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A principled way to develop nondeterministic concurrent strategies in games
within a general model for concurrency. Following Joyal and Conway, a strategy
from a game G to a game H will be a strategy in G⊥‖H. Strategies will be those
nondeterministic plays of a game which compose well with copy-cat strategies,
within the model of event structures. Consequences, connections and extensions
to winning strategies.
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Event structures
An event structure comprises (E,≤,Con), consisting of a set of events E

- partially ordered by ≤, the causal dependency relation, and

- a nonempty family Con of finite subsets of E, the consistency relation,

which satisfy
{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

Say e, e′ are concurrent if {e, e′} ∈ Con & e 6≤ e′ & e′ 6≤ e.
In games the relation of immediate dependency e _ e′, meaning e and e′ are
distinct with e ≤ e′ and no event in between, will play an important role.
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Configurations of an event structure

The configurations, C∞(E), of an event structure E consist of those subsets
x ⊆ E which are

Consistent: ∀X ⊆fin x. X ∈ Con and

Down-closed: ∀e, e′. e′ ≤ e ∈ x⇒ e′ ∈ x.

For an event e the set [e] =def {e′ ∈ E | e′ ≤ e} is a configuration describing
the whole causal history of the event e.

x ⊆ x′, i.e. x is a sub-configuration of x′, means that x is a sub-history of x′.

If E is countable, (C∞(E),⊆) is a dI-domain (and all such are so obtained).

Often concentrate on the finite configurations C(E).
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Example: Streams as event structures

000 001 010 011 110 111

00

cc OOOO

01

OO ;;

... 11

;;OO

0

cc OO

1

;;

conflict (inconsistency) // immediate causal dependency
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Simple parallel composition

000 001 010 011 110 111

00

cc OOOO

01

OO ;;

... 11

;;OO

0

cc OO

1

;;

aaa aab aba abb bba bbb

aa

cc OOOO

ab

OO <<

... bb

<<OO

a

bb OO

b

<<
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Other examples

© ©

©

_LLR_LLR

©

�ZZe _LLR

©

© © ©

1 2 3

Con = { ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} }

5



Maps of event structures

• Semantics of synchronising processes [Hoare, Milner] can be expressed in terms
of universal constructions on event structures, and other models.

• Relations between models via adjunctions.

In this context, a simulation map of event structures f : E → E′

is a partial function on events f : E ⇀ E′ such that for all x ∈ C(E)

fx ∈ C(E′) and

if e1, e2 ∈ x and f(e1) = f(e2), then e1 = e2. (‘event linearity’)

Idea: the occurrence of an event e in E induces the coincident occurrence of
the event f(e) in E′ whenever it is defined.
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Process constructions on event structures

“Partial synchronous” product: A×B with projections Π1 and Π2,
cf. CCS synchronized composition where all events of A can synchronize with all
events of B. (Hard to construct directly so use e.g. stable families.)

Restriction: E �R, the restriction of an event structure E to a subset of events
R, has events E′ = {e ∈ E | [e] ⊆ R} with causal dependency and consistency
restricted from E.

Synchronized compositions: restrictions of products A × B � R, where R
specifies the allowed synchronized and unsynchronized events.

Projection: Let E be an event structure. Let V be a subset of ‘visible’ events.
The projection of E on V , E↓V , has events V with causal dependency and
consistency restricted from E.
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Product—an example

b (b, ∗) (b, ∗) (b, c)

× =

a

_LLR

c (a, ∗)

_LLR 5 66?

(a, c)

_LLR

(∗, c)
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Concurrent games

Basics

Games and strategies are represented by event structures with polarity, an
event structure in which all events carry a polarity +/−, respected by maps.

The two polarities + and − express the dichotomy:
player/opponent; process/environment; ally/enemy.

Dual, E⊥, of an event structure with polarity E is a copy of the event structure
E with a reversal of polarities; e ∈ E⊥ is complement of e ∈ E, and vice versa.

A (nondeterministic) concurrent pre-strategy in game A is a total map

σ : S → A

of event structures with polarity (a nondeterministic play in game A).
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Pre-strategies as arrows

A pre-strategy σ : A + // B is a total map of event structures with polarity

σ : S → A⊥ ‖ B .

It corresponds to a span of event structures with polarity

S
σ1

~~

σ2

��

A⊥ B

where σ1, σ2 are partial maps of event structures with polarity; one and only one
of σ1, σ2 is defined on each event of S.

Pre-strategies are isomorphic if they are isomorphic as spans.
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Concurrent copy-cat

Identities on games A are given by copy-cat strategies γA : CCA → A⊥ ‖ A
—strategies for player based on copying the latest moves made by opponent.

