
Concept Projection in Algebras for Computing
Certain Answer Descriptions

Jeffrey Pound, David Toman, Grant Weddell and Jiewen Wu

Cheriton School of Computer Science, University of Waterloo, Canada
{jpound, david, j55wu, gweddell}@uwaterloo.ca

1 Introduction

We introduce a projection operator over concepts in a given description logic
that produces least subsumers of concepts in a language fragment that satisfies
additional syntactic requirements specified as a parameter of the operator. The
operator complements existing operators for concept selection and concept or-
dering that have been proposed in earlier work [3, 4]. We show how, altogether,
the operators can form the basis of an algebra for computing more informative
and user friendly varieties of certain answers over what we call a description base.
This is a description logic (DL) knowledge base in which the ABox is replaced
by a fixed and finite collection of arbitrary concepts.

In the sections that follow, we introduce the notion of a description base, of
a certain answer description over a description base and then present an algebra
for computing a simple variety of certain answer descriptions that incorporates
the new projection operator. We elaborate on the semantics of this operator,
in particular the notion of a projection description, in the remaining sections
of the paper where we consider the operator’s semantics as well as methods for
efficient evaluation. In the final section, we outline a motivating example and
suggest useful ways in which both projection descriptions and our query algebra
might be extended.

1.1 Certain Answer Descriptions and Description Bases

Assume K (= (T ,A)) denotes a knowledge base in which concepts conform to
a given DL, and consider the purpose served by K’s ABox A when it comes to
computing certain answers over K to a conjunctive query of the form

Q(x1, ..., xk)← QueryBody,

where QueryBody in turn has the form

∃xk+1, ...,∃xm :
(∧

C(xi)
)
∧
(∧

R(xi, xj)
)

in which the predicate names correspond to concepts and roles in the DL. Most
importantly, the ABox supplies a fixed and finite collection of constant symbols
{a1, ..., an} which in turn defines a space of nk possible answers to Q: k-tuples θi

of the form “{(x1, ai1),, (xk, aik
)}” in which query variables xj are paired with

constant symbols aij
. Viewed as a substitution, recall that θi is a certain answer

to Q exactly when K |= QueryBody θi. Remember, however, that constant sym-
bols and certain answers are still syntactic artifacts and that the former are not
actual domain elements in an interpretation.

Now assume the DL supports nominals, {a}. Answers θi can then have the
alternative form

{(x1, {ai1}), ..., (xk, {aik
})} (1)

in which query variables xj are now paired with nominal concepts {aij}. In this
case, (1) will be a certain answer exactly when

K |= ∀x1, ...,∀xk : ({ai1}(x1) ∧ ... ∧ {aik
}(xk)→ QueryBody). (2)

Among other things, nominals allow one to add inclusion dependencies {ai} v
C and {ai} v ∃R.{aj} to T that correspond to ABox assertions C(ai) and
R(ai, aj) in A, respectively. An ABox can then be replaced by a fixed and finite
collection of nominals {{a1}, ..., {an}} since its only remaining purpose is to list
the nominal concepts that can occur in (1) above, and therefore in the antecedent
of the implication in (2) above.

From a user’s perspective, this characterization of answers generalizes in
an appealing way when one allows the collection of nominals that replaces an
ABox to consist instead of a fixed and finite collection of arbitrary concepts
{C1, ..., Cn}. In this way, the concepts appearing in (1) can provide more in-
formative descriptions to the user that necessarily describe xi-components of
answer k-tuples. In such circumstances, and for the remainder of the paper, we
refer to this list of arbitrary concepts as a DBox or description box, to a knowl-
edge base K that replaces an ABox with a DBox as a description base, and
to certain answers that pair query variables with arbitrary concepts as certain
answer descriptions.

Note that, for a description base K to qualify as consistent, it is sensible to
add the condition that there exists a model for which the interpretation of each
concept in K’s DBox is nonempty in addition to the standard requirement that
the model satisfies each inclusion dependency in K’s TBox. This ensures that
concepts describing an xi-component of an answer k-tuple are never vacuous,
indeed, that each concept in a DBox is there because it describes some entity of
interest to a user. Such a condition can always be captured in a TBox by adding
inclusion dependencies of the form “> v ∃R.Ci”, where R is a fresh role name.

