we propose a calculus based on tableaux for finding substitutions,
and in Section 4 we propose some strategies for finding “good” substitutions. Finally,
we compare our proposal with existing literature.

2 Structural Abduction in SH

Here, we admit only unfoldable TBoxes and we denote by v∗ the transitive closure of
role inclusion over the RBoxR. For the sake of conciseness we assume the RBox as part

of the TBox: R ⊆ T . We assume that concepts are always in Negation Normal Form
(NNF), where negation in front of a concept is always ”pushed” inside connectives and
quantifiers, recursively, till negation is in front of concept names only. In the following,
we augment concept expressions by means of concept variables. We call concept term
[3] every concept expression formed by using the syntax above, plus the ability of using
a concept variable h ∈ {h0, h1, h2, . . .}, in place of a concept name. To extend the
semantics of SH to concept terms, we let σ be an assignment σ : h 7→ C ∈ SH that
interprets concept variables as concepts in SH, and we define the semantics of h as
(σ(h))I . We recall previous definition of Concept Abduction in ALN [7].

Definition 1 (Concept Abduction). Let C, D, be two concepts in ALN , and T be a
set of axioms in ALN , where both C and D are satisfiable in T . A Concept Abduction
Problem (CAP), denoted as 〈C,D, T ,L〉C , is finding a concept H ∈ ALN such that
T 6|= C uH ≡ ⊥, and T |= C uH v D.

While adequate for Description Logics as ALN , Def. 1 shows its limits when dealing
with languages where qualified existential quantification is allowed. This is the case of
ALE and, more generally, of ALC and SH. We explain the need to generalize Def. 1
with the aid of a simple example.
Example 1. Let W1,W2 be two Web services, W1 having two payment methods: a
Credit-card one and a non-https-based one (W1 = ∃howPay.CCu∃howPay.¬https),
and W2 for which it is only known that it has some payment method (∃howPay.>).
Suppose a user has to choose which service best satisfies her demandD = ∃howPay.(CCu
https). Only for sake of simplicity, let the TBox be empty. Obviously, both W1 6v D
and W2 6v D—i.e., neither service completely fulfills D—so the problem arises as
to whether there is some logic-based method to compare them. Some researchers [7,
10] propose to automate the choice by solving two (kind of) abduction problems, and
compare the results. Namely, they propose to compare some hypotheses H1 and H2

that, when added to W1 and W2 respectively, would make each one of them be sub-
sumed by D. Then, an offer with a more generic H should be preferred over one
with a more specific H . Following this criterion, an offer W for which H = > is
the ”best” choice, since in this case already W v D. Following Def. 1, we would have
to find two concepts H1, H2 such that Wi u Hi v D (i = 1, 2) and in this case it
can be verified that both problems admit one subsumption-maximal solution, namely
H1 = H2 = ∃howPay.(CCu https) = D. Observe that H1,2 is trivially hypothesiz-
ing the whole target conclusion, disregarding the fact that the conjunct ∃howPay.CC
in W1 already “covers” part of D. That is, Def. 1 cannot be used to prefer an offer that
already partly covers the demand (W1) over another (W2) that does not1. 4
The explanation computed in Ex.1 according to Def. 1 involves the whole existential
restriction even though only a part of it would be necessary—in this case https. This
is because Concept Abduction (and all definitions of PA) only adds hypotheses as out-
ermost conjunctions. Instead, solutions should take into account the structure of a for-
mula; this amounts to hypothesize pieces of a formula to be added inside the quantifiers
of C and not just added as outermost conjunctions.

1 We remark that also the approach in [4] would compute �(CC ∧ https) (with � the modality
associated with howPay) for both abduction problems. Hence, also their proposal cannot be
used to highlight the missing information inside quantifications.

