Logical complexity

Dusko Pavlovic

Introduction Obscurity Attackers Directions Summary

Logical complexity as a resource for security by obscurity

Dusko Pavlovic

Royal Holloway and Twente

October 2011

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

Outline

Introduction

Background: Security and obscurity

Idea: Attack models

Approach: Directions

Summary

Logical complexity

Dusko Pavlovic

Introduction Obscurity

Attackers

Directions

Summary

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

Outline

Introduction

What is a resource?

Complexities as resources

Background: Security and obscurity

Idea: Attack models

Approach: Directions

Summary

Logical complexity

Dusko Pavlovic

Introduction Resources Complexities Obscurity Attackers

Directions

Summary

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Resource

Logical complexity

Dusko Pavlovic

Introduction

Resources

Complexities

Obscurity

Attackers

Directions

Summary

・ロ・・ 日・・ 日・・ 日・ ・ 日・

Utility

Logical complexity

Dusko Pavlovic

Introduction

Resources

Complexities

Obscurity

Attackers

Directions

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Residue

Logical complexity

Dusko Pavlovic

Introduction Resources Complexities

Obscurity

Attackers

Directions

Summary

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Exploitation is easy

Logical complexity

Dusko Pavlovic

Introduction Resources Complexities Obscurity

Attackers

Directions

Summary

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

Regeneration is hard

Logical complexity

Dusko Pavlovic

Introduction Resources Complexities Obscurity Attackers Directions Summary

.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Resources yield one-way functions

Logical complexity

Dusko Pavlovic

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 – のへで

Resources yield one-way functions

Logical complexity

Dusko Pavlovic

Introduction Resources Complexities

Obscurity Attackers Directions Summary

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Computational resources for security

Attackers

Directions Summary

Wanted: "Logical resources for security"

Logical complexity

Dusko Pavlovic

・ロト・日本・日本・日本・日本・今日・

Question

Logical complexity

Dusko Pavlovic

Introduction

Resources

Complexities

Obscurity

Attackers

Directions

Summary

Do logical resources for security exist?

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Notation

CHINES TRUS x × × ALL YOF BASE LUZERS x × ×

Logical complexity

Dusko Pavlovic

Introduction Resources Complexities Obscurity Attackers Directions Summary

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

ATTACK

Suppose that you are given a system C such that

Ш P = NP

Logical complexity

Dusko Pavlovic

Introduction

Resources

Complexities

Obscurity

Attackers

Directions

Summary

・ロト・日本・日本・日本・日本・日本・日本

Suppose that you are given a system C such that

Ш

P = NP

Would you consider it secure?

Logical complexity

Dusko Pavlovic

Introduction

Resources

Complexities

Obscurity

Attackers

Directions

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Suppose that you are given a system \mathcal{L} such that

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Would you consider it secure?

Logical complexity

Dusko Pavlovic

Introduction

Resources

Complexities

Obscurity

Attackers

Directions

Summary

Theorem

System *L* is secure enough to protect an account with \$1,000,000

Proof.

Proving $P \neq NP$ yields \$1,000,000 from Clay Institute.

Logical complexity

Dusko Pavlovic

Introduction Resources Complexities

Obscurity

Attackers

Directions

Summary

Alarm

If $P \neq NP$, then this is security by obscurity:

- security of the system L is based on
- obscurity of the proofs of $P \neq NP$

Logical complexity

Dusko Pavlovic

Introduction Resources Complexities

Obscurity

Attackers

Directions

Summary

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Outline

Introduction

Background: Security and obscurity

Idea: Attack models

Approach: Directions

Summary

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

▲□▶▲□▶▲□▶▲□▶ □ のへの

What is security by obscurity?

Kerckhoffs' Principle

"The system must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience."

Jean Guillaume Auguste Victor François Hubert Kerckhoffs

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

・ロト・西ト・西ト・日・ つくぐ

What is security by obscurity?

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

Shannon's Maxim

"The enemy knows the system."

