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Secrecy is crucial to security goals

In itself: Anonymity protocols want to keep
originator identities secret.
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As a tool: Operating systems need to keep
passwords secret to achieve authentication.
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But leaks are hard to avoid

Password checking
Florida International University - School of

Computer Science Login ERROR

Name: smithg Unknown user or password incorrect.

f,i’ {‘ % Statistical queries

Timings of decryptions ﬁ
i ‘

Quantitative Information Flow

An active area of research for the past decade
[ClarkHuntMalacaria02, ...]

Suppose a system gets a secret input S and produces
an observable output O.

Want to model *how much” information about S is
leaked to an adversary A who sees O.

Can we view the secrecy of S as a “"resource” that is
gradually "consumed” by the system?
A first, clearcut, example: O = S & 0x007f;

If Sis a 32-bit integer, and all 232 values are equally
likely, then this program leaks 7 bits (out of 32) to O.




A subtler example: Crowds Protocol [RubinReiter98]

Users wish to communicate
anonymously with a server.

The originator first sends the ® @) o
message to a randomly-chosen \
forwarder (possibly itself). ®) O

Each forwarder forwards it again with
probability pr, or sends it to the
server with probability 1-ps. O O

But some crowd members are
collaborators that report who sends

them a message.
Server
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Measuring secrecy

Assume S is a random variable with distribution Ps.
Assume, for the worst case, that Ps is known to the
adversary 4.
Initially, how "secret” or “uncertain” is S to A4 ?
Shannon entropy [1948] is a classic measure:

H(S) = -Zs Ps[s] log Ps[s]
But this does not work so well for secrecy.

If PS - (1/2[ 2-10001 2-1000[ 2-1000[ 2-1000[ . 2-1000)[

then H(S) = 500.5 bits.

But half the time A can guess S correctly in one try!

Bayes Vulnerability and Min-Entropy

[Smith09] proposed to focus instead on S's Bayes
vulnerability to be guessed by A in one try, and to

measure secrecy using min-entropy [Rényi61]:
Definition: V(S) = maxs Ps[s]
Definition: H-(S) = -log V(S)

If Ps = (1/2, 21000 -1000 »-1000 »-1000 »-1000)
then V(S) = 1/2 and H~(S) = 1 bit.

[Indeed, the same is true if Ps = (1/2, 1/2).]




Systems as information-theoretic channels

Secret Observable
input S output O
P
s = lodsd | S1 | Ploslss] | ... | Plonlsi]
S = .
P, : ::>
Sm.» Plo,|s;] Sm | Ploilsm] e Plon|sm]
System Channel matrix C

Each row of channel matrix C sums to 1.
Cis deterministic if each entry is O or 1.

S has a priori distribution Py .

Joint and a posteriori distributions

® Multiplying row s of C by Ps[s] gives the joint matrix
P[s,0] = Ps[s]C[s,0]

® By marginalization, we get a random variable O with
distribution P[o] = ZsP[s,0].

" Bayes' Theorem: P[s|o] = P[o|s]P[s]/P[o] = P[s,0]/P[o]

® So for each value o of O, we also get an a posteriori
distribution Ps|, by normalizing column o of the joint
matrix.

B Assuming that A knows C and Ps, the distribution Psj,
is what A knows about S if it sees output o.

An example channel and its distributions

Channel matrix Joint matrix
0O 0 1/3 2/3 0O O 1/16 1/8
0O 45 0 1/5 0O 14 0 1/16
4/7 0 2/7 1/7 1/8 0 1/16 1/32
4/9 0 4/9 1/9 1/8 0 1/8 1/32

(Ps = (3/16,5/16,7/32,9/32) )
/ ( Po=(1/4,1/4,1/4,1/4) )

l— A priori distribution on S

PSlol = (O, 0, 1/2, 1/2)
Distribution on O Psio, = (0,1,0,0)

/ Psios = (1/4, 0, 1/4, 1/2)
A posteriori distributions on S Psioq = (1/2,1/4,1/8,1/8)

Quantifying leakage

B S's initial secrecy is Hw(S).
® Need to define S's remaining secrecy after A sees O.

¥ Intuitive equation:

"leakage = initial secrecy - remaining secrecy”

® Clearly the “"remaining secrecy" is based on the
a posteriori distributions on S.
® But how should it be defined?