Definition 2 (Abducible Concept – Hypotheses List). Let C and D be two SH-
concepts in NNF, and let T be a set of axioms in SH. We define abducible concept
Ch .= h0 u Rew(C), where the rewriting Rew(C) defined recursively as
Rew(A) = A; Rew(¬A) = ¬A; Rew(C1 u C2) = Rew(C1) u Rew(C2)
Rew(∃R.C) = ∃R.(hnew u Rew(C)); Rew(∀R.C) = ∀R.(hnew u Rew(C)) where
by hnew we mean a concept variable not yet appearing in the rewriting2. We assume
that concept variables are numbered progressively, and call hypotheses list of Ch the
listH = 〈h0, h1, h2, . . .〉.
Observe that since C is in NNF, a case for Rew(¬C), with C a generic concept, is not
present in the definition of Rew(). Given an abducible concept Ch, its corresponding
hypotheses list H = 〈h0, . . . , h`〉 and a list C = 〈C0, . . . , C`〉 of ALEHR+ concepts,
we denote with σ[H/C] the substitution {h0 7→ C0, . . . , h` 7→ C`} and with σi[H/C],
with i = 0, . . . , `, the substitution of the single variable hi.

Definition 3 (Structural Abduction). LetC,D ∈ SH, be two concepts in NNF, and T
be a set of axioms in SH, where bothC andD are satisfiable in T and T 6|= CuD v ⊥.
Let H = 〈h0, . . . , h`〉 be the hypotheses list of the abducible concept Ch and Ã =
〈A0, . . . ,A`〉 (for Assumptions) be a list of SH concept sets. A Structural Abduction
Problem (SAP) for SH, denoted as 〈C,D, T , Ã〉S , is finding a list of concepts H =
〈H0, . . . ,H`〉 in ALEHR+ such that

Hi ∈ Ai for every i = 0, . . . , ` (1)
T 6|= σ[H/H](Ch) v ⊥ (2)
T |= σ[H/H](Ch) v D (3)

We call a SAP General when Ai = SH, for every i = 0, . . . , `.

Following [5] we use PS as a symbol for a SAP, and we denote with SOLSAP (PS)
the set of all solutions to a SAP PS . Observe that we impose the hypotheses inH to be
in the DL ALEHR+ , in which disjunction is not allowed, and negation is allowed only
in front of concept names. This restriction is analogous to the one in PA—where the
set of abduced hypotheses is always intended as a conjunction—and Abductive Logic
Programming—where again the abduced atoms are (implicitly) taken conjunctively. As
noted by Marquis [11] for First-order Abduction, if disjunction and full negation are
allowed in solutions to an Abduction problem, the most general hypothesis is always
¬C tD, which in fact solves nothing. Hereafter, we always refer to General SAPs.
Example 2. Consider W1 and D as in Ex.1. According to Def. 2 and Def. 3 we have

Wh
1 = h0 u ∃howPay.(CC u h1) u ∃howPay.(¬https u h2)
H = 〈h0, h1, h2〉
H = 〈>,https,>〉

σ[H/H](Ch) = > u ∃howPay.(CC u https) u ∃howPay.(¬https u >)

Observe that the solution previously computed in Ex.1 is still a solution of the SAP,
namely, it is the solutionH′ = 〈∃howPay.CC u https,>,>〉. 4

2 A precise procedure to obtain this result would need a global counter, visible by all recursive
calls. We skip this technical detail to simplify presentation.

Solutions can be compared according to two preference criteria, namely, component-
wise subsumption, and subsumption in the abducible concept after substitution.

Definition 4 (Preference and Maximality). Let PS be a SAP andH′ = 〈C ′0, . . . , C ′`〉
andH′′ = 〈C ′′0 , . . . , C ′′` 〉 be two solutions in SOLSAP (PS). We say that:
—H′ is structurally-preferred overH′′, denoted byH′ �vS H′′, if for i = 0, . . . , ` we
have T |= C ′′i v C ′i;
—H′ is subsumption-preferred overH′′, denoted asH′ �v H′′, if T |= σ[H/H′′](Ch) v
σ[H/H′](Ch);
A solution is Structural-maximal if no solution is structurally preferred to it, and Subsumption-
maximal if no solution is subsumption-preferred to it.

However, it turns out that subsumption-preference includes structural preference, hence
we can safely forget the latter.

Proposition 1. Given a SAP PS = 〈C,D, T , Ã〉S and two solutions H′ and H′′ in
SOLSAP (PS), ifH′ �vS H′′ thenH′ �v H′′.

