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Min-Entropy as a Resource
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 In itself: Anonymity protocols want to keep 
originator identities secret.

 As a tool: Operating systems need to keep 
passwords secret to achieve authentication.

Secrecy is crucial to security goals
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But leaks are hard to avoid

Password checking

Statistical queries

Timings of decryptions

Quantitative Information Flow

 An active area of research for the past decade 
[ClarkHuntMalacaria02, ...]

 Suppose a system gets a secret input S and produces 
an observable output O.

 Want to model “how much” information about S is 
leaked to an adversary A who sees O.

 Can we view the secrecy of S as a “resource” that is 
gradually “consumed” by the system?

 A first, clearcut, example:  O = S & 0x007f;
 If S is a 32-bit integer, and all 232 values are equally 

likely, then this program leaks 7 bits (out of 32) to O.
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 Users wish to communicate 
anonymously with a server.

 The originator first sends the 
message to a randomly-chosen 
forwarder (possibly itself).

 Each forwarder forwards it again with 
probability pf, or sends it to the 
server with probability 1-pf.

 But some crowd members are 
collaborators that report who sends 
them a message.

 Some information about the originator 
may be leaked. But how much???

A subtler example: Crowds Protocol [RubinReiter98]
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Measuring secrecy

 Assume S is a random variable with distribution PS.
 Assume, for the worst case, that PS is known to the 

adversary A.

 Initially, how “secret” or “uncertain” is S to A ?
 Shannon entropy [1948] is a classic measure:

 H(S) = -Σs PS[s] log PS[s]
 But this does not work so well for secrecy.

 If PS = (1/2, 2-1000, 2-1000, 2-1000, 2-1000, ..., 2-1000),
then H(S) = 500.5 bits.

 But half the time A can guess S correctly in one try!
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 Bayes Vulnerability and Min-Entropy

 [Smith09] proposed to focus instead on S’s Bayes 
vulnerability to be guessed by A in one try, and to 
measure secrecy using min-entropy [Rényi61]:

 Definition: V(S) = maxs PS[s] 
 Definition: H∞(S) = -log V(S)

 If PS = (1/2, 2-1000, 2-1000, 2-1000, 2-1000, ..., 2-1000),
then V(S) = 1/2 and H∞(S) = 1 bit.

 [Indeed, the same is true if PS = (1/2, 1/2).]
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Channel matrix C

o1 … on

s1 P[o1|s1] … P[on|s1]

… … ...
sm P[o1|sm] ... P[on|sm]

Secret
input S

PS

P[o1|s1]

P[om|s1]

o1

o2

on

s1

s2

sm

System

Observable 
output O

S has a priori distribution PS .

Systems as information-theoretic channels

Each row of channel matrix C sums to 1.
C is deterministic if each entry is 0 or 1.

Joint and a posteriori distributions
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 Multiplying row s of C by PS[s] gives the joint matrix 
P[s,o] = PS[s]C[s,o]

 By marginalization, we get a random variable O with 
distribution P[o] =  Σs P[s,o].

 Bayes’ Theorem: P[s|o] = P[o|s]P[s]/P[o] = P[s,o]/P[o]
 So for each value o of O, we also get an a posteriori 

distribution PS|o  by normalizing column o of the joint 
matrix.

 Assuming that A knows C and PS, the distribution PS|o 
is what A knows about S if it sees output o.

An example channel and its distributions
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0 0 1/16 1/8
0 1/4 0 1/16
1/8 0 1/16 1/32
1/8 0 1/8 1/32

Joint matrix

0 0 1/3 2/3
0 4/5 0 1/5
4/7 0 2/7 1/7
4/9 0 4/9 1/9

Channel matrix

PS|o1 = (0, 0, 1/2, 1/2)
PS|o2 = (0, 1, 0, 0)
PS|o3 = (1/4, 0, 1/4, 1/2)
PS|o4 = (1/2, 1/4, 1/8, 1/8)A posteriori distributions on S

PS = (3/16, 5/16, 7/32, 9/32)

A priori distribution on S

Distribution on O

PO = (1/4, 1/4, 1/4, 1/4)
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Quantifying leakage

 S’s initial secrecy is H∞(S).
 Need to define S’s remaining secrecy after A sees O.

 Intuitive equation:
“leakage = initial secrecy – remaining secrecy”

 Clearly the “remaining secrecy” is based on the
a posteriori distributions on S.

 But how should it be defined?



V(S|O) and H∞(S|O)

 We consider the average vulnerability, over all runs.
 Definition: V(S|O) = ∑o P[o] V(S|o)

 V(S|O) = ∑o P[o] maxs P[s|o]  = ∑o maxs P[s,o]
 V(S|O) is the complement of the Bayes risk. 

