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measure change in confidential data due to
possible observations of the system.

(a different angle: more oriented to applica-
tion)



Quantitative analysis according to a measure
F' = difference of the measure F' on the se-
cret before and after running the program

Ap(P,h) = F(h) — F(h|P)

1. P =r.v. observations about the program

2. h = r.v. secret data



possible choices for F, F(—|—) are:

(A) for uncertainty about the secret: F' and
F(—|—) are Shannon entropy and condi-
tional entropy

(B) for probability of guessing in one try: (in-
troduced by Smith and noted ME)

F(X)=—log(maxu(X =x)) and
reX
FIX|Y) = ~10g( 3 p()(maxu(X =Y = 1))

yey
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(C) for the expected number of guesses: (noted

GE)
F(X)= > iwu(X=uz) and
r;€X,1>1
FX|IY)= > p( >, ulX=x]Y =y))
yey r,€X,1>1

(here we assume i < j implies u(X =
z;) 2 p(X = z;))



Few questions:

1. what these measures ook like?

2. how they classify threats?

3. what do they have in common?



what these measures look like?

consider the following programs:

1. My = if(h==1) then o = 0;else o = 1;



h is a 2 bits secret (all values equally likely)
Initially

probability of guessing secret=0.25

av n of guesses=1x0.25+4+2x0.25+3%x0.25+4+
4 x0.25 =25

Entropy= —4 x (0.25109(0.25)) =2

G(h) = 0.25, NG(h) = 2.5, H(h) = 2



M, = if(h == 1) then o = 0; else o = 1;
w(hlo=0) =1,u(hlo=1) = 0.33

MQ = 0 = h,;
p(hlo = 0) = p(hlo = 1) = p(hlo = 2) =
p(hlo=3) =1



M, = if(h==1) then 0 = 0;else o = 1;

H G | NG | ME| GE
M; | 0.8112|05|1.75| 1 |0.75
Mo 2 1 1 2 | 1.5

table 1: comparing measures

M. chances of guessing doubled from 0.25
to 0.5 (=G) so the rate of increase is 2ME =
G/G(h) = 2!; the average n of questions
reduced by 0.75 (=GFE) so that it will take
NG = 1.75 tries. H = 0.8112 bits leaked.
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H G | NG | ME| GE
M; | 0.8112|05|1.75| 1 |0.75
Mo 2 1 1 2 | 1.5

table 2: comparing measures

M->: H = 2 everything is leaked: secret
guessed in one try (G = NG = 1). Chances
increased 4 folds (2MF = 1. = 22). Av-
erage number of questions reduced by 1.5

(= GFE) to one (NG =1).
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How do they classify threats?

how to define a " more secure’’ order between
programs P, P'?

(A): P<p P < Vu(h). Ap(P;h) < Ap(P';h)

Is this " more secure” order depending on the
choice of F'7?
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It turns out that order (A) is the same for
all measures F..

It is the order in the Lattice of Information
(LOI)

LOI= lattice of all partitions (eq. rel.) on
a set of atoms. Is a complete lattice with
ordering:

X<Y <= yyvy=>y=xy
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assume a distribution on the atoms then we
can see LOI as a lattice of random vari-
ables....

(X = x) = X{p(z;)|z; € =}
strictly speaking is the set theoretical kernel

of a r.v. (but as we don't need the values of
the r.v. that will be fine)
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So we can define these " measures” (assume
X; > $Z'_|_1) on LOI:

H(X) = — Ypex 1(X = 2) 1og(u(X = z))
Gn(X) = Xrex gn(x), gn(x) = Xicn z.ca M(x;),
NG(X) = Yzexng(z), ng(x) = Xy er i),
entropy, n-tries guessability, av. n. of guesses
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We can define the induced orders on LOI

X <pY < Vu. F(X)<F()
(u= distribution on atoms)

Teo: <y = <g, = (<ne)®P =<
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Connecting LOI and leakage analysis of pro-
grams:

associate to a program P the partition L(P) =
([|P|)~1 (whenever this make sense e.g. de-

terministic programs)

notice that for a k bit secret L(—) is a sur-
jection on a lattice over 2k atoms
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Connecting Ap and LOI:
ME(P) = 109(G1(L(P))) —109(G1(L(h)))
GE(P) = NG(L(h)) — NG(L(P))

H(P) = H(L(P)) — H(L(P)|h)(= H(L(P)))

(L(h) is the eq.rel: Vh,h'. h ~ h')
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Teo: <y = <g, = (Knve)°P =<y
Corollary on leakage:
<H = <ME = <QE = <[

This answer "what do they have in com-
mon?"

They agree on the classification of source
code threats
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Because of those results if two programs are
not ordered (as partitions) then we can al-
ways find distributions making any of the two
less than the other
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A= {{a,b}{c,d}{e}}, B = {{a,d}{b,c,e}}

Al =3 >2=|B|. A< B using u.d.

For A > B take u s.t.

a=0.1, b= 0.1,c=0.39,d=0.4,e=0.01 then
H(A) = H(0.2,0.79,0.01) = 0.7994 < 1 =

H(B) = H(0.5,0.5)

G(A)=0.1404401=06<0.79=0.4+
0.39 = G(B)
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Smith's examples: (h is a secret of size 8k
bits):

1. Py = if (h%8 == 0) then o = h; else o = 1;
2. P, = o = h& 07k—11k+1.

Smith’'s observation: Pq,P> similar leakage
(H(P1)) = k+0.169 < H(P>) = k+ 1) but
they have a very different guessing behaviour:

Py prob guess whole secret=1/8, P> leaks
k + 1 bits but nothing of the remaining ones
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As partitions (m =283 r =k + 1):

L(Py) = {{h1000},...,{hm000}, X1}

L(P>) ={Y1,...,Y:}

this view makes simple to see what distribu-
tion make one more secure than the other:
<: u.d. on X7 and e elsewhere

>: u.d. on Y, ending in 000, and ¢ elsewhere

Code leakage # environment leakage
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Further concepts:
many runs = |.u.b.s in LOI
loops=L(P) = Up,>oW<, NC

Channel capacity (maximum leakage) easy:
|L(P)| (number of blocks)

Smith: Channel capacity coincide for Shan-
non and guessability measures (det)
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Applying these concepts to real code:

Bounding leakage of C code: "does it leak
more than k bits" 7

See a C program as a family of equivalence
relations (one for each choice of low inputs)

verify whether exists an equivalence relation
in this family with > k classes (active at-
tacker model e.g. underflow leak CVE-2007-
2875)
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Linux Kernel analysis

practicalities:
h = kernel memory. size: thousands of bits
low = C structures. size: arbitrary

so exists an eq.rel. among 2190 eq. rel. over
a set of 210000 3toms with > 16 bits leakage?

not easy..

CBMC can help: symbolic+unwinding asser-

tions
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(Heusser-Malacaria 2010) use assume-guarantee
reasoning and use CBMC for these questions
on bounds

The approach is powerful, e.g. quantifying
architecture leaks : CVE-2009-2847 doesn't
leak on a 32 bits architecture but leaks on a
64 bits machine.

It is also the first verification of linux kernel
vulnerability patches

Demo
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