Proof. Recall that (Def. 3) both C and D are in NNF. For this form, substitutions are al-
ways monotonic overv, that is, ifC1 v C2 then for every i = 0, . . . , `, σi[hi/C1](Ch) v
σi[hi/C2](Ch). This is because concept variables appear only in conjunctions, and
positively—i.e., inside no negation. Iterating over the list of concept variables, the claim
follows. 2

Note that the requirement thatC is in NNF before rewriting inCh is fundamental for the
maximality criteria. Consider C = ¬∃R.A; without NNF, Ch would be h0u¬∃R.(Au
h1), but due to the fact that h1 is added as a conjunction inside an odd number of
negations, by substituting h1 with anything different from > we are in fact making Ch

more generic, not more specific. So, in the criteria for subsumption-maximal solutions,
we should now distinguish between h’s occurring inside an even number of negations
and h’s occurring inside an odd number of negations (for which the criteria should be
reverted: a more generic substitution yields a more specific Ch). We preferred to use
NNF, so that each concept variable h occurs inside 0 negations in Ch, and use uniform
maximality criteria. Recalling Example2, we observe that none of the previous criteria
allows us to prefer H to H′. This is because H and H′ are incomparable under struc-
tural preference, while σ[H/H](Ch) ≡ σ[H/H′](Ch). Hence a different preference
criterion is needed.

Definition 5. Given an abducible concept Ch, we introduce the following preorder
among variables in H:(i)h0 < hi with i 6= 0; (ii) hi < hp if hp is within a quan-
tification inside the one of hi; (iii) hi < hp if hp is within an existential quantification
∃R.(hpu· · ·), hi is within a universal quantification ∀R.(hiu· · ·), and both quantifica-
tions appear in the same quantification (i.e., they are siblings in the syntactic tree). Now
let H′ = 〈C ′0, . . . , C ′`〉 and H′′ = 〈C ′′0 , . . . , C ′′` 〉 be two solutions in SOLSAP (PS).
We say thatH′ ≤ H′′ if C ′i v C ′′i for some i, and for all p such that hi < hp, C ′p = C ′′p .

Example 3. Turning back to Example 2, we remember that H = {>,https,>} and
H′ = {∃howPay.CC u https,>,>}. By Definition 5 we see H ≤ H′. Indeed, we
have https v > (C1 v C ′1) for i = 1 and > = > (C2 = C ′2) for i > 1. 4

3 Calculus

We present a calculus and algorithms to compute a solution to a SAP as defined in
Section 2 for the expressive DL SH. We assume the reader be familiar with tableau cal-
culus [16]. Following [5], we will build a prefixed tableau using two labeling functions
(to represent true/false prefixed tableaux) T() and F() instead of a single labelling one
L(). T() and F() map an individual n to a set of concepts T(n) or F(n) or relate n to
another individual m via a role R. More formally, given two individuals n and m in a
tableau τ , the formal semantics of T() and F() is as follows. We say that an interpreta-
tion (∆I , ·I) satisfies two tableau labels T(n) and F(n) if:
— for every concept C ∈ T(n) and every concept D ∈ F(n), nI ∈ CI and nI 6∈ DI ;
— for every role R ∈ T(n,m) and for every role Q ∈ F(n,m), (nI ,mI) ∈ RI and
(nI ,mI) 6∈ QI ;
— an interpretation satisfies a branch B of τ if it satisfies T(n), F(n), T(n,m) and
F(n,m) for every individual n, and for every pair of individuals n,m in B.
Given two individual names n and m, m is called an R-successor of n if, for some R′

with R′ v∗ R, m is a successor of n and either R′ ∈ T(n,m) or ¬R′ ∈ F(n,m).
Ancestors are definerd as usual. If n is an ancestor of m, we say m is blocked by n
if either T(m) ⊆ T(n) or F(m) ⊆ F(n). In order to compute a solution to a SAP,
we will build a prefixed tableau τ using the rules in Fig. 1. Since we use two labelling
functions, for each classical tableau rule we have we both a T) version and its dual F)
version. The only optimization technique we include here is lazy unfolding [1, 8]. We
assume concepts are always simplified in NNF and we use C to represent the NNF of a
concept C. Given a SH concept in NNF, whenever we have a role Q ∈ F(n,m), it is of
the form ¬R. Hence Q ∈ F(n,m) means, in fact, (nI ,mI) ∈ RI too. Unfolding rules
for TBox axioms are presented in Fig. 2. We already discussed the need of having C in
NNF. For what concerns D, it is just a matter of not doubling the tableaux rules (if D
were not in NNF, we would need, e.g., a rule for u and another rule for ¬(... u)).
In the following we use the definition of homogeneous and heterogeneous clash as pro-
posed in [5]. We recall here the definition of homogeneous and heterogeneous clash as
proposed in [5].