[ChatzikokolakisPalamidessiPanangaden08] 

 Define H∞(S|O), the remaining secrecy, as before.
 Definition: H∞(S|O) = -log V(S|O)

 Not defined by Rényi.
 Not the same as H∞(S|O) = ∑o P[o] H∞(S|o).
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 V(S) = maxs PS[s] = 5/16
 V(S|O) = ∑o maxs P[s,o] = 1/8 + 1/4 + 1/8 + 1/8 = 5/8

V(S) and V(S|O) on example channel
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0 0 1/3 2/3
0 4/5 0 1/5
4/7 0 2/7 1/7
4/9 0 4/9 1/9

Channel matrix

0 0 1/16 1/8
0 1/4 0 1/16
1/8 0 1/16 1/32
1/8 0 1/8 1/32

Joint matrix

A priori distribution PS

(3/16, 5/16, 7/32, 9/32)

0 0 1/16 1/8
0 1/4 0 1/16
1/8 0 1/16 1/32
1/8 0 1/8 1/32

 S’s Bayes vulnerability doubles.
 A priori, A guesses that S is s2.

 A posteriori, A’s best guess for S depends on O:

    o1 → s3 (or s4),   o2 → s2,   o3 → s4,   o4 → s1
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Min-entropy leakage

 Definition: Min-entropy leakage
  LSO  =  H∞(S) - H∞(S|O)  =  log 

 So leaking x bits means increasing the Bayes 
vulnerability by a factor of 2x.

 In the example, LSO = log 2 = 1 bit.

 Definition: Min-capacity
 ML(C) is the maximum min-entropy leakage, over all 
a priori distributions PS.

V(S|O)
  V(S)

Properties of min-entropy leakage

 Theorem: V(S|O) ≥ V(S), so LSO ≥ 0.

 Theorem: ML(C) is the log of the sum of the column 
maximums of C.
 Also, ML(C) is realized by a uniform a priori  PS.

 Corollary: If C is deterministic, then ML(C) is the log 
of the number of feasible outputs.

 Corollary: ML(C) = 0 iff the rows of C are identical.

  LSO = 0 if S and O are independent. Not conversely!

  Indeed LSO = 0 if O never affects A’s best guess.
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Example (“base-rate fallacy”) 

 Consider a good, but imperfect, test for cancer:

 A priori (age 40-50, no symptoms, no family history)
PS[cancer] = 0.008      PS[no cancer] = 0.992
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positive negative

cancer

no cancer

0.90 0.10

0.07 0.93

channel matrix

joint matrix

positive negative

cancer

no cancer

0.00720 0.00080

0.06944 0.92256

column maximums

 V(S|O) = 0.992 = V(S), so LSO = 0.

 Always guess “no cancer”! (P[cancer|positive] ≈ 0.094)

Plan of the talk

 Motivation
 Min-entropy leakage

 Bayes vulnerability, min-entropy, min-capacity
 Basic properties

 Consumption of min-entropy in composed channels
 Channel composition operators
 Bounds on min-entropy leakage of composed channels
 Application to timing attacks on cryptography

 The dynamic perspective on leakage

18

19

Channels in Cascade C1C2 [EspinozaSmith11]

 Formed by multiplying two channel matrices, or by 
factoring a channel matrix.

 Theorem: In channel C1C2, for any PS, LSO ≤ LST.
 Analogue of the data-processing inequality.
 Curiously, we can have LSO > LTO.

 Theorem: ML(C1C2) ≤ min { ML(C1), ML(C2) }

 Corollary [KöpfSmith10]: ML(C1C2) ≤ log|T|
 Here T is the set of feasible values for T.

C2
S T OC1 C2

Repeated independent runs C(n)

 C(n)[s, (o1,o2,...,on)] = ∏i C[s, oi]
 Curiously, even if LSO = 0, we can have LSO2 > 0.
 Theorem [BorealePampoloniPaolini11]:

 ML(C(n)) converges exponentially quickly to the log 
of the number of distinct rows in C.
 Intuitively, distinct rows of the channel matrix can be 

distinguished by repeatedly sampling O.
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S
OC

OC

C O
⋮

(Useful only when
C is probabilistic!)



More on C(n)

 However, ML(C(n)) grows only logarithmically in n.

 Theorem [KöpfSmith10]: ML(C(n)) ≤ |O| log(n+1).
 Here O is the set of feasible values of O.
 The proof factors C(n) into the cascade of two 

channels with a small set T of intermediate values.
 In fact we have ML(C(n)) ≤ log              .

 [Could we get a stronger bound based on ML(C) ?]
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n+|O|-1
     n( )

Application: timing attacks on cryptography

 Remote timing attack [BonehBrumley03].
 1024-bit RSA key recovered in 2 hours from 

standard OpenSSL implementation across LAN.
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SSL Handshake (simplified)

Alert/OK

Enc(pk, nonce)

A can estimate the type to decrypt each nonce with secret key sk.

