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Formal methods for security Security proofs

o Goldwasser and Micali (1984) introduced provable security
o based on techniques from complexity theory
e security is proved by reduction
e any attack against the security of the system leads to an
e In the CS formal methods community there are various efficient way to solve some computationally hard problem.
symbolic verification approaches

e Designing cryptographic systems is notoriously difficult

e Such security proofs are notoriously slo and unreliable
o They abstract from crucial cryptographic properties y P y sloppy

e eg. hash functions are injective
e and thus ignore probabilistic aspects

o Gilles Barthe et al developed the CertiCrypt approach:
o verification of such cryptographic proofs
o reductions become program transformations,

e Example systems: e involving probabilistic polynomial time programs, as games
e Model checking: NRL and FDR; AVISPA and ProVerif o Two references:
e Theorem proving: Paulson’s “inductive method” e G. Barthe, B. Grégoire and S. Zanella Béguelin, Formal

certification of code-based cryptographic proofs, POPL 2009
e S. Zanella Béguelin, Formal Certification of Game-Based
Cryptographic Proofs, PhD 2010.
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How the reductions are formalised The expectation monad within CertiCrypt

F t X take the subset £(X) of functions h: [0,1]X — [0,1
e Basic transformations (G, A) —/ (G', A"), where: or @ se ake the subset £(X) of functions h: [0, 1] [0.1]

satisfying:
e G is a probabilistic program ..
« Ais a problem that is solved by G with probability Pr[G : A] @ monotonicity: p < q == h(p) < h(q)
e his a function satisfying Pr[G : A] < h(Pr[G': A]) ® supplement-preservation: h(p*) = h(p)*, where
pt=Xx.1-p(x)and rt =1—r
® sum-preservation: h(p+ q) = h(p) + h(q), if p(x) + g(x) <1
for each x € X

e These steps are formalised in the theorem prover Coq
e including a “deep” semantics of a probabilistic programming

language
o this yields to “exact” instead of “asymptotically neglible” @ scalar-preservation: h(r-p) = r- h(p), for r € [0,1]
security properties wrt. a parameter @ preservation of countable sups of monotone predicates:
e The language semantics if formalised via the expectation h(\V , pn) =\, h(pn).
monad, following:
o P. Audebaud and C. Paulin-Mohring, Proofs of randomized [This has a strong effect algebra/monoid flavourg
algorithms in Coq, Science of Comp. Progr. (2009)
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Overview of results

@ A re-formulation of the expectation monad £ is given via a
composable pair of adjunctions

® Relation to well-known monads:

(distribution D)

H
g
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Extension of classical results

Recall the classical results:
[Manes

~

[Gelfand]

Alg(UF) ] (compact Hausdorff sp.) (comm. C*-algebras)®”

Here we will give probabilistic versions:

(expectation 5) — (continuation C)

(ultrafilter LF)

© Algebras of £ are convex compact Hausdorff spaces
O They are dually equivalent tot Banach effect modules
@ A re-formulation of Gleason's theorem:

[0,1] ® Pr(H) = & (H)
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Alg,,(€) ~ (convex compact Hausdorff sp.) , ~ (Banach effect modules)”
(where ‘obs’ refers to a suitable observability condition)

The role of the dualizing object 2 = {0,1} in the classical case is
played by the unit interval [0,1] in the probabilistic versions.
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D Conv(—,[0,1])
Sets 1 Alg(D) 1 EMod°P
Il
U Cony  EMod(—[0.1)

e The expectation monad £: Sets — Sets is obtained by the
composite adjunction Sets = EMod°P
o Thus: £(X) = EMod (Conv(D(X), [0,1]), [0, 1])
s EMod ([0, 1], [0,1])
e Notice the similarity with the ultrafilter monad:
UF(X) =2 {F CP(X)| Fis an ultrafilter}
=~ BA(P(X),{0,1})
=~ BA({0,1}%,{0,1})

ISR, Oxford
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We think of elements of h € £(X) = EMod([0,1]%,[0,1]) as
measures

application h(p) to a “fuzzy predicate” p € [0,1]X is then
integration [ p dh.