CCA has the same events, consistency and polarity as A⊥ ‖ A but with causal
dependency ≤CCA given as the transitive closure of the relation

≤A⊥‖A ∪ {(c, c) | c ∈ A⊥ ‖ A & polA⊥‖A(c) = +}

where c ↔ c is the natural correspondence between A⊥ and A. The map γA is
the identity on the common underlying set of events. Then,

x ∈ C(CCA) iff x ∈ C(A⊥ ‖ A) & ∀c ∈ x. polA⊥‖A(c) = + ⇒ c ∈ x .
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Copy-cat—an example

CCA

A⊥ A

a2 	 � ,,2 ⊕ a2

a1 ⊕

_LLR

	

_LLR

�llr a1
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Composing pre-strategies

Two pre-strategies σ : A + // B and τ : B + // C as spans:

S
σ1

~~

σ2

��

A⊥ B

T
τ1

}}

τ2

  

B⊥ C .

Their composition

T�S
(τ�σ)1

{{

(τ�σ)2

""

A⊥ C

where T�S =def (S × T � Syn) ↓ Vis where ...
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S × T
Π1

vv

Π2

))
S

σ1

~~

σ2

��

T
τ1

}}

τ2

��

A⊥ B B⊥ C

Their composition: T�S =def (S × T � Syn) ↓ Vis where

Syn = {p ∈ S × T | σ1Π1(p) is defined & Π2(p) is undefined} ∪

{p ∈ S × T | σ2Π1(p) = τ1Π2(p) with both defined} ∪
{p ∈ S × T | τ2Π2(p) is defined & Π1(p) is undefined} ,

Vis = {p ∈ S × T � Syn | σ1Π1(p) is defined} ∪
{p ∈ S × T � Syn | τ2Π2(p) is defined} .
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Composition via pullback:
Ignoring polarities, the partial map

P

yy %%

S‖C

σ‖C %%

A‖T

A‖τyy

A‖B‖C

��

A‖C

has the partial-total map factorization: P // T�S
τ�σ

// A‖C . [N. Bowler]
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Theorem characterizing concurrent strategies
Receptivity σ : S → A⊥ ‖ B is receptive when σ(x)−⊂−y implies there is a

unique x′ ∈ C(S) such that x−⊂x′ & σ(x′) = y . x −⊂
_

��

x′
_

��

σ(x) −⊂− y

Innocence σ : S → A⊥ ‖ B is innocent when it is

+-Innocence: If s _ s′ & pol(s) = + then σ(s) _ σ(s′) and

−-Innocence: If s _ s′ & pol(s ′) = − then σ(s) _ σ(s′).

[_ stands for immediate causal dependency]

Theorem Receptivity and innocence are necessary and sufficient for copy-cat to
act as identity w.r.t. composition: σ�γA ∼= σ and γB�σ ∼= σ for all σ : A + // B.
[Silvain Rideau, GW]
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Definition A strategy is a receptive, innocent pre-strategy.

; A bicategory, Games, whose

objects are event structures with polarity—the games,

arrows are strategies σ : A + // B

2-cells are maps of spans.

The vertical composition of 2-cells is the usual composition of maps of spans.
Horizontal composition is given by the composition of strategies � (which extends
to a functor on 2-cells via the functoriality of synchronized composition).
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Strategies—alternative description 1
A strategy S in a game A comprises a total map of event structures with
polarityσ : S → A such that
(i) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that

x ⊆ x′ & σx′ = y , i.e. x
_

σ
��

⊆ x′
_

σ
��

σx ⊆− y ,

and
(ii) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that

x′ ⊆ x & σx′ = y , i.e. x′
_

σ
��

⊆ x
_

σ
��

y ⊆+ σx .

[; strategies as presheaves over “Scott order” v =def ⊆+ ◦ ⊇−.]
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Strategies—alternative description 2

A strategy S in a game A comprises a total map of event structures with
polarityσ : S → A such that

(i) σx
a
−−⊂ & polA(a) = − ⇒ ∃!s ∈ S . x

s
−−⊂ & σ(s) = a , for all x ∈ C(S),

a ∈ A.

(ii)(+) If x
e
−−⊂x1

e′

−−⊂ & polS(e) = + in C(S) and σx
σ(e′)
−−⊂ in C(A), then x

e′

−−⊂
in C(S).

(ii)(−) If x
e
−−⊂x1

e′

−−⊂ & polS(e ′) = − in C(S) and σx
σ(e′)
−−⊂ in C(A), then x

e′

−−⊂
in C(S).