1.2 Towards an Algebra for Description Bases

Returning to the standard notion of K as a knowledge base, consider the sub-
class of queries having the form “Q(x) ← C(x)”. In this simplest case, answers
may elide any mention of the single query variable x, and correspond more
simply to the constant symbols ai that must satisfy a QueryBody with condi-
tions that can be rolled up in a single concept C. For a description base, when
K = (T , {C1, ..., Cn}), such queries return unary certain answer descriptions,
that is, each concept Ci for which T |= Ci v C.

The basis of an algebra for computing unary certain answer descriptions has
been proposed in earlier work [3, 4]. The algebra consists of three operators given
by the following grammar for a query Q.

Q ::= K :: Od | σC(Q) | SortOd(Q)

Since the focus of this earlier work was on performance and scalability, the
first priority was to introduce operators that could express such things as an
index scan or a sort, operations that are fundamental to issues of efficiency
in database query evaluation. In particular, this entailed the development of a
theory of ordering descriptions that could be used to characterize strict partial
orders over the concepts generated by a given DL (the “Od” part of the first and
third operators are ordering descriptions) together with the notion of a binary
search tree index of concepts called a description index. Altogether, this enabled
a formal consideration of sorting and comparison based search over a description
base DBox.

The first operator has two purposes: it defines a description index of the
concepts that occur in the DBox of a given description base, and it computes
a list of concepts that corresponds to an inorder traversal of the index. The
second operator filters concepts occurring in a concept list by retaining only those
subsumed by a given parameter concept. The third operator sorts a concept list
according to a partial order defined by a given ordering description.

An outstanding issue with this algebra is that it is necessary to supply, a
priori, all concepts that might be of interest to any user in the DBox of a de-
scription base. Since users will want concepts that reflect different external views
and interests, the DBox will almost certainly require multiple concepts for the
same underlying entity e together with a means to distinguish among the possi-
ble concepts for e. In this paper, we propose to address this problem by adding
a new projection operator to the grammar for the above algebra.

Q ::= K :: Od | σC(Q) | SortOd(Q) | πPd(Q) (3)

The operator can be used to rewrite concepts produced by a subquery Q to
subsuming concepts that satisfy an additional syntactic requirement given by
the Pd part of the new operator. We call the syntactic requirement a projection
description. The new operator replaces each concept in the concept list pro-
duced by its subquery by a least subsuming concept that satisfies the projection
description.

As in earlier work on ordering descriptions, our main objective is to develop
a theory of projection descriptions that will work for a variety of DLs that
satisfy basic requirements. The first is that any qualifying DL has EL as a sub-
dialect. One important reason is that EL concepts are a close approximation to
nested relations and to XML and are therefore an ideal starting point for user
friendly descriptions. Another reason is that we can show that πPd computes least
subsumers of argument concepts with respect to an EL fragment satisfying Pd.
We also assume that any qualifying DL will have at least one concrete domain
that supports constant terms and an underlying total order. These constant
terms can then be used in descriptions that correspond to the notion of a tuple

in the relational model. As a consequence, our projection operator then has
relational tuple projection as a special case. In addition, the operator naturally
accommodates nested relations and their projections as well.

We formally define projection descriptions in the next section, and then pro-
ceed to consider how projection operations can be efficiently implemented by
appealing only to concept subsumption in a given DL, e.g., by using classifica-
tions of concepts that occur in a given terminology.

2 Projection Descriptions

To introduce projection descriptions, we use the DL ALC(D) in which the con-
crete domain D supports equality and comparison operations over an underlying
domain consisting of rationals and strings.1 However, to reiterate, any DL that
contains EL(D) would qualify.

Definition 1 (Description Logic ALC(D)). Let {A,A1, . . .}, {R,R1, . . .},
{f, g, f1, . . .}, and {k, k1, . . .} denote sets of primitive concepts, roles, concrete
features, and constants respectively. A concept is defined by the grammar:

C,D ::= > | ⊥ | A | ¬C | C uD | ∃R.C
| f = k (equality over 4D)
| f < g (linear order over 4D)

An inclusion dependency has the form C v D. A terminology or TBox T is a
finite set of inclusion dependencies.

An interpretation I is a 2-tuple (4, ·I) in which 4 is a domain that contains
4D, the set of rationals and finite strings, as a proper subset. We write 4A to
denote the abstract domain 4 \4D. Also, ·I is an interpretation function that
maps each concrete feature f to a total function (f)I : 4A → 4D, each role R
to a relation (R)I ⊆ (4A×4A), each primitive concept A to a set (A)I ⊆ 4A,
the “=” symbol to the equality relation on 4D, the “<” symbol to the binary
relation for the linear order on 4D, and each constant k to a constant in 4D.
The interpretation function is extended to arbitrary concepts in the standard
way.