This will be made more precise later.
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The discrete probability distribution monad

The (discrete probability) distribution monad on a set X:
D(X) = {p: X = [0,1] | supp(e) is finite, and > ¢(x) = 1}.
Elements of D(X) are formal convex combinations > ; rix; where

° SUpp(SO) = {Xl7 N 7Xn} g X
o ri=p(x) €[0,1], so that 3°; r; = 1.

Jacobs & Mandemaker ISR, Oxford

Algebras of the distribution monad D

Eilenberg-Moore D(X) —= X make X into a convex set:
each formal convex combination ), rix; has an interpretation
as actual sum Y, rixi = (), rixi) € X.

Note, no R-module structure is assumed on X; just this.

There are equivalent descriptions as sums x +, y, to be
thought of as rx + (1 — r)y

o see Stone (1948) & Swirszcz (1974), and more recently Keimel
& Doberkat
Easy examples of convex set: [0,1], or [0, 1]*.
Write Conv = Alg(D) for the category of convex sets
e maps are affine functions, preserving convex sums
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Towards effect algebras: PCMs

Definition A partial commutative monoid (PCM) is a triple
(M,0,@) where 0 € M and @ is partial map M x M — M.
Writing x Ly for “x @ y is defined”,

@ commutativity: x1ly = ylxand xQy =y @ x
® zero: Olxand 0@ x = x

© associativity: xLy and (x@ y)Llz = ylz and xL(y @ z)
and (xQy)Qz=x0 (y @ 2).

Main example

Unit interval [0, 1], with rls <= r+s<1
In that case r@ s =r +s.
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Effect algebras
Definition
An effect algebra is a PCM in which:

@ each element x has a unique orthosupplement x* with
X @ xT =1, where 1 = 0t

® x1ll=— x=0.

Examples: both from probability & logic

e Unit interval [0,1], with rt =1—r
e functions A — [0, 1], possibly “simple”
e orthomodular lattices & Boolean algebras

e projections Pr(#) on Hilbert space .
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Categories EA and EMod of effect algebras / modules Expectation monad unravelled

e Amapin EA f: E — D satisfies f(x @ y) = f(x) @ f(y), if
defined, and f(1) = 1. Then f(x*) = f(x)* and £(0) = 0.
e The category EA is symmetric monoidal, with initial object
2=1{0,1} as unit for ®
o Next step: monoids in EA, givenby -: M@ M — M
e [0,1] with multiplication is an example
o Next step: effect module is [0, 1]-action [0,1] ® E — E
e EMod is the category of such effect modules
e Examples: [0,1], and (simple) functions A — [0, 1]
o Also: &(H)={A:H—=H|0<A<id}.

Proposition

EMod ~ poVectu, the category of ordered vector spaces over R

with a strong unit (for each x there is an n € N with nu > x)
Jacobs & Mandemaker ISR, Oxford The Expectation Monad
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The homset £(X) = EMod ([0, 1]X, [0, 1]) contains those functions
h: [0,1]X — [0, 1] that satisfy:
® h(p© q) = h(p) + h(q),
for p,q € [0, 1]X with p(x) + q(x) < 1, for all x € X.
® h(dx.1)=1
® h(r-p)=r-h(p), for r €[0,1] and p € [0,1]X.

Lemma
The inclusions £(X) = EMed ([0, 11X, [0, 1]) > [0, 1)) form a
map of monads, from the expectation to the continuation monad.
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Equivalent formulations of the expectation monad

o As homset of order vector spaces with unit:
£(X) <" EMod([0, 1, [0, 1])
=~ poVectu(RX,R)

Proof: via equivalence EMod ~ poVectu.
o As finitely additive measures:
E(X) = EA(P(X),[0,1])

Proof: via denseness of simple functions in [0,1]%, see also
Gudder (1998).

