Algebraic Foundations for Quantitative
Information Flow
Oxford October 2011

Pasquale Malacaria
Queen Mary University of London

The (little)Expectation Monad
Oxford October 2011

Pasquale Malacaria
Queen Mary University of London

measure change in confidential data due to
possible observations of the system.

(a different angle: more oriented to applica-
tion)

Quantitative analysis according to a measure
F' = difference of the measure F' on the se-
cret before and after running the program

Ap(P,h) = F(h) — F(h|P)

1. P =r.v. observations about the program

2. h = r.v. secret data

possible choices for F, F(—|—) are:

(A) for uncertainty about the secret: F' and
F(—|—) are Shannon entropy and condi-
tional entropy

(B) for probability of guessing in one try: (in-
troduced by Smith and noted ME)

F(X)=—log(maxu(X =x)) and
reX
FIX|Y) = ~10g(3 p()(maxu(X =Y = 1))

yey

5

(C) for the expected number of guesses: (noted

GE)
F(X)= > iwu(X=uz) and
r;€X,1>1
FX|IY)= > p(>, ulX=x]Y =y))
yey r,€X,1>1

(here we assume i < j implies u(X =
z;) 2 p(X = z;))

Few questions:

1. what these measures ook like?

2. how they classify threats?

3. what do they have in common?

what these measures look like?

consider the following programs:

1. My = if(h==1) then o = 0;else o = 1;

h is a 2 bits secret (all values equally likely)
Initially

probability of guessing secret=0.25

av n of guesses=1x0.25+4+2x0.25+3%x0.25+4+
4 x0.25 =25

Entropy= —4 x (0.25109(0.25)) =2

G(h) = 0.25, NG(h) = 2.5, H(h) = 2

M, = if(h == 1) then o = 0; else o = 1;
w(hlo=0) =1,u(hlo=1) = 0.33

MQ = 0 = h,;
p(hlo = 0) = p(hlo = 1) = p(hlo = 2) =
p(hlo=3) =1

M, = if(h==1) then 0 = 0;else o = 1;

H G | NG | ME| GE
M; | 0.8112|05|1.75| 1 |0.75
Mo 2 1 1 2 | 1.5

table 1: comparing measures

M. chances of guessing doubled from 0.25
to 0.5 (=G) so the rate of increase is 2ME =
G/G(h) = 2!; the average n of questions
reduced by 0.75 (=GFE) so that it will take
NG = 1.75 tries. H = 0.8112 bits leaked.

11

H G | NG | ME| GE
M; | 0.8112|05|1.75| 1 |0.75
Mo 2 1 1 2 | 1.5

table 2: comparing measures

M->: H = 2 everything is leaked: secret
guessed in one try (G = NG = 1). Chances
increased 4 folds (2MF = 1. = 22). Av-
erage number of questions reduced by 1.5

(= GFE) to one (NG =1).

12

How do they classify threats?

how to define a " more secure’’ order between
programs P, P'?

(A): P<p P < Vu(h). Ap(P;h) < Ap(P';h)

Is this " more secure” order depending on the
choice of F'7?

13

It turns out that order (A) is the same for
all measures F..

It is the order in the Lattice of Information
(LOI)

LOI= lattice of all partitions (eq. rel.) on
a set of atoms. Is a complete lattice with
ordering:

X<Y <= yyvy=>y=xy

14

assume a distribution on the atoms then we
can see LOI as a lattice of random vari-
ables....

(X = x) = X{p(z;)|z; € =}
strictly speaking is the set theoretical kernel

of a r.v. (but as we don't need the values of
the r.v. that will be fine)

15

So we can define these " measures” (assume
X; > $Z'_|_1) on LOI:

H(X) = — Ypex 1(X = 2) 1og(u(X = z))
Gn(X) = Xrex gn(x), gn(x) = Xicn z.ca M(x;),
NG(X) = Yzexng(z), ng(x) = Xy er i),
entropy, n-tries guessability, av. n. of guesses

16

We can define the induced orders on LOI

X <pY < Vu. F(X)<F()
(u= distribution on atoms)

Teo: <y = <g, = (<ne)®P =<

17

Connecting LOI and leakage analysis of pro-
grams:

associate to a program P the partition L(P) =
([|P|)~1 (whenever this make sense e.g. de-

terministic programs)

notice that for a k bit secret L(—) is a sur-
jection on a lattice over 2k atoms

18

Connecting Ap and LOI:
ME(P) = 109(G1(L(P))) —109(G1(L(h)))
GE(P) = NG(L(h)) — NG(L(P))

H(P) = H(L(P)) — H(L(P)|h)(= H(L(P)))

(L(h) is the eq.rel: Vh,h'. h ~ h')

19

Teo: <y = <g, = (Knve)°P =<y
Corollary on leakage:
<H = <ME = <QE = <[

This answer "what do they have in com-
mon?"

They agree on the classification of source
code threats

22

Because of those results if two programs are
not ordered (as partitions) then we can al-
ways find distributions making any of the two
less than the other

23

A= {{a,b}{c,d}{e}}, B = {{a,d}{b,c,e}}

Al =3 >2=|B|. A< B using u.d.

For A > B take u s.t.

a=0.1, b= 0.1,c=0.39,d=0.4,e=0.01 then
H(A) = H(0.2,0.79,0.01) = 0.7994 < 1 =

H(B) = H(0.5,0.5)

G(A)=0.1404401=06<0.79=0.4+
0.39 = G(B)

24

Smith's examples: (h is a secret of size 8k
bits):

1. Py = if (h%8 == 0) then o = h; else o = 1;
2. P, = o = h& 07k—11k+1.

Smith’'s observation: Pq,P> similar leakage
(H(P1)) = k+0.169 < H(P>) = k+ 1) but
they have a very different guessing behaviour:

Py prob guess whole secret=1/8, P> leaks
k + 1 bits but nothing of the remaining ones

26

As partitions (m =283 r =k + 1):

L(Py) = {{h1000},...,{hm000}, X1}

L(P>) ={Y1,...,Y:}

this view makes simple to see what distribu-
tion make one more secure than the other:
<: u.d. on X7 and e elsewhere

>: u.d. on Y, ending in 000, and ¢ elsewhere

Code leakage # environment leakage

27

Further concepts:
many runs = |.u.b.s in LOI
loops=L(P) = Up,>oW<, NC

Channel capacity (maximum leakage) easy:
|L(P)| (number of blocks)

Smith: Channel capacity coincide for Shan-
non and guessability measures (det)

28

Applying these concepts to real code:

Bounding leakage of C code: "does it leak
more than k bits" 7

See a C program as a family of equivalence
relations (one for each choice of low inputs)

verify whether exists an equivalence relation
in this family with > k classes (active at-
tacker model e.g. underflow leak CVE-2007-
2875)

29

Linux Kernel analysis

practicalities:
h = kernel memory. size: thousands of bits
low = C structures. size: arbitrary

so exists an eq.rel. among 2190 eq. rel. over
a set of 210000 3toms with > 16 bits leakage?

not easy..

CBMC can help: symbolic+unwinding asser-

tions
30

(Heusser-Malacaria 2010) use assume-guarantee
reasoning and use CBMC for these questions
on bounds

The approach is powerful, e.g. quantifying
architecture leaks : CVE-2009-2847 doesn't
leak on a 32 bits architecture but leaks on a
64 bits machine.

It is also the first verification of linux kernel
vulnerability patches

Demo
31