Definition 6 (Clash). A branch B contains a homogeneous clash if it contains one of
the following:
1. either ⊥ ∈ T(n) or > ∈ F(n), for some individual n; 2. either A,¬A ∈ T(n)
(T-homogeneous) or A,¬A ∈ F(n) (F-homogeneous) for some individual n and some
concept name A; B contains a heterogeneous clash if it contains one of the following:
1. T(n)∩F(n) contains either A or ¬A for some individual n and some concept name
A;

We say a branch B is complete iff for each individual name n occurring inA no new rule
application is possible both to T(n) and F(n). A complete branch is open if it contains
no clash, otherwise it is closed. A complete tableau is open if it contains at least one
open branch, otherwise it is closed. Soundness and completeness of the calculus follow
from the version without prefixes [8].

u - rules :
T) if C uD ∈ T(n), then add both C and D to T(n).
F) if C tD ∈ F(n), then add both C and D to F(n).

t - rules :
T) if C tD ∈ T(n), then add either C or D to T(n).
F) if C uD ∈ F(n), then add either C or D to F(n).

∃ - rules :
T) if ∃R.C ∈ T(n), n is not blocked, and n has no R-successor m with either C ∈ T(m) or
¬C ∈ F(m), then pick up a new individual m, add R to T(n,m), and let T(m) := {C}.

F) if ∀R.C ∈ F(n), n is not blocked, and n has no R-successor m with either C ∈ T(m) or
¬C ∈ F(m), then pick up a new individual m, add ¬R to F(n,m), and let F(m) := {C}.

∀ - rules :
T) if ∀R.C ∈ T(n), n is not blocked, and there exists an individual m such that m is an R-

successor of n, then add C to T(m).
F) if ∃R.C ∈ F(n), n is not blocked, and there exists an individual m such that m is an R-

successor of n, then add C to F(m).
∀+ - rules :

T) if ∀R.C ∈ T(n), n is not blocked, with Trans(R) ∈ R and:
– R v∗ S;
– there exists an individual m such that m is an S-successor of n;

then add ∀R.C to T(m).
F) if ∃R.C ∈ F(n), n is not blocked, with Trans(R) ∈ R and:

– R v∗ S;
– there exists an individual m such that m is an S-successor of n;

then add ∃R.C to F(m).

Fig. 1. Expansion Rules

4 Algorithm and Substitution Strategies

We observe that given a TBox T and two concept C and D, it results T |= C v D iff
the tableau τ starting from C ∈ T(1), D ∈ F(1) is closed. Moreover, we can say that an
heterogeneous clash in τ represents in some way an “interaction” between the concepts
C and D. An heterogeneous clash can be seen a “clue” that the relation T |= C v D
might hold. Whenever a complete tableau τ has one or more open branches Bj , if we
want the relation T |= C v D hold, then we have to force the closure of all open
branches Bj in τ . We observe that if we had a tableau τ ′ starting with C ∈ T(1), and τ ′

is closed then T |= C v ⊥, i.e., C is unsatisfiable w.r.t. T . Also notice that in this case,
since we have only T() label, all branches will close with a T-homogeneous clash.

Proposition 2. LetC,D be two concepts in SH, T be a TBox in SH with T |= C v ⊥.
A complete tableaux τ starting with C ∈ T(1) and D ∈ F(1), is such that for each
branch B there is at least one T-homogeneous clash. Proof. If T |= C v ⊥, and τ is
complete, as a direct consequence, it will surely close all its branches with at least one
T-homogeneous clash. 2

v - rules :
T) if n is an individual such that A ∈ T(n) in the branch, and A v C ∈ T , then add C to T(n).
F) if n is an individual such that ¬A ∈ F(n) in the branch, and A v C ∈ T , then add C to F(n).