An interpretation I satisfies an inclusion dependency C v D if (C)I ⊆ (D)I ,
and T |= C v D if (C)I ⊆ (D)I for any interpretation I that satisfies all
inclusion dependencies in T .

We use standard abbreviations such as C t D for ¬(¬C u ¬D) and f ≤ k for
(f = k)t ((f < g)u (g = k)). Also, given a finite set S of ALC(D) concepts, we
write uS to denote > if S is empty and the concept D1 u · · · u Dn otherwise,
when S = {D1, ..., Dn}.

With the presumption of ALC(D), the syntax and semantics of our new
projection operation are given by the following.

1 See [1] for an excellent introduction to description logics.

Definition 2 (Projection Description). Let L be a DL that includes ALC(D),
possibly without negation, and f , R and C any concrete feature, role and concept
in L, respectively. A projection description Pd is defined by the grammar:

Pd ::= C? | C↑ | f | Pd1 u Pd2 | Pd1 ∪ Pd2 | ∃R.Pd (4)

Now let α(Pd) be defined as follows:

α(Pd) =

∅ if Pd = “C?”, “C↑” or “f”;
{R} if Pd = “∃R.Pd1”; and
α(Pd1) ∪ α(Pd2) if Pd = “Pd1 u Pd2” or “Pd1 ∪ Pd2”.

Then Pd is well formed if, for any subexpression Pd1 u Pd2 or Pd1 ∪ Pd2,
α(Pd1) ∩ α(Pd2) = ∅.
The condition that Pd is well-formed ensures that requests for information con-
cerning a given role are never distributed in different parts of an answer (sub)
tuple. This is a necessary condition to help combat combinatorial effects that
would otherwise make projection involving roles infeasible.

Definition 3 (Induced Concepts). Let L be a DL that includes ALC(D),
possibly without negation, and Pd a projection description over roles in L. We
define the sets L|Pd and LTUP

|Pd , the L concepts generated by Pd and L tuple
concepts generated by Pd, respectively, as follows:

L|Pd = {uS | S ⊆fin L
TUP
|Pd }, and

LTUP
|Pd =

{C} if Pd = “C?”;
A if Pd = “C↑”;
{f = k | k ∈ 4D} if Pd = “f”;
{C1 u C2 | C1 ∈ LTUP

|Pd1
∧ C2 ∈ LTUP

|Pd2
} if Pd = “Pd1 u Pd2”;

LTUP
|Pd1
∪ LTUP

|Pd2
if Pd = “Pd1 ∪ Pd2”; and

{uS | S ⊆fin {∃R.C | C ∈ L|Pd1}} if Pd = “∃R.Pd1”,

where A is the set of all primitive concepts in the alphabet of L.

Note that, while in general the language L|Pd is infinite, for every fixed and finite
terminology T and concept C, the language L|Pd restricted to the symbols used
in T and C is necessarily finite.

Definition 4 (Projection Semantics). The semantics of the new projection
operator is given as follows: query πPd(Q) replaces each concept C in the concept
list computed by Q by a least subsumer of C in L|Pd.

The remainder of this section begins to consider how least subsumers in L|Pd

can be effectively computed when Pd is well-formed. To start, we introduce the
notion of a role path that helps to simplify manipulating concepts of the form
∃R1.∃Rn.C.

Definition 5 (Role Path). Let L be a DL that includes ALC(D), possibly
without negation, and R be any role in L. A role path Rp is defined by the
grammar:

Rp ::= Id | Rp.R

The expression ∃Rp.C denotes the concept C when Rp = “ Id ”, and the concept
∃Rp1.∃R.C otherwise, when Rp = “Rp1.R”.

Definition 6 (Projection Function). Let L be a DL that includes ALC(D),
possibly without negation, and T , C, Rp and Pd a respective TBox, concept,
role path and projection description in L. The functional projection of C for Pd
with respect to T and Rp, written (Pd)T ,Rp(C), is a finite set S of L concepts
satisfying the following conditions.

Case Pd = “C1?”: S = {C1} if T |= C v ∃Rp.C1, and ∅ otherwise.
Case Pd = “C↑1 ”:

S = (A1? ∪ · · · ∪An?)T ,Rp(C),

where {A1, ..., An} are all primitive concepts A occurring in T and C such
that T 6|= ∃Rp.A v ∃Rp.C1; S = ∅ for n = 0.