Claude Shannon

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Secure key vs obscure system

Lock can only be opened using the correct key

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

・ロト・日本・日本・日本・日本・日本

Secure key vs obscure system

Logical complexity

Dusko Pavlovic

Introduction Obscurity

Attackers

Directions

Summary

... and not by breaking the system

・ロト・西ト・モン・モー もくの

Outside cryptography

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

Outside cryptography

there is not much more to hide except the system

Logical complexity

Dusko Pavlovic

Introduction Obscurity Attackers Directions

Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In cryptography

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

keys = data

system = program

・ロト・西ト・田・・田・ ひゃぐ

In computation

(Gödel, Von Neumann, Kleene)

keys = data = program

system = program = data

Logical complexity

Dusko Pavlovic

Introduction

In computation

(Gödel, Von Neumann, Kleene)

Logical

complexity

Dusko Pavlovic Introduction Obscurity

- keys = data = program
 - data value encrypted
- system = program = data
 - programs view obfuscated

▲□▶▲□▶▲□▶▲□▶ □ ● ●

In computation

(Gödel, Von Neumann, Kleene)

- keys = data = program
 - data value encrypted
- system = program = data
 - programs view obfuscated

Theorem [Barak et al] Obfuscators do not exist.

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In poker

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

keys = hands of cards

system = tactics

In games

(Von Neumann-Morgenstern, Harsanyi, Aumann...)

keys = players' states

system = players' types

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

In games

(Von Neumann-Morgenstern, Harsanyi, Aumann...)

- keys = players' states
 - (im)perfect information
- system = players' types
 - (in)complete information

Logical complexity

Dusko Pavlovic

Introduction Obscurity

Attackers

Directions

Summary

In games

(Von Neumann-Morgenstern, Harsanyi, Aumann...)

- keys = players' states
 - (im)perfect information
- system = players' types
 - (in)complete information

Kerckhoffs' Principle Security is a game of imperfect information.

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

In security games

(Kerckhoffs, Shannon)

keys <-- cryptanalysis

hard

- system <-- decompilation
 - easy

Kerckhoffs' Principle

Security is a game of imperfect information.

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Claim

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

Security is a game of incomplete information

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●
Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

There is security by obscurity even in cryptography

- not through obfuscated code
- but through logically complex algorithms

Outline

Introduction

Background: Security and obscurity

Idea: Attack models

Approach: Directions

Summary

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

・ロト・日本・日本・日本・日本

Security as a game

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

◆□▶ ◆□▶ ◆目▶ ▲目▶ ▲□▶ ◆□▶

Shannon's attacker: computationally unbounded (omnipotent computer)

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

If a source conveys some information, the attack will extract that information.

・ロト・日本・日本・日本・日本・日本

Diffie-Hellman's attacker: computationally bounded (real computer)

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

 $\Pr(m \leftarrow A(c) \mid c \leftarrow C$

c←C

System

c←C

Adaptive attacker: queries the system (still a real computer)

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

If there is a vulnerability, an attack algorithm will make use of it.

・ロト・日本・日本・日本・日本・日本

Adaptive attacker: queries the system (still a real computer)

$\rightarrow System \rightarrow$ $Pr(m \leftarrow A(c,m_0,m_1...) | ...) \qquad m \leftarrow M$ $|A(x)| \le p(|x|)$

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

If there is a vulnerability, an attack algorithm will make use of it.

But where do the attack algorithms come from?

・ コット (雪) ・ (目) ・ ヨ

Dusko Pavlovic Introduction Obscurity Attackers

Directions

Logical

complexity

Summary

If there is an attack, the attacker will find it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Kerckhoffs' attacker: logically unbounded (omnipotent programmer)

If an attack exists, the attacker will find it

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

・ロト・日本・日本・日本・日本・日本

Kerckhoffs' attacker: logically unbounded

If an attack exists, the attacker will find it.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

If an attack exists, the attacker will find it

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Real attacker: logically bounded

(someone's student)

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

power	unbounded	bounded
computational	Shannon	Diffie-Hellman
rationality	Cournot	Simon
logical	Kerckhoffs	?????

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

computational complexity

secrecy

logical complexity obscurity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

=

hinder adaptation of attack to system

improve adaptation of system to attack

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

◆□▶ ◆□▼ ◆ □ ▼ ▲ □ ▼ ◆ □ ▼

hinder adaptation of attack to system

use algorithmic information theory in security

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

- improve adaptation of system to attack
 - use epistemic game theory in security

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Outline

Introduction

Background: Security and obscurity

Idea: Attack models

Approach: Directions

x-direction: Algorithmic information theory

y-direction: Epistemic game theory

Summary

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction y-direction

Summary

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Question

What is logical complexity?

Which proofs / algorithms are hard to construct?

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Question

What is logical complexity?

Which proofs / algorithms are hard to construct?

Logical

complexity Dusko Pavlovic Introduction Obscurity

Attackers Directions

y-direction

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Which attack algorithms are hard to derive from which system algorithms?