Effectiveness of blinding and bucketing against 
timing attacks [KöpfSmith10]

 Blinding: randomize ciphertext before decryption, and 
de-randomize after decryption.

 Bucketing: force decryption to take one of a small 
number of possible times.
 Using as few as 5 buckets costs little performance. 

 Thanks to blinding, we have a “repeated independent 
runs” channel, so the previous theorem applies.

 Corollary: With blinding, the min-capacity of the 
timing attack is logarithmic in the number of timing 
observations.
 With 5 buckets (so |O|=5) and 240 timing observations, 

the min-capacity is at most 155.4 bits. 23

A more powerful composition C1 + C2

 The “back arrow” allows adaptive processing.
 C2 can decide what to do based on the output of C1.
 Write C1 +na C2 for composition without the back arrow.

 Theorem [BartheKöpf11]:
    ML(C1 + C2) ≤ ML(C1) + ML(C2)

 [Contrast with ML(C1C2) ≤ min { ML(C1), ML(C2) }.]
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S

O1C1

C2 O2

(Both O1 and O2

are output.)



Examples: Some deterministic channels with two
feasible outputs (giving min-capacity of 1 bit).

 Ei ≡ if (S == ci) O = 1; else O = 0;

 ML(E1 + E1 + ... + En) ≤ log(n+1) bits
 Gi ≡ if (S >= ci) O = 1; else O = 0;

 ML(G1 +na G2 +na ... +na Gn) ≤ log(n+1) bits

 But can have ML(G1 + G2 + ... + Gn) = n bits

 Ai ≡ if (S & 2i-1) O = 1; else O = 0;
 ML(A1 +na A2 +na ... +na An) = n bits.
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if (S >= 512) O1 = 512; else O1 = 0;

if (S >= O1 + 256) O2 = 256; else O2 = 0;

if (S >= O2 + 128) O3 = 128; else O3 = 0;

...

Invariant:
Oi ≤ S < Oi + 210-i
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The dynamic perspective on leakage

 So far, we have considered the static perspective of 
leakage averaged over all runs.

 The dynamic perspective instead considers one 
particular run of C, producing a particular output o.

 In this case A can refine the distribution on S from 
PS to PS|o.

 In the earlier example, seeing o2 shows A that S 
must be s2, since PS|o2 = (0, 1, 0, 0).

 Moreover, if A can run the channel repeatedly, using 
the same value of S each time, then it can repeatedly 
refine its distribution on S.
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Repeated refinement example

 With example channel, if we run repeatedly and 
observe outputs o3, o1, and o3, then we have

 PS             = (3/16, 5/16, 7/32, 9/32)
PS|o3        = (1/4, 0, 1/4, 1/2)

PS|o3o1   = (0, 0, 9/23, 14/23)

PS|o3o1o3 = (0, 0, 81/277, 196/277)
 H∞(S)           = -log(5/16)       ≈ 1.678

H∞(S|o3)       = -log(1/2)         = 1
H∞(S|o3o1)    = -log(14/23)     ≈ 0.716
H∞(S|o3o1o3) = -log(196/277) ≈ 0.708
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A weakness of the dynamic perspective

 A particular run of a password checker could lead to 
total loss of the secret.

 How could we decide whether to allow C if it could 
lead to a total loss?

 Aborting execution in a bad case might itself reveal a 
lot of information!

 And we obviously need to distinguish between
    O = S;
and
    if (S == ci) O = 1; else O = 0;
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Another weakness of the dynamic perspective

 More critically, min-entropy resulting from a 
particular run need not decrease monotonically!

 Suppose PS = (9/10, 1/40, 1/40, 1/40, 1/40) and

 [Example scenario: A medical test that refutes the 
only likely diagnosis.]

 So, under the dynamic perspective, min-entropy does 
not seem to behave as a reasonable “resource”. 30

1 0
0 1
0 1
0 1
0 1

 V(S)     = 9/10     H∞(S)    ≈ 0.152

 V(S|o2) = 1/4      H∞(S|o2) = 2
C =
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Conclusion

 Min-entropy can be viewed as a resource, and its 
leakage as a measure of the consumption of secrecy.

 Future directions:
 Can min-entropy leakage be calculated for large 

systems?
 How do min-entropy leakage and differential privacy 

fit together?
 Min-entropy leakage is purely information theoretic. 

Could computational limits be incorporated?
 Thanks to my collaborators:

Catuscia Palamidessi, Miguel Andrés, Boris Köpf, 
Ziyuan Meng, Barbara Espinoza
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Discussion?
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