{[Expectation monad is a “robust” mathematical notionj

Ultrafilter monad; essentials

UF(X) = {F CP(X) | F is an ultrafilter}
=~ BA(P(X),{0,1}) = EA(P(X),{0,1})
Thus there is an injective map of monads UF = &, via:
UF(X) = &(X)

EA(’P()Z<H), {0,1}) EA (P&), [0,1])

Explicitly, as map:
UF(X) EMod ([0, 1]%,[0,1]) = £(X)
F——Ap € [0,1]%. ch(UF(p)(F))

where ch: UF([0,1]) — [0, 1] is the L{F-algebra on [0, 1], using that
[0,1] is compact Hausdorff

ISR, Oxford

Jacobs & Mandemaker
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Topology

e The map of monads UF = &£ induces a functor

Alg(€)

Alg(UF) = CH

e The carrier of each £-algebra is a compact Hausdorff space
o Explicitly, given a: £(X) — X,
UC Xisclosed iff VFelUF(X).UeF = a(r(F)) e U.

Compact Hausdorff topology on £(X)

Subbasic opens are of the form:
Os(p) = {h € &(X) | h(p) > s}.
where s € [0,1] N Q and p € [0, 1]X.
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Distribution and expectation monad

e Recall:
D(X) = {p: X = [0,1] | supp(y) is finite, and > ¢(x) =1}.
e There is a map of monads o: D = &£ given by:
a(p) = Ap € [0,1]%. 32, ¢(x) - p(x)
= 2p € [0, 1. ev(D(p)(¥)),
where cv: D([0,1]) — [0, 1] is the convex structure.

e Hence there is a functor Alg(£) — Alg(D) = Conv.

e Conclusion: each £-algebra (carrier) forms a convex compact
Hausdorff space:

Alg(&)

CCH

Fact: this functor is full & faithful.
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Faits divers Denseness

e For a finite set X,

1%

P(X) Ur(X)

Because: a map of Boolean algebras h: P(X) — {0,1} is

determined by the finitely many values h({x}) € {0,1}. They
form a subset of X.

e Similarly, for a finite set X,

I

D(X) £(X)
Because: a map of effect modules h: [0,1]X — [0,1] is
determined by h(1y,;).
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Proposition
The inclusions o: D(X) — £(X) are dense:

X) = £(X).

The proof proceeds via approximation by simple functions. We sketch
that each non-empty open U C &(X) contains some o(p) € U.
e write open U C £(X) as (finite intersection of)
Os(p) = {h € &(X) | h(p) > s}
e pick h € Oy(p), and find simple function g < p with h(q) > s.
e g: X — [0, 1] takes finitely many values r,...,r, € [0,1]; write
Si={x|q(x) =r}. Then ¢ = ©;rls

e Take ¢ =3, h(1x)x;, with chosen element x; € S;.

Corollary
The induced map UF (D(X)) — £(X) is surjective.
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Situation, so far

(distribution D)

W;

(expectation 5) — (continuation C)

(ultrafilter Lﬂ-')

Jacobs & Mandemaker ISR, Oxford
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Example £-algebras

e The unit interval [0,1] carries an E-algebra structure:
£([0,1]) = EMod([0, 1)1, [0, 1]) — [0, 1]

h——m—mmmmm— h(id[o’l])

e For a set A, the function space [0, 1]* also carries an algebra:
£([0,1]4) = EMod ([0, 1)), [0,1]) —————[0,1]*
h———>Xa € A. h(Af € [0,1]A. f(a))

(Algebras are closed under products)
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Notation for homsets
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Observability

For two convex compact Hausdorff spaces X, Y € CCH one writes:

A(X,Y) ={f: X = Y| f is affine & continuous}

This notation will also be used when X, Y carry £-algebras

Then A(X,Y) is the algebra homset, since the functor
Alg(€) — CCH is full & faithfull.
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Call X € CCH observable if the maps in A(X, [0,1]) are jointly
monic

e Thus x = x’ holds if g(x) = q(x’) for each q € A(X,[0,1])

Similarly, an algebra £(X) — X will be called observable if X is
observable as above.