Question

system

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Predictability and probability

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

01010101010101010100...01

100 times

・ロト・西ト・西ト・日・ ウヘぐ

Predictability and probability

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

Predictable events are improbable

"We arrange in our thought all possible events in various classes; and we regard as extraordinary those classes which include a very small number. In the game of heads and tails, if heads comes up a hundred times in a row then this appears to us extraordinary, because the almost infinite number of combinations that can arise in a hundred throws are divided in regular sequences, or those in which we observe a rule that is easy to grasp, and in irregular sequences, that are incomparably more numerous."

Pierre-Simon Laplace

Logical complexity

Dusko Pavlovic

Introduction Obscurity Attackers Directions x-direction y-direction Summary

Probability is not about predictability

"In everyday language we call random those phenomena where we cannot find a regularity allowing us to predict precisely their results. Generally speaking, there is no ground to believe that random phenomena should possess any definite probability. Therefore, we should distinguish between randomness proper (as absence of any regularity) and stochastic randomness (which is the subject of probability theory). There emerges the problem of finding reasons for the applicability of the mathematical theory of probability to the real world."

Andrei N. Kolmogorov

Logical complexity

Dusko Pavlovic

Introduction Obscurity Attackers Directions x-direction y-direction Summary

・ロト・日本・山田・山田・山口・

Probability is not about events

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

Probability only describes ensembles of events

・ロト・西ト・ヨト・ヨー もくの

Probability is not about events

- Probability only describes ensembles of events
- Information theory only speaks of global properties.

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Probability is not about events

- Probability only describes ensembles of events
- Information theory only speaks of global properties.
- "Which local function is entropy the integral of?"

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

▶ 01010101010101010100...01 can be written as

100

▶ (01)⁵⁰

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

・ロト・日本・日本・日本・日本・日本

▶ 01010101010101010100...01 can be written as

100

- ▶ (01)⁵⁰
- do i=1..50 write 01 od

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

・ロト・日本・日本・日本・日本・日本・日本

▶ 01010101010101010100...01 can be written as

► (01)⁵⁰

do i=1..50 write 01 od

100

010011000111000011110...11 can be written as

$$\bullet \underbrace{0^{1}1^{1}0^{2}1^{2}\cdots0^{i}1^{i}\cdots}_{0^{i}1^{i}\cdots}$$

i=1; do until length=100 write 0ⁱ1ⁱ; i = i+1 od

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

▶ 01010101010101010100...01 can be written as

► (01)⁵⁰

do i=1..50 write 01 od

100

010011000111000011110...11 can be written as

$$\bullet \underbrace{0^{1}1^{1}0^{2}1^{2}\cdots0^{i}1^{i}\cdots}_{0^{i}1^{i}\cdots}$$

i=1; do until length=100 write 0ⁱ1ⁱ; i = i+1 od

110100010011010100101 ··· 00 can be written as

100

print 110100010011010100101...00

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

▶ 01010101010101010100...01 can be written as

► (01)⁵⁰

do i=1..50 write 01 od

100

010011000111000011110...1j can be written as

$$\bullet \underbrace{0^{1}1^{1}0^{2}1^{2}\cdots 0^{i}1^{i}\cdots}_{0^{i}1^{i}\cdots}$$

100

• i=1; do until length=100 write $0^i 1^i$; i = i+1 od

110100010011010100101 ··· 00 can be written as

¹⁰⁰ ► print 1101000100110100101...00 ← random

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Predictable = programmable

Ray Solomonoff (1960): Science as programming

Logical

complexity Dusko Pavlovic Introduction Obscurity Attackers

Directions x-direction y-direction Summary

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

- $Pr(1 \mid 010101010101010101010 \cdots 01) = 0$
- ▶ Pr(1 | 010011000111000011110 ··· 11) = 1
- $Pr(1 \mid 1101000100110101010101 \cdots 00) = \frac{1}{2}$

Algorithmic information

Definition (Solomonoff 1960, Komogorov 1965)

Algorithmic information contained in data *a* is the length of the shortest program that outputs *a*

$$C(a) = \bigwedge_{\{p\}()=a} |p|$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Algorithmic information

Theorem (Schack 1997)

Algorithmic information is the local function that yields entropy as its global average

$$H(q) \approx \int_{i\in I} C(q_i)$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Algorithmic distance

Definition

Algorithmic distance between $a, b \in \mathbb{N}$ is the length of the shortest program that inputs *a* and outputs *b*

$$C(a,b) = \bigwedge_{\{p\}(a)=b} |p|$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction
Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

 Algorithmic information is a measure of impredictability.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 Algorithmic information is a measure of impredictability.