Case Pd = “f”:

S = ((f = k1)? ∪ · · · ∪ (f = kn)?)T ,Rp(C),

where {k1, ..., kn} are all constants occurring in T and C; S = ∅ for n = 0.
Case Pd = “Pd1 u Pd2”:

S = {D1uD2 | (∀i ∈ {1, 2} : Di ∈ (Pdi)T ,Rp(C)) ∧ T |= C v ∃Rp.(D1uD2)}.

Case Pd = “Pd1 ∪ Pd2”: S = (Pd1)T ,Rp(C) ∪ (Pd2)T ,Rp(C).
Case Pd = “∃R.Pd1”:

S = b{∃R.(uS′) | S′ ⊆ (Pd1)T ,Rp.R(C) ∧ T |= C v ∃Rp.∃R.(uS′)}cT ,Rp.

In the final case, we write bScT ,Rp to denote the reduction of S with respect to
T and Rp, that is, the set of all D1 ∈ S such that there is no D2 ∈ S for which
T |= ∃Rp.D2 v ∃Rp.D1 and T 6|= ∃Rp.D1 v ∃Rp.D2.

Our main result now follows, in which functional projection is related to least
subsumers.

Theorem 1. Let L be a DL that includes ALC(D), possibly without negation,
and T , C and Pd a respective terminology, concept and well-formed projection
description in L. Then ub(Pd)T ,Id(C)cT ,Id is a least subsumer of C in L|Pd.

Proof (outline). By induction on the structure of Pd.

Note that the restriction to L|Pd is essential to guarantee that the least subsumer
always exists (otherwise, least subsumers may not exist [2]).

3 Computing Projection Descriptions

A top-level procedure for computing (Pd)T ,Rp(C) is given by a definition of
Project in Figure 1. Clearly, a straightforward coding for the procedures in-
voked by Project to handle each of the six conditions follows directly from
Definition 6. However, it is evident that this simple coding strategy for many of

Project(Pd, T , Rp, C)

switch on Pd
case “C1?”: return ProjectConcept(C1, T , Rp, C)

case “C↑1 ”: return ProjectAtomicConcepts(C1, T , Rp, C)
case “f”: return ProjectFeature(f, T , Rp, C)
case “Pd1 u Pd2”: return ProjectJoin(Pd1, Pd2, T , Rp, C)
case “Pd1 ∪ Pd2”: return Project(Pd1, T , Rp, C) ∪ Project(Pd2, T , Rp, C)
case “∃R.Pd1”: return ProjectRole(Pd1, R, T , Rp, C)

Fig. 1. Computing Projections at the Top-Level

these procedures will lead to an unacceptably large number of subsumption tests.
In particular, the resulting ProjectAtomicConcepts procedure for the “C↑”
case will require a number of such tests proportional to the number of primitive
concepts in the terminology, or much worse: exponential in the number of prim-
itive concepts, e.g., when called indirectly by a näıvely coded ProjectRole
procedure. This happens, for example, with a projection description of the form
“∃R.(⊥↑)”.

A näıvely coded ProjectJoin procedure for the “Pd1 u Pd2” case is also
problematic since it requires a number of subsumption tests equal to the prod-
uct of the number of descriptions computed by Pd1 and Pd2. This circumstance
quickly becomes intolerable for iterated uses of this procedure such as for pro-
jection descriptions of the form “(f1 u · · · u fn)” that compute descriptions of
relational tuples, cases that are likely to occur in practice.

While these performance issues are unavoidable in the worst case, it is possi-
ble to improve the performance of projection computation for many situations.
Starting with procedure ProjectJoin, we now outline algorithms for the pro-
cedures invoked by Project in Figure 1 that will have much better performance
in situations that are more likely to occur in practice.

Procedure ProjectJoin
Our algorithm for this procedure follows a “nested loops” strategy in which
concepts computed by an outer loop may be used to further qualify concepts
computed by an inner loop. A simple way to accomplish this is to replace Defi-
nition 5 above with a more general notion of a role path that enables sideways
communication of outer loop concepts.

Definition 7 (General Role Path). Let L be a DL that includes ALC(D),
possibly without negation, and R and C be any role or concept in L, respectively.
A general role path Rp is defined by the grammar:

Rp ::= Id | Rp.R | Rp.C

The expression ∃Rp.C denotes the concept C when Rp = “ Id ”, the concept
∃Rp1.∃R.C when Rp = “Rp1.R”, and the concept ∃Rp1.(C1 u C) otherwise,
when Rp = “Rp1.C1”.