≡ - rules :
T) if n is an individual such that A ∈ T(n) in the branch, and A ≡ C ∈ T , then add C to T(n).
T) if n is an individual such that ¬A ∈ T(n) in the branch, andA ≡ C ∈ T , then add C to T(n).
F) if n is an individual such that ¬A ∈ F(n) in the branch, and A ≡ C ∈ T , then add C to F(n).
F) if n is an individual such that A ∈ F(n) in the branch, and A ≡ C ∈ T , then add ¬A to F(n).

Fig. 2. Unfolding Rules

Note that in this case, in order to catch the inconsistency ofC, we need τ to be complete.
Given two concepts C,D and a TBox T in SH, we call H-Tableau a complete tableau
built starting from Ch ∈ T(1) and D ∈ F(1).

Example 4. Suppose to have the following SAP: C = ∃R.(A1 u (A2 t ¬A3)); D =
∃R.(A1 uA2)u∃R.(A3 t¬A2); T = ∅ The tableau computed following rules in Fig.
1 and Fig. 2 is depicted in Fig. 3.

T(1) = {h0 u ∃R.(A1 u (A2 t ¬A3) u h1)}
F(1) = {∃R.(A1 u A2) u ∃R.(A3 t ¬A2)}
T(1) = {h0, ∃R.(A1 u (A2 t ¬A3) u h1)}

T(1, 2) = {R}
T(2) = {A1, A2 t ¬A3, h1}

F(1) = {∃R.(A1 u A2)}
F(2) = A1 u A2

F(2) = {A1}
×

heterogeneous clash
A1 ∈ F(2) and A1 ∈ T(2)

F(2) = {A2}

T(2) = {A2}
×

heterogeneous clash
A2 ∈ F(2) and A2 ∈ T(2)

T(2) = {¬A3}
open branch B0

F(1) = {∃R.(A3 t ¬A2)}
F(2) = {A3,¬A2, A3 t ¬A2}

T(2) = {A2}
open branch B1

T(2) = {¬A3}
open branch B2

Fig. 3. A H-Tableau computed applying expansion rules in Fig. 1 and Fig. 2.

Looking at Fig. 3 we observe that we could close the tableau by substituting the two
concept variables h0 and h1 with concepts generating a clash in the open branches B0,
B1 and B2. Once the tableau is closed we know that T |= σ(Ch) v D. Actually this
relation holds even when trivially T |= σ(Ch) v ⊥. Nevertheless, if we want that σ be
a solution to a SAP, by condition (2) of Def. 3, we have to avoid that. By Proposition
2, we know that in order to have T 6|= σ(Ch) v ⊥, it suffices to have at least one
branch closed by a heterogeneous clash. Hence, in order to compute σ we will look for

instantiation of variable in the hypotheses listH of Ch such that, given a complete open
tableau τ , there is at least one open branch B ∈ τ such that σ(B) closes without any
homogeneous clash.

Proposition 3. Let T be a TBox, Ch be an abducible concept,H = 〈h0, . . . , hl〉 be its
corresponding hypotheses list and τ be an open complete tableau starting from Ch ∈
T(1), D ∈ F(1). For each open branch Bj ∈ τ , with j ∈ [0, . . . , k], if σj [H/Hj] is a
substitution such that σj [H/Hj](Bj) is closed then

σ[H/H] = {h0 7→ σ0
0 [H/H0]u. . .uσk

0 [H/Hk], . . . , hl 7→ σ0
l [H/H0]u. . .uσk

l [H/Hk]}

is such that T |= σ[H/H](Ch) v D. We call σj [H/Hj] a branch substitution. Proof.
If σĵ

i [H/Hĵ] closes Bĵ then, by u-rule T) in Fig. 1, Bĵ is closed also by σĵ
i [H/Hĵ]uC,

being C a generic concept. If C = uj 6=ĵσ
j
i [H/Hj] the proposition holds. 2

For the sake of clarity, when no confusion arises, from now on we will write σ to denote
σ[H/H], σi to denote σi[H/H], σj to denote σj [H/Hj] and σj

i to denote σj
i [H/Hj].