V(S|0) and H-(S|0)

We consider the average vulnerability, over all runs.
Definition: V(S|0) = ¥, P[o] V(S|o)

V(S|0) = ¥, P[o] maxs P[s|o] = ¥, maxs P[s,0]
V(S|0) is the complement of the Bayes risk.
[ChatzikokolakisPalamidessiPanangaden08]

Define H-(S|0), the remaining secrecy, as before.
Definition: H.(S|O) = -log V(S|0)

Not defined by Rényi.

Not the same as H-(S|0) = ¥, P[o] H(S]0).
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V(S) and V(S|O) on example channel

Channel matrix Joint matrix

0O 0 1/3 2/3 0O o 1/16 1/8
0O 4/5 0 1/5 A priori distribution Ps 0 1/4 0 1/16
47 0 27y \BONOTE2BIY e o 116 132
4/9 0 4/9 1/9 1/8 0 1/8 1/32

V(S) = maxs Ps[s] = 5/16
V(S|0) = ¥, maxs P[s,0]=1/8+1/4+1/8 +1/8 =5/8
S's Bayes vulnerability doubles.

A priori, A guesses that S is sz.
A posteriori, 4's best guess for S depends on O:

01 > s3(orss), 02 —>S2, 03— S4, 04 Si

Min-entropy leakage

Definition: Min-entropy leakage

L5 = Hu(S) - Ha(S]0) = log Y19

V(S)

So leaking x bits means increasing the Bayes
vulnerability by a factor of 2%,

In the example, L£so = log 2 = 1 bit.

Definition: Min-capacity
‘ML(C) is the maximum min-entropy leakage, over all
a priori distributions Ps.

Properties of min-entropy leakage

Theorem: V(S|0) 2> V(S), so L£s0 2 0.

Theorem: ML(C) is the log of the sum of the column
maximums of C.
Also, ML(C) is realized by a uniform a priori Ps.

Corollary: If Cis deterministic, then ML(C) is the log
of the number of feasible outputs.

Corollary: ML(C) = O iff the rows of C are identical.
Lso = 0 if S and O are independent. Not conversely!
Indeed Lso = 0 if O never affects A's best guess.




Example ("base-rate fallacy")

Consider a good, but imperfect, test for cancer:

channel matrix 0.90 0.10
0.07 0.93

A priori (age 40-50, no symptoms, no family history)
Ps[cancer] = 0.008  Ps[nho cancer] = 0.992

column maximums

joint matrix 0.00720 |0.00080
0.06944<70.92256*

V(5]0) =0.992 = V(S), so Lso = 0.

Always guess “no cancer”! (P[cancer|positive] = 0.094)
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Channels in Cascade CiC> [EspinozaSmithll]

S C T C (0]

Formed by multiplying two channel matrices, or by
factoring a channel matrix.

Theorem: In channel CiCz, for any Ps, L£so < LsT.
Analogue of the data-processing inequality.

Curiously, we can have Lso > Lro.
Theorem: ML(C1C2) < min { ML(C1), ML(C2) }
Corollary [KépfSmith10]: ML(C1C?) ¢ log| T]

Here T is the set of feasible values for T. N

Repeated independent runs €

/Y_> ©
SY—> (o) (Useful only when

: C is probabilistic!)
[C]—oO
CM[s, (01,02,...,0n)] = TTi C[s, 0i]
Curiously, even if Lso = 0, we can have Lso2 > 0.
Theorem [BorealePampoloniPaolinill]:

ML(C™M) converges exponentially quickly to the log
of the number of distinct rows in C.

Intuitively, distinct rows of the channel matrix can be
distinguished by repeatedly sampling O.




More on CM

However, ML(C™) grows only logarithmically in n.
Theorem [KopfSmith10]: ML(C™) < |O] log(n+1).
Here O is the set of feasible values of O.
The proof factors C™ into the cascade of two
channels with a small set T of intermediate values.
In fact we have ML(C™) ¢ Iog( n+|(:| ! )

[Could we get a stronger bound based on ML(C) ?]
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Application: timing attacks on cryptography

Remote timing attack [BonehBrumleyO3].

1024-bit RSA key recovered in 2 hours from
standard OpenSSL implementation across LAN.

SSL Handshake (simplified)

Enc(pk, nonce)

Alert/OK % =
#

A can estimate the type to decrypt each nonce with secret key sk. ‘
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Effectiveness of blinding and bucketing against
timing attacks [KopfSmith10]

Blinding: randomize ciphertext before decryption, and
de-randomize after decryption.

