
Algebraic Foundations for Quantitative

Information Flow

Oxford October 2011

Pasquale Malacaria

Queen Mary University of London

1

The (little)Expectation Monad

Oxford October 2011

Pasquale Malacaria

Queen Mary University of London

2

measure change in confidential data due to

possible observations of the system.

(a different angle: more oriented to applica-

tion)

3

Quantitative analysis according to a measure

F = difference of the measure F on the se-

cret before and after running the program

∆F (P, h) = F (h)− F (h|P)

1. P = r.v. observations about the program

2. h = r.v. secret data

4

possible choices for F, F (−|−) are:

(A) for uncertainty about the secret: F and
F (−|−) are Shannon entropy and condi-
tional entropy

(B) for probability of guessing in one try: (in-
troduced by Smith and noted ME)

F (X) = − log(max
x∈X

µ(X = x)) and

F (X|Y) = − log(
∑
y∈Y

µ(y)(max
x∈X

µ(X = x|Y = y)))

5

(C) for the expected number of guesses: (noted

GE)

F (X) =
∑

xi∈X,i≥1

i µ(X = xi) and

F (X|Y) =
∑
y∈Y

µ(y)(
∑

xi∈X,i≥1

iµ(X = xi|Y = y))

(here we assume i < j implies µ(X =

xi) ≥ µ(X = xj))

Few questions:

1. what these measures look like?

2. how they classify threats?

3. what do they have in common?

6

what these measures look like?

consider the following programs:

1. M1 ≡ if(h == 1) then o = 0; else o = 1;

2. M2 ≡ o = h;

7

h is a 2 bits secret (all values equally likely)

Initially

probability of guessing secret=0.25

av n of guesses=1∗0.25+2∗0.25+3∗0.25+

4 ∗ 0.25 = 2.5

Entropy= −4 ∗ (0.25 log(0.25)) = 2

G(h) = 0.25, NG(h) = 2.5, H(h) = 2

8

M1 ≡ if(h == 1) then o = 0; else o = 1;

µ(h|o = 0) = 1, µ(h|o = 1) = 0.33

M2 ≡ o = h;

µ(h|o = 0) = µ(h|o = 1) = µ(h|o = 2) =

µ(h|o = 3) = 1

9

M1 ≡ if(h == 1) then o = 0; else o = 1;

H G NG ME GE
M1 0.8112 0.5 1.75 1 0.75
M2 2 1 1 2 1.5

table 1: comparing measures

M1: chances of guessing doubled from 0.25

to 0.5 (=G) so the rate of increase is 2ME =

G/G(h) = 21; the average n of questions

reduced by 0.75 (=GE) so that it will take

NG = 1.75 tries. H = 0.8112 bits leaked.

11

M2 ≡ o = h;

H G NG ME GE
M1 0.8112 0.5 1.75 1 0.75
M2 2 1 1 2 1.5

table 2: comparing measures

M2: H = 2 everything is leaked: secret

guessed in one try (G = NG = 1). Chances

increased 4 folds (2ME = 1
0.25 = 22). Av-

erage number of questions reduced by 1.5

(= GE) to one (NG = 1).

12

How do they classify threats?

how to define a ”more secure” order between

programs P, P ′?

(A) : P ≤F P ′ ⇐⇒ ∀µ(h). ∆F (P ;h) ≤∆F (P ′;h)

Is this ”more secure” order depending on the

choice of F?

13

It turns out that order (A) is the same for

all measures F .

It is the order in the Lattice of Information

(LOI)

LOI= lattice of all partitions (eq. rel.) on

a set of atoms. Is a complete lattice with

ordering:

X ≤L Y ⇐⇒ y 'Y y′ ⇒ y 'X y′

14

assume a distribution on the atoms then we

can see LOI as a lattice of random vari-

ables....