This yields (full) subcategories:

CCHyp > CCH  and  Alg,,.(€) — Alg(€)

in which [0, 1] is cogenerator

ISR, Oxford The Expectation Monad
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Algebras of the expectation monad & duality

Algebras send measures to barycenters Algebras from barycenters

Lemma
Each algebra a: £(X) — X sends a measure to a barycenter
a(h) € X. This is a point x = «(h) satisfying:

for all g € A(X,[0,1])

Proof: Each g € A(X,[0,1]) is an algebra map in:

e0x)— . g(0,1))
o \Lkwk(id)
X [O, 1]

Jacobs & Mandemaker ISR, Oxford
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A probabilistic version of Manes' theorem

Theorem
Alg s (€) = CCH,y, ie. observable algebras of the expectation
monads and observable convex compact Hausdorff spaces coincide

e the algebra structure yields the (unique) barycenter for a
measure

e a crucial notion in Choquet theory

(Without ‘observability’ requirement the situation is unclear)

The Expectation Monad 30 / 49 Jacobs & Mandemaker
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e Recall D(X) — £(X) is dense, and so UF(D(X)) — £(X)
e If X is convex compact Hausdorff, using (AC) we get:

UF(cv)

ad:ef (g(X) section UF(D(X)) UF(X) ch X)
e Then: a(h) € X is a barycenter for h € £(X)
e |f X is observable, « is an Eilenberg-Moore algebra

o with observability, barycenters are necessarily unique
e g(x) = h(qg) = q(x’), for each g, thus x = x’

ISR, Oxford The Expectation Monad 31/ 49
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Afterthought on observability

e Let X be an observable convex compact Hausdorff space, and
abbreviate A = A(X, [0, 1]).
o By definition we have an injection: X
e This map is both affine and continuous
e using the product topology on [0, 1]4

x—Aq. q(x)

[0,1#

e One more step gives an embbedding:
X [07 ]_]A>—> RA

e where: R” is a locally convex topological vector space

e the inherited (product) topology on X coincides with the
original one

e this is the common way to study convex compact Hausdorff
spaces: as subspaces of locally convex topological vector spaces
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The (dual) adjunction: homming into [0, 1] On the algebra side
Proposition
There is an adjunction:
EMod(—,[0,1]) Lemma
m . . .
EMod°? T Alg(&) For an algebra £(X) — X, the unit of the adjunction:
L
Alg(€)(—,[0.1])

X AR EMod (A(X, [0, 1)), [0,1])

e The algebra on the states of an effect module M is:
is an isomorphism iff X is observable.

5(EMod(M, [0, 1])) M. EMod(M, [0, 1])

h Ay € Mh(Ak-k(y)) Hence there is a coreflection EMod®P <= Alg,, ((€).

(The induced topology is weak star)

e Next we restrict both sides to get an equivalence / duality.
Jacobs & Mandemaker ISR, Oxford The Expectation Monad 34 /49 Jacobs & Mandemaker ISR, Oxford The Expectation Monad
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On the effect module side A probabilistic version of Gelfand duality

e For an effect module M there is a counit (in EMod®P):

Theorem
M e=Ay. Ap. p(y) A(EMod(M, [0,1]), [0, 1]) Alg,s(€) ~ BEMod®, ie. observable algebras of the expectation
monad are dually equivalent to Banach effect modules.

e It is an isomorphism iff M is a Banach effect module

e this means that it is Archimedean (yielding a norm)

Lkt Summarising we have:
e and complete in this norm

e The proof proceeds via the corresponding ordered vector

spaces with unit [[ CCHps = Algops(€) = BEModOpB

o called “order unit spaces”, if Archimedean
o for these spaces V there is a “classical” dense embedding
V — A(Hom(V,R), R); it is an iso if V is complete.
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Density matrices & effects Duality for states and predicates
Recall density matrices and effects for a Hilbert space H: These states and predicates fit into the duality diagram:

DU(H) ={A:H—H|0< Aand tr(A) =1} Hom(—,[0,1])

. — T

H)={A-H—->H|0<Aand A<id} TM(H) € CCHps ~ BEMod > & (H)

~——

Hom(—,[0,1])

Common reading: . . .
& Moreover, these states & predicates are related via isomorphisms:

DM(H) (mixed) states

& (H) predicates Hom(&f(H),[0,1]) = DM(H) and Hom(DM(H),[0,1]) = & (H)
eg. in the quantum weakest precondition calculus of D'Hondt & These isos form the (implicit) basis of the quantum weakest
Panangaden (2006). precondition calculus.
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How does Gleason fit in?
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Recall, Gleason's theorem says: if dim(#) > 3, then states are
measures on projections:

