
Security as a Resource in
Process-Aware Information Systems

Michael Huth

14 October 2011

Michael Huth
Security as a Resource in Process-Aware Information Systems

Joint Work with:

I Jason Crampton
Information Security Group
Royal Holloway

I Jim Huan-Pu Kuo
Department of Computing
Imperial College London

Michael Huth
Security as a Resource in Process-Aware Information Systems

Outline of talk

Authorized Workflows

Synthesizing Authorized Workflows

More Expressive Workflows

(De)composition

Wrapping Up

Michael Huth
Security as a Resource in Process-Aware Information Systems

Authorized Workflows

Michael Huth
Security as a Resource in Process-Aware Information Systems

Wordle from Relevant Paper

Michael Huth
Security as a Resource in Process-Aware Information Systems

What are workflows to us?

I Plans or schedules that map users or resources to tasks
I Such mappings may be constrained, e.g. Binding of Duty
I Security policy may prevent some user/task combinations
I Business objectives or legal requirements may further

constrain workflow
I Temporal order of tasks may be constrained

A workflow is such a plan that meets all constraints.

Michael Huth
Security as a Resource in Process-Aware Information Systems

Why are workflows interesting?

I Important technology, e.g.
I Business process management systems
I Cloud-based collaboration services, e.g.
inkspotscience.com

I Industrial practice of workflows is
I often flawed and uses ad hoc methods
I rarely takes into account security considerations

I Academic methods brittle under change of models
I Most analysis problems NP-hard
I Model-based approaches to design and analysis of

workflows have potential impact

Michael Huth
Security as a Resource in Process-Aware Information Systems

Example workflow specification

Blue edges: temporal constraints. Binding of users to tasks
constrained by equality =, inequality 6=, and seniority ≺.

Michael Huth
Security as a Resource in Process-Aware Information Systems

Representative specification formalism
Specification of authorization system AS comprised of:

I (T ,≤) finite partial order of tasks:
t < t ′ means t has to precede t ′

I U set of users
I A ⊆ T × U where (t ,u) in A means:

u authorized to execute task t
I C set of entailment constraints of form (D, t → t ′, ρ)

I D ⊆ U and ρ ⊆ U × U
I meaning: if u in D and assigned to task t , then user u′

assigned to t ′ is such that (u,u′) is in ρ

I e.g. = as ρ and D as U gives Binding of Duty

Michael Huth
Security as a Resource in Process-Aware Information Systems

Unrealizabile workflow example

I Alice hasRole FinAdmin, Bob hasRole FinClerk
I FinAdmin authorized to approve orders and payments
I FinClerk authorized to all other tasks
I Workflow below not realizable: Alice is most senior person

Michael Huth
Security as a Resource in Process-Aware Information Systems

Unrealizabile workflow: details
I If Alice creates order, no senior person can approve it
I If Bob creates order, Alice needs to approve it (≺)
I But Alice also has to create payment because of 6=
I But then there is no senior person to approve it

Michael Huth
Security as a Resource in Process-Aware Information Systems

Repair advice for unrealizabile workflow

I Realizable by adding Carol hasRole FinClerk:
I Alice approves order and payment
I Bob creates order and countersigns note
I Carol creates payment and signs goods received note

Michael Huth
Security as a Resource in Process-Aware Information Systems

Synthesizing Authorized Workflows

Michael Huth
Security as a Resource in Process-Aware Information Systems

Synthesizing secure workflows in LTL(F)

I Translate a workflow specification AS into formula φAS of
NP-complete linear-time temporal logic fragment LTL(F)

I Show: authorized workflow translates into model of φAS
I Conversely, show that any model of φAS translates into

authorized workflow
I So we can synthesize authorized workflows for AS by

I generating φAS from AS
I running a model checker on the fully connected model . . .
I . . . with the negation of φAS as query

Michael Huth
Security as a Resource in Process-Aware Information Systems

Temporal logic LTL(F)