µ(X = x) =
∑
{µ(xi)|xi ∈ x}

strictly speaking is the set theoretical kernel

of a r.v. (but as we don’t need the values of

the r.v. that will be fine)

15

So we can define these ”measures” (assume

xi ≥ xi+1) on LOI:

H(X) = −
∑
x∈X µ(X = x) log(µ(X = x))

Gn(X) =
∑
x∈X gn(x), gn(x) =

∑
i≤n,xi∈x µ(xi),

NG(X) =
∑
x∈X ng(x), ng(x) =

∑
xi∈x iµ(xi),

entropy, n-tries guessability, av. n. of guesses

16

We can define the induced orders on LOI

(F = H,Gn, NG):

X ≤F Y ⇐⇒ ∀µ. F (X) ≤ F (Y)

(µ= distribution on atoms)

Teo: ≤H = ≤Gn = (≤NG)op = ≤L

17

Connecting LOI and leakage analysis of pro-

grams:

associate to a program P the partition L(P) =

([|P |])−1 (whenever this make sense e.g. de-

terministic programs)

notice that for a k bit secret L(−) is a sur-

jection on a lattice over 2k atoms

18

Connecting ∆F and LOI:

ME(P) = log(G1(L(P)))− log(G1(L(h)))

GE(P) = NG(L(h))−NG(L(P))

H(P) = H(L(P))−H(L(P)|h)(= H(L(P)))

(L(h) is the eq.rel: ∀h, h′. h ' h′)

19

Teo: ≤H = ≤Gn = (≤NG)op = ≤L

Corollary on leakage:

≤H = ≤ME = ≤GE = ≤L

This answer ”what do they have in com-

mon?”

They agree on the classification of source

code threats

22

Because of those results if two programs are

not ordered (as partitions) then we can al-

ways find distributions making any of the two

less than the other

23

A = {{a, b}{c, d}{e}}, B = {{a, d}{b, c, e}}

|A| = 3 > 2 = |B|. A < B using u.d.

For A > B take µ s.t.

a=0.1, b= 0.1,c=0.39,d=0.4,e=0.01 then

H(A) = H(0.2,0.79,0.01) = 0.7994 < 1 =
H(B) = H(0.5,0.5)

G(A) = 0.1 + 0.4 + 0.1 = 0.6 < 0.79 = 0.4 +
0.39 = G(B)

24

Smith’s examples: (h is a secret of size 8k
bits):

1. P1 ≡ if (h%8 == 0) then o = h; else o = 1;

2. P2 ≡ o = h& 07k−11k+1;

Smith’s observation: P1, P2 similar leakage
(H(P1) = k + 0.169 < H(P2) = k + 1) but
they have a very different guessing behaviour:

P1 prob guess whole secret=1/8, P2 leaks
k+ 1 bits but nothing of the remaining ones

26

As partitions (m = 28k−3, r = k + 1):

L(P1) = {{h1000}, . . . , {hm000}, X1}

L(P2) = {Y1, . . . , Yr}

this view makes simple to see what distribu-

tion make one more secure than the other:

<: u.d. on X1 and ε elsewhere

>: u.d. on Yi ending in 000, and ε elsewhere

Code leakage 6= environment leakage

27

Further concepts:

many runs = l.u.b.s in LOI

loops=L(P) = tn≥0W≤n u C

Channel capacity (maximum leakage) easy:

|L(P)| (number of blocks)

Smith: Channel capacity coincide for Shan-

non and guessability measures (det)

28

Applying these concepts to real code:

Bounding leakage of C code: ”does it leak

more than k bits”?

See a C program as a family of equivalence

relations (one for each choice of low inputs)

verify whether exists an equivalence relation

in this family with ≥ k classes (active at-

tacker model e.g. underflow leak CVE-2007-

2875)

29

Linux Kernel analysis

practicalities:

h = kernel memory. size: thousands of bits

low = C structures. size: arbitrary

so exists an eq.rel. among 2100 eq. rel. over

a set of 210000 atoms with ≥ 16 bits leakage?

not easy..

CBMC can help: symbolic+unwinding asser-

tions
30

(Heusser-Malacaria 2010) use assume-guarantee

reasoning and use CBMC for these questions

on bounds

The approach is powerful, e.g. quantifying

architecture leaks : CVE-2009-2847 doesn’t

leak on a 32 bits architecture but leaks on a

64 bits machine.

It is also the first verification of linux kernel

vulnerability patches

Demo
31