Algorithm 1: ProjectJoin(Pd1, Pd2, T , Rp, C)

result← ∅
foreach C1 ∈ Project(Pd1, T , Rp, C) do

foreach C2 ∈ Project(Pd2, T , Rp.C1, C) do
result← result ∪ {(C1 u C2)}

return result

There are additional opportunities for improving the performance of Algorithm 1.
For one, the procedure might explore alternative permutations of projection de-
scriptions with the form “(Pd1u· · ·uPdn)” that might result in a more efficient
nesting order. For another, the procedure may opt to only append C1 to Rp in
the inner loop if the overall cost of subsumption checks is expected to decrease.

Procedure ProjectAtomicConcepts
The expected time for this procedure can be improved considerably by employing
a classification of the primitive concepts in a given terminology. In particular, one
conducts a depth-first-search of the classification, taking advantage of pruning
opportunities when parent atomic concepts in the classification are disqualified.
An implementation of this procedure given by Algorithm 2 below assumes the
following definition.

Definition 8 (TBox Classification). Let T be a TBox in ALC(D). A classifi-
cation of T is a directed acyclic graph G (= (N,E)) with nodes N corresponding
to the primitive concepts in T and with E consisting of all edges (A1, A2) such
that:

– T |= A1 v A2,
– T 6|= A2 v A1, and
– there is no distinct A3 ∈ N such that T |= A1 v A3 and T |= A3 v A2.

We write NG (resp. EG) to denote the nodes (resp. edges) of G, where the
terminology is assumed by context.

Again, there are opportunities for improving the performance of Algorithm 2.
For example, it would help to ensure the performance gains obtained by prun-
ing during depth-first-search if one adds new internal primitive concepts to the
classification if there are a large number of root nodes, or to split cases in which
a large number of edges would otherwise lead to an existing node.

Procedure ProjectRole
The näıve implementation of this procedure involves quantifying over all subsets
of concepts computed by the evaluation of the nested projection description.
However, for a given terminology T , role path Rp and concept C, consider the
following:

Algorithm 2: ProjectAtomicConcepts(C1, T , Rp, C)

stack ← ∅
result← ∅
// Initialize stack with the roots of the classification of T
foreach node A ∈ NG with no outgoing edges do

stack.Push(A)

// Perform a depth first search of the classification

while stack.NotEmpty() do
A← stack.Pop()
if T |= C v ∃Rp.A and T 6|= ∃Rp.A v ∃Rp.C1 then

result← result ∪ {A}
foreach (A′, A) ∈ EG do

stack.Push(A′)

foreach A occurring in C such that A 6∈ NG and T |= C v ∃Rp.A do
result← result ∪ {A}

return result

1. It is less likely that T |= C v ∃Rp.(uS), for concept sets S with larger
numbers of elements; and

2. For any pair of concept sets S1 and S2, if T 6|= C v ∃Rp.(uS1), then
T 6|= C v ∃Rp.(u (S1 ∪ S2)).

These observations motivate the implementation of ProjectRole given by Al-
gorithm 3. The algorithm uses a queue to conduct a breadth-first-search of sub-
sets in such a way that ensures a “frontier” of disqualified sets will prune contain-
ing candidate sets. Note that, to avoid considering more than one permutation
of a candidate, the procedure assumes a total lexicographic order “≺” over all
concepts.

The algorithm works particularly well in cases where the argument projec-
tion description parameter Pd has the form “f u Pd ” such as in the case of
projection descriptions that compute descriptions of sets of relational tuples. In
this case, the number of subsumption checks performed directly by the algorithm
is quadratic in the size of result computed by the recursive call to Project in
the first line.

Procedures ProjectConcept, ProjectFeature and Reduce
An implementation of the remaining procedures is straightforward. In the case of
ProjectConcept, it clearly suffices to mirror the corresponding case specifica-
tion in Definition 2. An efficient algorithm for ProjectFeature requires only
a bit more thought: one proceeds by a progressive refinement of intervals over
the concrete domain, narrowing by binary search on intervals to the required
set of concepts of the form “f = k”. Finally, an implementation of procedure
Reduce is given by Algorithm 4.