Notation x
e
−−⊂y iff x ∪ {e} = y & e /∈ x , for configurations x, y, event e.

x
e
−−⊂ iff ∃y. x

e
−−⊂y.
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Strategies—alternative description 3, via just +-moves

A strategy σ : S → A determines S

σ ⊆−

��

q
// S+

d
~~

A

where q is projection and

d : C(S)→ C(A) s.t. d(x) = σ[x]. Universal property showing d determines σ:

U

f ⊆−

��

g
// S+

d
~~

A

⇒ ∃!φ s.t. U

f
��

φ
//

g

$$

S

σ ⊆−

��

q
// S+

d
~~

A

& σφ = f & qφ = g.
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Deterministic strategies

Say an event structures with polarityS is deterministic iff

∀X ⊆fin S. Neg [X] ∈ ConS ⇒ X ∈ ConS ,

where Neg [X] =def {s′ ∈ S | ∃s ∈ X. polS(s ′) = − & s ′ ≤ s}.
Say a strategy σ : S → A is deterministic if S is deterministic.

Proposition An event structure with polarityS is deterministic iff

x
s
−−⊂ & x

s′

−−⊂ & polS(s) = + implies x ∪ {s, s′} ∈ C(S), for all x ∈ C(S).

Notation x
e
−−⊂y iff x ∪ {e} = y & e /∈ x , for configurations x, y, event e.

x
e
−−⊂ iff ∃y. x

e
−−⊂y.
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Lemma Let A be an event structure with polarity. The copy-cat strategy γA is
deterministic iff A satisfies

∀x ∈ C(A). x
a
−−⊂ & x

a′

−−⊂ & polA(a) = + & polA(a ′) = −
⇒ x ∪ {a, a′} ∈ C(A) . (‡)

Lemma The composition τ�σ of two deterministic strategies σ and τ is
deterministic.

Lemma A deterministic strategy σ : S → A is injective on configurations
(equivalently, σ : S � A ).

; sub-bicategory DetGames, equivalent to an order-enriched category.
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Related work

Ingenuous strategies Deterministic concurrent strategies coincide with the
receptive ingenuous strategies of and Melliès and Mimram.

Closure operators A deterministic strategy σ : S → A determines a closure
operator ϕ on C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S | pol(s) = + & Neg [{s}] ⊆ x} .

The closure operator ϕ on C∞(S) induces a partial closure operator ϕp on C∞(A)
and in turn a closure operator ϕ>p on C∞(A)> of Abramsky and Melliès.

Simple games “Simple games” of game semantics arise when we restrict Games
to objects and deterministic strategies which are ‘tree-like’—alternating polarities,
with conflicting branches, beginning with opponent moves.
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Stable spans, profunctors and stable functions The sub-bicategory of Games
where the events of games are purely +ve is equivalent to the bicategory of stable
spans:

S
σ1

~~

σ2

��

A⊥ B

←→ S+
σ−1

~~

σ+
2

!!

A B ,

where S+ is the projection of S to its +ve events; σ+
2 is the restriction of σ2 to

S+ is rigid; σ−2 is a demand map taking x ∈ C(S+) to σ−1 (x) = σ1[x].
Composition of stable spans coincides with composition of their associated
profunctors.

When deterministic (and event structures are countable) we obtain a sub-
bicategory equivalent to Berry’s dI-domains and stable functions.
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Winning conditions

A game with winning conditions comprises

G = (A,W )

where A is an event structure with polarity and W ⊆ C∞(A) consists of the
winning configurations for Player.

Define the losing conditions to be L =def C∞(A) \W .
[Can generalize to winning, losing and neutral conditions.]
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Winning strategies

Let G = (A,W ) be a game with winning conditions.

A strategy in G is a strategy in A.

A strategy σ : S → A in G is winning (for Player) if σx ∈ W , for all +-maximal
configurations x ∈ C∞(S).

[A configuration x is +-maximal if whenever x
s
−−⊂ then the event s has −ve

polarity.]

A winning strategy prescribes moves for Player to avoid ending in a losing
configuration, no matter what the activity or inactivity of Opponent.
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Characterization via counter-strategies

Informally, a strategy is winning for Player if any play against a counter-
strategy of Opponent results in a win for Player.

A counter-strategy, i.e. a strategy of Opponent, in a game A is a strategy in the
dual game, so τ : T → A⊥.

What are the results 〈σ, τ〉 of playing strategy σ against counter-strategy τ?