I Syntax where p is from set of atomic propositions AP:

φ ::= p | ¬φ | φ ∧ φ | Fφ
I F temporal connective “Future”, and “Globally” Gφ is

defined as ¬F¬φ
I Semantics via infinite sequence of states π = s0s1 . . .

where each si subset of AP:
π |= p iff p ∈ s0

π |= ¬φ iff not π |= φ

π |= φ1 ∧ φ2 iff (π |= φ1 and π |= φ2)
π |= Fφ iff there is i ≥ 0 with πi |= φ,
where πi is the infinite suffix sisi+1 . . . of π

Michael Huth
Security as a Resource in Process-Aware Information Systems

Formula φAS for model checker
φFT =

∧
t∈T F t φGT = G

(∨
t∈T t

)
φGU = G

(∨
u∈U u

)
φ≤ =

∧
t∈T

G
(

t → G
(∨

t ′ 6≤t

t ′
))

φseU =
∧

u∈U

G
(

u →
∧

u′∈U\{u}

¬u′
)

φseT =
∧
t∈T

G
(

t →
∧

t ′∈T\{t}

¬t ′
)

φA =
∧

t∈T G
(

t →
∨

(t ,u)∈A u
)

φC =
∧

(D,t→t ′,ρ)∈C φ(D,t→t ′,ρ)

φ(D,t→t ′,ρ) =
∧
u∈D

(
F (t ∧ u)

)
→ G

(
t ′ →

∨
(u,u′)∈ρ

u′
)

φAS = φFT ∧ φGT ∧ φGU ∧ φ≤ ∧ φX ∧ φseU ∧ φseT ∧ φA ∧ φC

Michael Huth
Security as a Resource in Process-Aware Information Systems

Experimental setup: declare tasks and users

MODULE main

VAR

createPurchaseOrder : boolean;
approvePurchaseOrder : boolean;
signGoodsReceivedNote : boolean;
createPayment : boolean;
countersignGoodsReceivedNote : boolean;
approvePayment : boolean:

bob : boolean; alice : boolean; carol : boolean;
...

Michael Huth
Security as a Resource in Process-Aware Information Systems

Experimental setup: declare behavior and spec

...
INIT -- all states are initial ones
TRUE

TRANS -- all states transition to all states
TRUE

-- claim that all paths satisfy negation of phi_AS
-- "counterexample" is realizability witness
LTLSPEC ! (phi_AS)

Michael Huth
Security as a Resource in Process-Aware Information Systems

Parameterized analysis tool

I Model-checking algorithm works for all formulas of LTL(F)

I No need to invent new analyses, if written in LTL(F), e.g.
I Schedulability with constraints across workflow instances:

I write φ′AS for φAS with each p replaced by p′
I check two instances of workflow are realizable where . . .
I . . . task t executed by different users in each instance:

φAS ∧ φ′AS ∧
∧

u∈U

(F (t ∧ u)→ G(t ′ → ¬u′))

I But how to use a model checker to compute repair advice?

Michael Huth
Security as a Resource in Process-Aware Information Systems

More Expressive Workflows

Michael Huth
Security as a Resource in Process-Aware Information Systems

Task choices and task iteration

I Need to support conjunction of paths (default in temporal
order)

I Need to support disjunction in paths: adaptive,
non-determinstic flows

I Need to support bounded iteration of tasks

Michael Huth
Security as a Resource in Process-Aware Information Systems

Domain-specific languages

I Choice of language driven by use context, e.g.
I visual and control-flow oriented for front-end modeling

language (e.g. commercial ones such as BPMN)
I textual and tool-independent intermediate language or
I languages comitted to particular tool and modeling

paradigm such as Petri nets or process algebras

Michael Huth
Security as a Resource in Process-Aware Information Systems

Example DSL: a “process algebra”