Algorithm 3: ProjectRole(Pd,R, T , Rp, C)

S1 ← Project(Pd, T , Rp.R, C)
// Check empty set cases

if S1 = ∅ then
if T |= C v ∃(Rp.R).(>) then

return {∃R.(>)}
return ∅

result← ∅
queue← ∅
foreach C1 ∈ S1 do

queue.Enqueue({C1})
while queue.NotEmpty() do

S2 ← queue.Dequeue()
notgrown← true
foreach C1 ∈ S1 where for all C2 ∈ S2 : C2 ≺ C1 do

if T |= C v ∃(Rp.R)(C1 u (uS2)) then
queue.Enqueue({C1} ∪ S2)
notgrown← false

if notgrown then
result← result ∪ {∃R.(uS2)}

return Reduce(result, T , Rp)

4 Discussion

An application that serves as a guiding influence on this work relates to a hy-
pothetical description base system to which an internet browser submits queries
in our algebra. The queries originate in the web pages for an enterprise, and are
replaced on the fly by the browser with the resulting lists of EL-like concepts
(suitably mapped to HTML) that are returned by the system in response. For
example, consider the case of an online supplier of photography equipment. As
part of a web presence, the supplier maintains a description base K of concepts
that describe items that are available for purchase as well as web pages with
embedded queries over this description base. One query Q in some web page
might have the form “πPd(SortPrice(σC(K :: Price)))” in which the selection
condition C is the concept “ProductCode = “digicam” u Price < 300” and
where the projection description is given by

(Name u Price u ∃Supplier.(OnlineAddress uRating)). (5)

After first rewriting Q as a projection of an index scan “πPd(σC(K :: Price))”
(see below), the system returns the result of evaluating Q on the description
base. Thus, when browsing the page containing Q, a user sees an ordered list
of inexpensive digital camera information ordered by price, and with each item
displaying the name and price of the camera together with a sublist of supplier
URL addresses and ratings for that camera.

Algorithm 4: Reduce(S, T , Rp)
result← ∅
foreach C1 ∈ S do

minimal← true
foreach C2 ∈ S − {C1} do

if T |= ∃Rp.C2 v ∃Rp.C1 and T 6|= ∃Rp.C1 v ∃Rp.C2 then
minimal← false
break

if minimal then
result← result ∪ {C1}

return result

This example suggests a useful extension to projection descriptions that can
be easily accommodated. In particular, adding the case “Pd :: Od ” as an addi-
tional option in (4) would enable a useful refinement to (5) above:

(Name u Price u ∃Supplier.((OnlineAddress uRating) :: Rating)).

Consequently, the user will see the sublist of supplier URL addresses and ratings
for each camera in the order of the supplier rating.

Also, an algebraic approach to querying description bases lends itself nicely
to problems in query rewriting (witness the rewriting on Q above). In particular,
the following identities hold in our algebra:

σC(SortOd(Q)) ≡ SortOd(σC(Q)),
SortOd(SortOd′(Q)) ≡ SortOd(Q) and

σC1(σC2(Q)) ≡ σC1uC2(Q).

The identities yield a normal form “SortOd2(σC(K :: Od1))” for queries. One
of the objectives of earlier work [3, 4] was to determine when queries in normal
form could be evaluated efficiently, in particular when they could be rewritten
as an index scan “σC(K :: Od1)” in which pruning made possible by the filtering
concept C during an inorder traversal of the description index K :: Od1 was
sufficient to guarantee logarithmic performance (and allowing that the choice of
permutation for a concept list could be more limited than required by the original
query). An underlying problem addressed in the earlier work is to determine the
truth of a “≺T ,C” predicate over the pair (Od1, Od2) of ordering descriptions,
that is, to reason when, for terminology T , the partial order induced by Od1

contains the partial order induced by Od2 over concepts that are subsumed by C.
This predicate can be usefully “overloaded” to apply to projection descriptions
as well. In particular, a sufficient condition for the additional algebraic identity

πPd2(πPd1(σC(Q))) ≡ πPd2(σC(Q))

might be expressed as “Pd1 ≺T ,C Pd2”, another topic for future work.

References

1. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, 2003.

2. Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. Computing the least com-
mon subsumer w.r.t. a background terminology. J. Applied Logic, 5(3):392–420,
2007.

3. Jeffrey Pound, Lubomir Stanchev, David Toman, and Grant Weddell. On Ordering
Descriptions in a Description Logic. 20th International Workshop on Description
Logics, pages 123–134, 2007.

4. Jeffrey Pound, Lubomir Stanchev, David Toman, and Grant Weddell. On Ordering
and Indexing Metadata for the Semantic Web. 21st International Workshop on
Description Logics, 2008.