Note σ : ∅ + // A and τ : A + // ∅ ...
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Composition of pre-strategies without hiding

S × T � Syn
Π1

uu

Π2

**
S

σ1

~~

σ2

��

T
τ1

}}

τ2

��

A⊥ B B⊥ C
where

Syn = {p ∈ S × T | σ1Π1(p) is defined & Π2(p) is undefined} ∪

{p ∈ S × T | σ2Π1(p) = τ1Π2(p) with both defined} ∪
{p ∈ S × T | τ2Π2(p) is defined & Π1(p) is undefined} .
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Special case

S × T � Syn
Π1

uu

Π2

**
S

��

σ

��

T
τ
~~

��

∅ A A⊥ ∅
where

Syn = {p ∈ S × T | σΠ1(p) = τΠ2(p) with both defined} .

Define results, 〈σ, τ〉 =def {σΠ1z | z is maximal in C∞(S × T � Syn)} .
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Characterization of winning strategies

Lemma Let σ : S → A be a strategy in a game (A,W ). The strategy σ is a
winning for Player iff 〈σ, τ〉 ⊆W for all (deterministic) strategies τ : T → A⊥.

Its proof uses a key lemma:

Lemma Let σ : S → A⊥‖B and τ : B⊥‖C be receptive pre-strategies. Then,

z ∈ C∞(S × T � Syn) is +-maximal iff

Π1z ∈ C∞(S) is +-maximal & Π2z ∈ C∞(T ) is +-maximal.
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Examples

⊕

	

_LLR
with W = {∅, {	,⊕}} has a winning strategy. 	

⊕

_LLR
, W = {{⊕}} has not.

	 ⊕ has a winning strategy only if W comprises all configurations.

	 ⊕

⊕

�ZZe _LLR
the empty strategy is winning if ∅ ∈W .
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Operations on games with winning conditions

Dual G⊥ = (A⊥,WG⊥) where, for x ∈ C∞(A),

x ∈WG⊥ iff x /∈WG .

Parallel composition For G = (A,WG), H = (B,WH),

G‖H =def (A‖B, WG‖C∞(B) ∪ C∞(A)‖WH)

where X‖Y = {{1} × x ∪ {2} × y | x ∈ X & y ∈ Y } when X and Y are
subsets of configurations. To win is to win in either game. Unit of ‖ is (∅, ∅).
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Derived operations

Tensor Defining G ⊗H =def (G⊥‖H⊥)⊥ we obtain a game where to win is to
win in both games G and H—so to lose is to lose in either game. More explicitly,

(A,WA)⊗ (B,WB) =def (A‖B, WA‖WB) .

The unit of ⊗ is (∅, {∅}).

Function space With G ( H =def G
⊥‖H a win in G ( H is a win in H

conditional on a win in G:

Proposition Let G = (A,WG) and H = (B,WH) be games with winning
conditions. Write WG(H for the winning conditions of G ( H. For x ∈
C∞(A⊥‖B),

x ∈WG(H iff x1 ∈WG ⇒ x2 ∈WH .
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The bicategory of winning strategies

Lemma Let σ be a winning strategy in G( H and τ be a winning strategy in
H ( K. Their composition τ�σ is a winning strategy in G( K.

But copy-cat need not be winning: Let A consist of ⊕ 	 . The event

structure CCA:

A⊥ 	 � ,,2 ⊕ A

⊕ 	�llr

Taking x = {	,	} makes x +-maximal, but x1 ∈W while x2 /∈W .

A robust sufficient condition for copy-cat to be winning: copy-cat is deterministic.
[The Aarhus lecture notes give a necessary and sufficient condition.]
; bicategory of games with winning strategies.
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Two applications
Total strategies: To pick out a subcategory of total strategies (where Player
can always answer Opponent) within simple games.

Determinacy of concurrent games: A necessary condition on a game A
for (A,W ) to be determined for all winning conditions W : that copy-cat γA
is deterministic. Not sufficient to ensure determinacy w.r.t. all Borel winning
conditions. Think sufficient for determinacy if winning conditions W are closed
w.r.t. local Scott topology, and in particular for finite games [sketchy proof].

There must be many more!

Aarhus Lecture notes: http://daimi.au.dk/∼gwinskel/

A next step: back-tracking in games via “copying” monads in event structures
with symmetry.
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Counterexamples to Borel determinacy

(1) 	 ⊕ with W = {{⊕}}, copy-cat is nondeterministic.

(2)

	 � ,,2 	 � ,,2 	 � ,,2 · · · � ,,2 	 � ,,2 · · ·

⊕
where Player wins iff

Opponent plays finite no. of 	 moves and Player does nothing
or
Opponent plays all 	 moves and Player the single ⊕ move.
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