Algorithm 1 shows how to compute a solution to SAPs using prefixed tableaux.
Some Desiderata for σ[H/H]: In Algorithm 1 we propose a greedy procedure to

Algorithm 1: An Algorithm to compute a solution to a SAP
Algorithm:abduce

Input: SH concepts C, D, acyclic TBox T
Output: substitution σ

begin1
σ := {H0 7→ >, . . . , Hn 7→ >};2
compute a H-Tableau;3
if τ is not closed then4

repeat5
Θ := ∅;6

foreach open branch Bj ∈ τ do7
find a branch substitution σj such that Bj is closed with a heterogeneous8
clash;
Θ := Θ ∪ {σj};9

end10

foreach σj ∈ Θ do11

σi := σi u σj
i ;12

end13

until T 6|= σ(Ch) v ⊥ ;14

end15
return σ;16

end17

compute a solution to a General SAP 〈C,D, T , Ã〉S . There a practical problem still

remains: the computation of the branch substitution σj in line 8. There are different
strategies to compute σj depending on the characteristics we desire to be shown by σ.
In this section we identify and discuss some properties of σ that can be easily computed
(implemented) given a H-Tableau, lead by information minimal criteria. In other words,
we would like to have a practical (from an implementation point of view) procedure able
to compute a solution to a SAP that shows some information minimal properties. The
first practical issue we face is: given a H-Tableau, in case we want to solve a General
SAP, how could we select concepts in SH in order to close open branches? We could
perform a syntactic search of such concepts looking at the H-Tableau itself:
(C0) For each open branch Bj in a H-Tableau we select all the sets labeled with F(n).
If there is a concept variable hi ∈ T(n), we could just pick up a concept C ∈ F(n)
and perform the substitution σj

i = {hi 7→ C}. It is easy to see that σj
i (Bj) closes with

at least one heterogeneous clash. (C1) For each branch substitution, in order to close a
branch it suffices to have at least one variable whose value is different from >3.
Note that, depending on the substitution we choose, we have different solutions for the
same SAP. Suppose we select the substitution σ1 = {h0 7→ >, h1 7→ A3} for B1 in
Fig. 3. It is easy to see that σ1 closes both B1 with a heterogeneous clash and B2 with
a homogeneous clash. Hence, in this case we do not need to compute a substitution σ2

to close B2. Since we are looking for information minimal hypotheses, in case we are
willing to compute, for each variable, conjunction minimal substitutions:
(C2) we should avoid variable substitution in conjunctive form. In fact, if a conjunc-
tive substitution hi 7→ D1 u D2 closes a branch B then by u-rule T) in Fig. 1 ei-
ther hi 7→ D1 or hi 7→ D2 closes B; (C3) when computing a branch substitution
for an open branch, we have to take into account also the substitutions of the other
open branches. With respect to Example 4 we see that there are three different sub-
stitutions for the same variable h0. By Proposition 3 we know that the conjunction
∀R.A2 u ∀R.(A3 t ¬A2) u ∃R.(A3 t ¬A2) is a substitution for h0 closing B0, B1

and B2. Hence, if a variable substitution closes more than one open branch, i.e., the
same variable substitution appears in more than one branch substitution, it should be
preferred over the others. This is the case, for instance, of h0 7→ ∀R.(A3 t¬A2) for σ1

and σ2;
Going back to Condition (C0) and Condition (C1), given a H-Tableau, in case there is
more than one individual n such that hi ∈ T(n), how to choose the individual? What is
the best candidate? Moreover, once we choose and individual n, which concept in F(n)
should we pick-up? It depends on the solution we want to compute.
(C4) With respect to Example 4, if we consider either σ0 in row 3 or σ0 in row 4 and
σ1 in row 11 we obtain4:

σ[H/H′′] = {h0 7→ >, h1 7→ A2 uA3} (4)
σ[H/H′] = {h0 7→ ∃R.(A1 uA2), h1 7→ A3} (5)

Note that both H′ and H′′ are computed satisfying all the above conjunction minimal
conditions. Nevertheless, we see that solutions (4) is more “fine-grained” than solu-