V ,W ::= Workflows
t (Atomic Workflow)
W≤m (Bounded Iteration)
V ; W (Sequential Composition)
choose k from W (Threshold Choice)

I choose k from W means exactly k workflow specifications
from set W scheduled

I gives OR-fork and OR-join for k = 1
I gives AND-fork and AND-join for k = |W|

Michael Huth
Security as a Resource in Process-Aware Information Systems

Example DSL: textual choices and iteration

I Interaction between non-deterministic choice and iteration:
I if task t is not chosen, we may want to ignore multiplicities

TASK_CHOICES {
(t1 && t2 && t3 && !t4) || (!t1 && t2 && t3)

}

TASK_MULTIPLICITIES { -- default is [1,1]
t1[2,4];
t3[1,3]
t4[1,2];

}

Michael Huth
Security as a Resource in Process-Aware Information Systems

Encoding task choices in LTL(F)

I Tasks declared as atomic propositions
I Task choices declared as Boolean formula over tasks
I Wrap each atomic formula into a Future modality
I For example, the task choice declaration

(t1 ∧ t2 ∧ t3 ∧ ¬t4) ∨ (¬t1 ∧ t2 ∧ t3)

I . . . has as LTL(F) encoding the formula

(F t1 ∧ F t2 ∧ F t3 ∧ ¬F t4) ∨ (¬F t1 ∧ F t2 ∧ F t3)

Michael Huth
Security as a Resource in Process-Aware Information Systems

Encoding task multiplicities in LTL

I Need to reflect on possibility that task is not chosen
I Need to enforce lower bounds if chosen
I Need to enforce upper bounds in any event
I Declaration t[2,3], e.g., has LTL encoding

((F t)→ AtLeast(2, t)) ∧ AtMost(3, t)

I . . . where AtLeast(k , t) and AtMost(k , t) are defined next

Michael Huth
Security as a Resource in Process-Aware Information Systems

Encoding lower bounds on occurrence in LTL

I AtLeast(k , t) says t occurs at least k many times
I encoding uses operators Strong Until U and Next X:
I specify encoding in generality (above, φ is t):

AtLeast(0, φ) = true

AtLeast(k + 1, φ) = (¬φU (φ ∧ (X AtLeast(k , φ))))

Michael Huth
Security as a Resource in Process-Aware Information Systems

Encoding upper bounds on occurrence in LTL

I AtMost(k , t) says t occurs at most k many times
I encoding now uses Weak Until operator W and Next X:

AtMost(0, φ) = (G¬φ)

AtMost(k + 1, φ) = (¬φW (φ ∧ (X(AtMost(k , φ)))))

Michael Huth
Security as a Resource in Process-Aware Information Systems

Advantages of parameterized approach

I many, e.g., alice executes t1[0..3]

I may model that Alice can execute task t1 at most three
times

I can encode this as

AtMost(3,alice ∧ t1)

I But: LTL model checking is exponential in nesting of Untils,
i.e. in size of multiplicities

Michael Huth
Security as a Resource in Process-Aware Information Systems

(De)composition

Michael Huth
Security as a Resource in Process-Aware Information Systems

Composing Workflows

I Workflows specified as process terms:
I Can draw from work on process algebras
I But this mostly deals with composition of control flow

I When workflows are also constrained:
I How should we compose constraints?
I How should we compose constraints and control flow?

Michael Huth
Security as a Resource in Process-Aware Information Systems

Composition example

I Let tasks t1 and t2 be such that different users need to
execute them

I Say that both tasks can happen at most four times
I There are at least two senses in which we could think of

task repetition as a composition:
I All users who execute all instances of task t1 are different

from all users that execute all instances of task t2
I The users are different across specific pairs of instances of

tasks t1 and t2

I Composition mechanisms should be able to accommodate
and articulate both views

Michael Huth
Security as a Resource in Process-Aware Information Systems

Information Security as Resource

I Ideally, capture information security as constraints
I Then compose these constraints with other models
I Composition should guarantee desired security policies
I Well understood in types, e.g.: enrich a normal type with a

security label

How to do this for secure workflows?