Bucketing: force decryption to take one of a small
number of possible times.

Using as few as 5 buckets costs little performance.
Thanks to blinding, we have a “repeated independent
runs” channel, so the previous theorem applies.
Corollary: With blinding, the min-capacity of the
timing attack is logarithmic in the number of timing
observations.

With 5 buckets (so |0]|=5) and 2% timing observations,

the min-capacity is at most 155.4 bits. -

A more powerful composition C;1 + C

Ci 04
S (Both O1and O2
are output.)

Cor—02

The "back arrow” allows adaptive processing.
C2 can decide what to do based on the output of Ci.
Write Ci +nq C2 for composition without the back arrow.

Theorem [BartheKopf11]:
ML(C1 + C2) < ML(C1) + ML(C?)
[Contrast with ML(C1C2) < min { ML(C1), ML(C?) }.]




Examples: Some deterministic channels with two
feasible outputs (giving min-capacity of 1 bit).

Ei=if(S==¢)0=1else0=0;

ML(E1 + E1 + ... + En) ¢ log(n+1) bits
Gi=if(S>=¢c)0=1else0=0;

ML(G1 +na G2 *na ... +na Gn) < log(n+1) bits
But can have ML(G1 + G2 + ... + Gy) = n bits

if (5>=512) 01=512; else 01 = 0;
if (5>= O1+256) Oz = 256; else 02 = 0; Tnvariant:
if (S>= 0,+128) 03 =128; else 03 = 0; 0i¢<S5<Q;+ 20

Ai=if (S&2™1)0=1;else0=0;
M(Al +nq AZ +na +na An) =n blTS

25

Plan of the talk

Motivation

Min-entropy leakage
Bayes vulnerability, min-entropy, min-capacity
Basic properties

Consumption of min-entropy in composed channels
Channel composition operators
Bounds on min-entropy leakage of composed channels
Application to timing attacks on cryptography

The dynamic perspective on leakage

The dynamic perspective on leakage

So far, we have considered the static perspective of
leakage averaged over all runs.

The dynamic perspective instead considers one
particular run of C, producing a particular output o.
In this case A can refine the distribution on S from
Ps to Psjo.

In the earlier example, seeing o2 shows A that S
must be sz, since Psjo, = (0, 1, 0, 0).

Moreover, if A can run the channel repeatedly, using

the same value of S each time, then it can repeatedly
refine its distribution on S.
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Repeated refinement example

With example channel, if we run repeatedly and
observe outputs 03, 01, and o3, then we have

Ps = (3/16,5/16,7/32,9/32)
Psios = (1/4,0,1/4,1/2)

Psjo301 =(0,0,9/23, 14/23)

Psjoz0103 = (0, 0, 81/277,196/277)
H-(S) = -log(5/16) %1678
H-(S|o03) = -log(1/2) =1
He(Sloso1) = -log(14/23) =0.716
Ho(S|030103) = -log(196/277) =~ 0.708




A weakness of the dynamic perspective

A particular run of a password checker could lead to
total loss of the secreft.

How could we decide whether to allow C if it could
lead to a total loss?

Aborting execution in a bad case might itself reveal a
lot of information!

And we obviously need to distinguish between
O=5;

and
if (S==¢)0=1else0=0;
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Another weakness of the dynamic perspective

More critically, min-entropy resulting from a
particular run need not decrease monotonically!

Suppose Ps = (9/10, 1/40, 1/40, 1/40, 1/40) and

V(S) =9/10 H.(S) #0.152

V(Slo2)=1/4  Hw(S|o2)=2

(9}

1]
o O O O =~
=R = =, O

[Example scenario: A medical test that refutes the
only likely diagnosis.]

So, under the dynamic perspective, min-entropy does
not seem to behave as a reasonable “resource”. ®

Conclusion

Min-entropy can be viewed as a resource, and its
leakage as a measure of the consumption of secrecy.
Future directions:

Can min-entropy leakage be calculated for large
systems?
How do min-entropy leakage and differential privacy
fit together?
Min-entropy leakage is purely information theoretic.
Could computational limits be incorporated?

Thanks to my collaborators:

Catuscia Palamidessi, Miguel Andrés, Boris Kopf,
Ziyuan Meng, Barbara Espinoza
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Discussion?
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