3 Branch substitutions with all the variables inH but one equal to > tend to generate structural
maximal solutions.

4 In this case it suffices to have h1 7→ A3 in σ1 to close both B1 and B2.

tion (5). Also notice that σ[H/H′](Ch) v σ[H/H′′](Ch). In other words, solutions
(4) is subsumption-maximal w.r.t. solution (5). With respect to Definition 5 it results
H′ ≤ H′′. Hence, when closing an open branch B to compute a subsumption maximal
solution we tend to select variable hi ∈ T(n) such that there is no hp ∈ T(m) with
hi < hp. In Algorithm 2 we propose a procedure to compute a branch substitution σj

taking into account (C0), (C1), (C2), (C3) and (C4). Moreover, from Proposition 2 we
know that if there is at least one branch Bj in a H-Tableau such that Bj does not contain
any T-homogeneous clash, then T 6|= σ(Ch) v ⊥. In order to catch this situation as
soon as possible, while computing σj we should avoid, if possible, to close Bj generat-
ing also a T-homogeneous clash.5

— In line 1 of Algorithm 2 we take into account Condition (C3). Indeed, given Bj we
try to reuse a substitutions already computed for previous branches Bj−k.
— Line 4 formalizes conditions (C0) and (C4). We select an individual n such that both
T(n) contains hi and there is no other h-variable hp such that it is “bigger” than hi.
— Since we selected n such that F(n) 6= ∅, we can choose a concept in F(n) to close
Bj . Furthermore, while closing Bj we try to avoid heterogeneous clashes in order to
discard inconsistent substitutions (see Proposition 2).
It is noteworthy that the algorithms we presented in this section compute a sub-optimal

Algorithm 2: Computation of a branch substitution for information minimal so-
lutions.

if hi ∈ T(n) and there exists a substitution σj−k
i , with k = 1, . . . , j such that1

σj
i := σj−k

i closes Bj then
σj

i := σj−k
i ;2

else3
select an individual n such that T(n) 6= ∅,F(n) 6= ∅ and there exists no other4
individual m such that both T(m) 6= ∅, F(m) 6= ∅ and hi < hp with hi ∈ T(n) and
hp ∈ T(m);
choose a concept E ∈ F(n) such that E does no contain a conjunction and, if5

possible, Bj ∪ {E ∈ T(n)} does not close with a T-homogeneous clash;
σj

i := E;6

end7

foreach hk ∈ H with k 6= i do8

σj
k := >;9

end10

solution due to their greedy nature. In fact, we have no guarantee that Algorithm 2
finds a substitution such that σ[H/H](τ) have at least one branch closed by no T-
homogeneous clash. However, the algorithms we illustrated in this section are very
useful to understand the issues related to the computation of a solution to a SAP.
Dealing with RBoxes: It is easy to see that Algorithm 2 works nicely whenR = ∅. Let
us take a look at what happens when we have to deal with a non-empty RBox.

5 We minimize T-homogeneous clashes in order to avoid trivial solutions.

Example 5. Suppose we have to solve the following SAP.C = ∀R.(A1u∃S.A2); D =
∀T .∃S.A3; T = ∅; R = {Trans(R), S v R, T v R} Part of the tableau we compute
following rules in Fig. 1 is represented in Fig. 4.

T(1) = {h0 u ∀R.(h1 u A1 u ∃S.(h2 u A2))}
F(1) = {∀T .∃S.A3}

T(1) = {h0, ∀R.(h1 u A1 u ∃S.(h2 u A2))}

F(1, 2) = {¬T}
F(2) = {∃S.A3}

T(2) = {h1, A1, ∃S.(h2 u A2), ∀R.(h1 u A1 u ∃S.(h2 u A2))}

T(2, 3) = {S}
T(3) = h2, A2, h1, A1, ∃S.(h2 u A2), ∀R.(h1 u A1 u ∃S.(h2 u A2))

F(3) = A3
.

Fig. 4. Part of the tableau computed for Example 5

Looking at Example 5 we see that, due to R, both h1 and h2 appears in T(3). Hence,
following Algorithm 2 we can close the branch with one of the following two substi-
tutions: σ[H/H′] = {h0 7→ >, h1 7→ >, h2 7→ A3}; σ[H/H′′] = {h0 7→ >, h1 7→
A3, h2 7→ >}
Due to Trans(R), we have σ[H/H′′](Ch) v σ[H/H′](Ch). Similarly to what we do
in (C4), if we are looking for subsumption-maximal solutions we will prefer H′ over
H′′3. On the other hand we see that H′ ≤ H′′. Hence, (C4) holds also in presence of a
non-empty RBox.