Is algorithmic information a good concept of logical complexity?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

Logical

complexity Dusko Pavlovic Introduction Obscurity Attackers Directions

y-direction

Idea

Charles Bennett: Logical depth

• of an organism: the time it takes to evolve

virus: computationally simple, logically deep

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Idea

Charles Bennett: Logical depth

- of an organism: the time it takes to evolve
 - virus: computationally simple, logically deep

Logical

complexity Dusko Pavlovic

Obscurity Attackers Directions

x-direction y-direction

Summary

- of an algorithm: the time complexity of its derivation
 - PRIMES: computationally simple, logically deep

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Idea

Charles Bennett: Logical depth

- of an organism: the time it takes to evolve
 - virus: computationally simple, logically deep
- of an algorithm: the time complexity of its derivation
 - PRIMES: computationally simple, logically deep
- logical depth measures complexity
 - of evolutionary processes
 - as computational processes

Logical complexity Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Logical complexity

Definition

Logical complexity of $a \in \mathbb{N}$ is the time complexity of the simplest program that outputs *a*

$$D(a) = \bigwedge_{\substack{\{p\}()=a\\C(p)=|a|}} |\{p\}|$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Logical distance

Definition

Logical distance of $a, b \in \mathbb{N}$ is the complexity of the simplest program that inputs a and outputs b

$$D(a,b) = \bigwedge_{\substack{\{p\}(a)=b \ C(a,b)=|p|}} |\{p\}|(|a|)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Idea of logical security

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Summary

S is secure if D(S, A) is "large" for all attacks A.

Idea of logical security

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

 $P \neq NP$

シック・ 川 ・ 川 ・ 川 ・ 一日・

Idea of logical security

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

 $D(\mathcal{L}, \mathbb{Z}_{\mathcal{L}}) \geq D(\mathcal{L}, \ \ulcorner P \neq NP \urcorner)$

Task

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

Implement this idea.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Approach

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

Epistemic game theory of security.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Adaptive attacker: queries the system (still a real computer)

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

If there is a vulnerability, an attack algorithm will make use of it.

・ロト・日本・日本・日本・日本

Game of attack vectors

Fortification

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

System must defend all vectors, Attacker just needs one

・ロト・西ト・山田・山田・山下

Game of attack vectors

Honeypot

System passively observes Attacker

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

・ロト・日本・日本・日本・日本

Game of attack vectores

Sampling

System actively queries Attacker

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

▲□▶▲□▶▲□▶▲□▶ □ のへの

Game of attack vectors

Adaptation

System Attack

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Summary

Attacker must defend all markers, System just needs one

▲□▶▲□▶▲□▶▲□▶ □ のへの

Game of attack vectors

From fortification to adaptation

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

x-direction

y-direction

Adaptive defender: queries the users (another computer)

complexity Dusko Pavlovic Introduction Obscurity Attackers Directions ×direction

Logical

Summary

If the attacker queries the system then the system should query the attacker

It is good to keep the invaders out...

Logical complexity

Dusko Pavlovic

Introduction Obscurity Attackers Directions x-direction y-direction

Summary

・ロト・日本・モート ヨー もくの

... but it is better to bring them in

Logical complexity

Dusko Pavlovic

Introduction Obscurity Attackers Directions x-direction y-direction

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

... but it is better to bring them in

One-way-programming: adaptive immune response

Logical complexity

Dusko Pavlovic

Introduction Obscurity Attackers Directions x-direction y-direction

Summary

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Arms race for algorithms

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Logical

complexity

Arms race for algorithms

Socratic method: Answer questions by questions

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Logical

complexity

Outline

Introduction

Background: Security and obscurity

Idea: Attack models

Approach: Directions

Summary

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

・ロト・日本・山田・山田・山口・

Summary

New directions in security by obscurity

- improve adaptation of system to attack
 - use epistemic game theory in security
 - turn compromise into advantage
 - from fortification to adaptation
- hinder adaptation of attack to system
 - use algorithmic information theory in security

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

- leverage emergent behaviors
 - emergency as logical complexity

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

Obstacles

- complexity of strategies with incomplete information
- incompleteness of theories of logical distance

Logical complexity

Dusko Pavlovic

Introduction

Obscurity

Attackers

Directions

Summary

▲□▶▲□▼▲□▼▲□▼▲□▼▲□▼