Michael Huth
Security as a Resource in Process-Aware Information Systems

Challenges for Authorized Workflows

I If temporal constraints independent from other constraints:
can decompose scheduling of tasks and solving of
constraints

I Even solving of other constraints alone is NP-hard
(presence of = and != suffices)

I Alternatives, e.g. modal logics with nominals or description
logic equivalents are often undecidable

Michael Huth
Security as a Resource in Process-Aware Information Systems

First experimental results (work in progress)

I Randomly generated workflows, models with 10-100 tasks
and 5-60 users

I Code generator generates such models and transforms
them into NuSMV models

I Then we do LTL model checking on those models
I For models with about 30 tasks, model checking may take

only minutes, but it can take hours
I Also, model checkers do not report back an “unsatisfiable

core” for diagnostics

Michael Huth
Security as a Resource in Process-Aware Information Systems

Decomposition (Work in progress)
I Do not encode temporal order of tasks in LTL(F),

indpendent topological sort
I Allow sets of tasks and users at states
I Constraints solution now maps tasks t to user sets Ut (any

choice from Ut will work)
I Potentially much shorter paths than the number of tasks,

e.g. three states for six tasks:

s0 = {approveOrder ,approvePayment ,Alice}
s1 = {createOrder , countersignNote,Bob}
s2 = {createPayment , signreceivedNote,Carol}

I Experiments now solve models with up to 100 tasks in time
that ranges from seconds to minutes

Michael Huth
Security as a Resource in Process-Aware Information Systems

Wrapping Up

Michael Huth
Security as a Resource in Process-Aware Information Systems

Conclusions

I We presented workflows and ways in which to enrich them
with security constraints

I We saw how to encode realizability of secure workflows as
an LTL satisfiability problem

I We discussed pluses and minuses of such an approach to
realizability analysis

I We speculated about more expressive workflows and
(de)composition principles

I And we reported first experimental results

Michael Huth
Security as a Resource in Process-Aware Information Systems

Future Work

I What are effective tools and algorithms for reasoning about
realizability of secure workflows?

I How can one compute repair advise for unrealizable
secure workflows?

I How should one model composition of secure workflows?
I Is it beneficial to think of administrative security

management as a secure workflow?
I How should collaboration under imperfect information be

modeled in secure workflows?

Michael Huth
Security as a Resource in Process-Aware Information Systems

References
I Crampton, J., and Huth, M. (2011) On the Modeling and

Verification of Security-Aware and Process-Aware Information
Systems. Proc. Int’l BPM Workshop WfSAC. Springer Lecture
Notes in Business Information Processing. To appear.

I Rozier, K. Y., and Vardi, M. Y. (2010) LTL satisfiability checking.
Software Tools and Technology Transfer 12:123-137

I van der Aalst, W., Pesic, M., Schonenberg, H. (2009) Declarative
workflows: Balancing between flexibility and support. Computer
Science - R & D 23(2):99-113

I van der Aalst, W., and ter Hofstede, A. (2005) YAWL: yet another
workflow language. Information Systems 30(4):245-275

I Sistla, A. P., and Clarke, E. M. (1985) The complexity of
propositional linear temporal logics. Journal of the ACM
32:733-749

Michael Huth
Security as a Resource in Process-Aware Information Systems

Q & A

Michael Huth
Security as a Resource in Process-Aware Information Systems

Q & A

Michael Huth
Security as a Resource in Process-Aware Information Systems

Q & A

Michael Huth
Security as a Resource in Process-Aware Information Systems

Q & A

Michael Huth
Security as a Resource in Process-Aware Information Systems

	Outline
	Authorized Workflows
	Synthesizing Authorized Workflows
	More Expressive Workflows
	(De)composition
	Wrapping Up