5 Remarks and Conclusion

We claim that our proposal is a proper extension of PA. In fact, given a theory T ,
some observations O (both propositional formulas) and a set of possible assumptions
A = {a1, . . . , an} (atoms), PA is the problem of finding a subset S ⊆ A such that T∧S
is consistent, and T ∧S |= O. Then, PA can be translated into SAP by (i) letting C = >
(hence Ch = > uH0 ≡ H0), (ii) expressing T and O as ALC concepts—just replace
∧,∨ with u,t—and (iii) solving the SAP T |= H0 v O, where T = {> v T}. Since
in propositional Logic the Deductive Theorem holds, one could also let C = T , T = ∅,
and solve the SAP |= T u H0 v O. In both cases only substitutions involving atoms
in A should be considered. Hence, SAP properly extends PA. Given that ALC is a syn-
tactic variant of the Modal Logic Kn, and that (the Modal Logic version of) transitive
roles is present in the Modal Logic S4, the work most similar to ours is [4]. Compared
to our work, Cialdea & Pirri did not have our known facts C. Moreover, they looked
for formulas α such that T ∪ {α} |= O, that in our setting could be rephrased as CA
of Section 2, or alternatively, as a SAP having on H0 as variable to be substituted. Fi-
nally, they just looked for subsumption-maximal abductions onH0, while our approach
allows us to find several abduction solutions depending on the preference criterion for
the variousHi’s. On the other hand, every solution we find can be turned into a solution
in their framework: in fact, given a solution σ[H/H], since T |= σ[H/H](Ch) v D,
one can always let α = σ[H/H](Ch) as a solution.

References

1. F. Baader, B. Hollunder, B. Nebel, H. Profitlich, and E. Franconi. An empirical analysis of
optimization techniques for terminological representation systems or “making KRIS get a
move on”. In proc. of KR’92, 1992.

2. F. Baader, R. Küsters, A. Borgida, and D. L. McGuinness. Matching in description logics.
Journal of Logic and Computation, 9(3), 1999.

3. F. Baader and P. Narendran. Unification of concept terms in description logics. Journal of
Symbolic Computation, 31(3), 2001.

4. M. Cialdea Mayer and F. Pirri. Modal propositional abduction. Journal of the IGPL, 3(6),
1995.

5. S. Colucci, T. Di Noia, E. Di Sciascio, F. Donini, and M. Mongiello. A Uniform Tableaux-
Based Method for Concept Abduction and Contraction in Description Logics. In proc. of
ECAI’04, 2004.

6. N. Creignou and B. Zanuttini. A complete classification of the complexity of propositional
abduction. SIAM J. Comput., 36(1), 2006.

7. T. Di Noia, E. Di Sciascio, and F. M. Donini. Semantic matchmaking as non-monotonic
reasoning: A description logic approach. Journal of Artificial Intelligence Research, 29:269–
307, 2007.

8. I. Horrocks. Using an expressive description logic: FaCT or fiction? In proc. of KR ’98,
1998.

9. A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming. Journal of Logic
and Computation, 2(6), 1992.

10. F. Lécué, A. Delteil, and A. Léger. Applying abduction in semantic web service composition.
In proc. of ICWS’07.

11. P. Marquis. Extending abduction from propositional to first-order logic. In proc. of FAIR’91,
1991.

12. C. Peirce. Abduction and induction. In Philosophical Writings of Peirce. J. Buchler, 1955.
13. H. E. Pople. On the mechanization of abductive logic. In proc of IJCAI’73, 1973.
14. R. Reiter and A. K. Mackworth. A logical framework for depiction and image interpretation.

Artificial Intelligence, 41, 1989.
15. C. Sakama and K. Inoue. Negotiation by abduction and relaxation. In proc. of AAMAS’07,

2007.
16. R. M. Smullyan. First-Order Logic. Springer-Verlag, 1968.