TM(H) = EA(Pr(H), [0,1])
The proof is really complicated.
There is a relatively easy proof of “Gleason light”:
DM(H) = EMod(E’f(?—l),[O,l])

See Busch (Phys. Rev. Let. 2003)

Jacobs & Mandemaker ISR, Oxford
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A reformulation of Gleason’s theorem

Theorem
Gleason's theorem is equivalent to [0,1] @ Pr(H) = & (H).
e That is, effects are the free effect module on projections

e quantum probabilities are freely obtained from quantum logic

In one direction the proof is easy:

EA(Pr(H), [0, 1]) = EMod([O, 1] ® Pr(H), [0, 1])
=~ EMod (& (H),[0,1])
~ TM(H)

by freeness
by assumption

by Gleason light.

Jacobs & Mandemaker ISR, Oxford The Expectation Monad
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Other direction, assuming Gleason Example probabilistic system

Top horizontal arrow is surjection, and also injection, in:

spectral

[0,1] ® Pr(H) &(H)

decomposition
dense completenessl%

A(EMod([o, 1] ® Pr(#),[0,1]), [0, 1])
freenessig

A(EA(Pr(H),[o, 1)), [0»1]) B

Gleason Iightl%

A(DM(H), [0,1]), [0.1])

Jacobs & Mandemaker ISR, Oxford The Expectation Monad
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Structure of such programs/coalgebras S — £(S)

o Composition monoid (;,skip), since £ is a monad
o Loops (while/for/recursion), via joins \/ of chains

e Finite convex sums of programs ), r;P;, for P;j: S — &£(S)
and r; € [0,1] with >, ri =1

o Finite probabilistic assignment n := ¢, say with variable n: int
and distribution ¢ € D(int)

e use upd,: S xint — S, giving £(upd,(s, —)): E(int) — £(S)
e use o: D(int) — &(int), in:

[n:=¢l(s) = E(upd,(s,-)) (c(#))
e Finite non-deterministic assignment n := V/, for finite V C int

o similarly, use P(V) = UF(V) — &(int)

Jacobs & Mandemaker ISR, Oxford

A(EMod(Sf(H), [0,1]), [0, 1])
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S coalgebra 'D(S)
a——— %b—i— %c

1 9
/b 2 C~
7 5 AN}

1 2
1 br——=3b+3c

Wi

cC——>1c¢

The same system, as E-coalgebra, via D = €,

S &(S)

a——>\g € [0, 1]S. %q(b) + %q(c) Prob.abilis.tic
s 1 5 continuation
b——>Aq [0, 1] §q(b) + §q(c) style semantics

c————>2q €[0,1]°.q(c)

Jacobs & Mandemaker ISR, Oxford
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Conclusions

Final remarks

e Expectation monad is unexpectedly interesting
e in probabilistic programming semantics
e in relation to other monads
e in convex analysis (barycenters, Choquet theory)
e for quantum logic & probability, via duality & Gleason

o Category theory is very useful for structuring results and
seeing connections

e notably for probabilistic version of Manes & Gelfand
e many of the ingredients are already known
e some fruit was hanging low, but not all of it
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Conclusions Conclusions

Klaus Keimel deserves credit for coming closest

o K. Keimel, Abstract ordered compact convex sets and
algebras of the (sub)probabilistic power domain monad over
ordered compact spaces, (Alg. & Log., 2009)

o Contains algebras via barycenters, but no duality

e focus on measures as monads on (convex compact) spaces, like

Giry monad on measure spaces Thanks for your attention!

i ?
o K. Keimel, A. Rosenbusch and T. Streicher, Relating direct Questions / remarks?

and predicate transformer partial correctness semantics for an
imperative probabilistic-nondeterministic language (TCS, 2011)

e Contains ad hoc monad similar to ‘expectation’
o focus on program semantics

Jacobs & Mandemaker ISR, Oxford The Expectation Monad 48 / 49 Jacobs & Mandemaker ISR, Oxford The Expectation Monad




