Exercises for Chapter 3 of An Introduction to Description Logic

June 4, 2017

Exercise 1 Prove the following claim:

If the \mathcal{ALC} concept C is satisfiable w.r.t. the \mathcal{ALC} TBox \mathcal{T} , then for all $n \geq 1$ there is a finite model \mathcal{I}_n of \mathcal{T} such that $|C^{\mathcal{I}_n}| \geq n$. Would the claim still be true if $|C^{\mathcal{I}_n}| = n$ were required?

Exercise 2 Show that the extension of \mathcal{ALC} with self restrictions (see Table A.1 on page 229) is more expressive than \mathcal{ALC} .

Exercise 3 Define a notion of bisimulation that is appropriate for the DL \mathcal{ALCN} in the sense that elements bisimular w.r.t. this notion behave the same w.r.t. all \mathcal{ALCN} concepts. Use this to show that \mathcal{ALCQ} is more expressive than \mathcal{ALCN} .

Exercise 4 Show that \mathcal{ALCN} is closed under disjoint union.

Exercise 5 Show that bisimulations are closed under union and composition, but not under intersection.

Exercise 6 In this exercise we consider bisimulations between an interpretation \mathcal{I} and itself. We call these bisimulations on \mathcal{I} . For two elements d_1, d_2 of $\Delta^{\mathcal{I}}$ we write $d_1 \approx_{\mathcal{I}} d_2$ if they are bisimular, i.e., if there is a bisimulation ρ on \mathcal{I} such that $(\mathcal{I}, d_1) \rho (\mathcal{I}, d_2)$.

- 1. Show that the relation $\approx_{\mathcal{I}}$ is an equivalence relation on $\Delta^{\mathcal{I}}$.
- 2. Describe $\approx_{\mathcal{J}}$ for the tree model \mathcal{J} in Figure 3.5 on page 63.
- 3. Show that there is a bisimulation ρ on \mathcal{I} such that $\rho = \approx_{\mathcal{I}}$.
- 4. Show that, for finite interpretations \mathcal{I} , the relation $\approx_{\mathcal{I}}$ can be computed in time polynomial in the cardinality of $\Delta^{\mathcal{I}}$.

Exercise 7 Consider an interpretation \mathcal{I} and the equivalence relation $\approx_{\mathcal{I}}$ on $\Delta^{\mathcal{I}}$ as introduced in Exercise 6. We denote the $\approx_{\mathcal{I}}$ -equivalence class of $d \in \Delta^{\mathcal{I}}$

by $[d]_{\approx_{\mathcal{I}}}$. Now use $\approx_{\mathcal{I}}$ in place of \simeq_S in the construction of the filtration \mathcal{J} in Definition 3.14.

Show that the relation

$$\rho = \{ (d, [d]_{\approx_{\mathcal{I}}}) \mid d \in \Delta^{\mathcal{I}} \}$$

is a bisimulation between \mathcal{I} and \mathcal{J} . Show that this implies the following: if \mathcal{I} is a model of the \mathcal{ALC} concept C w.r.t. the \mathcal{ALC} TBox \mathcal{T} , then so is \mathcal{J} . Why can we not derive the finite model property of \mathcal{ALC} from this fact?

Exercise 8 In this exercise, we consider simulations, which are "one-sided" variants of bisimulations. Given interpretations \mathcal{I}_1 and \mathcal{I}_2 , the relation $\sigma \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is a *simulation* between \mathcal{I}_1 and \mathcal{I}_2 if

• $d_1 \sigma d_2$ implies

if
$$d_1 \in A^{\mathcal{I}_1}$$
 then $d_2 \in A^{\mathcal{I}_2}$

for all $d_1 \in \Delta^{\mathcal{I}_1}, d_2 \in \Delta^{\mathcal{I}_2}$, and $A \in \mathbf{C}$;

• $d_1 \sigma d_2$ and $(d_1, d'_1) \in r^{\mathcal{I}_1}$ implies the existence of $d'_2 \in \Delta^{\mathcal{I}_2}$ such that

 $d'_1 \sigma d'_2$ and $(d_2, d'_2) \in r^{\mathcal{I}_2}$

for all $d_1, d'_1 \in \Delta^{\mathcal{I}_1}, d_2 \in \Delta^{\mathcal{I}_2}$, and $r \in \mathbf{R}$.

We define

$$(\mathcal{I}_1, d_1) \stackrel{\sim}{\sim} (\mathcal{I}_2, d_2)$$
 if there is a simulation σ between \mathcal{I}_1 and \mathcal{I}_2
such that $d_1 \sigma d_2$.

1. Prove that

$$(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$$
 implies $(\mathcal{I}_1, d_1) \stackrel{\sim}{\sim} (\mathcal{I}_2, d_2)$ and $(\mathcal{I}_2, d_2) \stackrel{\sim}{\sim} (\mathcal{I}_1, d_1)$

- 2. Is the converse of the implication in 1. also true?
- 3. Consider the DL \mathcal{EL} , which has the constructors conjunction, existential restriction, and top (see Chapter 6), and show that for \mathcal{EL} concepts, the following one-sided variant of Theorem 3.2 holds:

If $(\mathcal{I}_1, d_1) \stackrel{\sim}{\sim} (\mathcal{I}_2, d_2)$, then the following holds for all \mathcal{EL} concepts C:

If
$$d_1 \in C^{\mathcal{I}_1}$$
 then $d_2 \in C^{\mathcal{I}_2}$.

- 4. Which of the constructors disjunction, negation, or value restriction can be added to \mathcal{EL} without losing the property shown in 3.
- 5. Show that \mathcal{ALC} is more expressive than \mathcal{EL} .
- 6. Show that \mathcal{ELI} , the extension of \mathcal{EL} with inverse roles, is more expressive than \mathcal{EL} .

Exercise 9 Apply filtration to the tree model \mathcal{J} in Figure 3.5 on page 63.

Exercise 10 Show that the exponential bound given in Theorem 3.16 cannot be improved on. For this purpose, define a sequence $(\mathcal{T}_n, C_n)_{n\geq 1}$ of \mathcal{ALC} TBoxes \mathcal{T}_n and concepts C_n such that

- 1. the sizes of \mathcal{T}_n and C_n are polynomial in n; and
- 2. no model of C_n with respect to \mathcal{T}_n can contain less than 2^n elements.

Exercise 11 Show that \mathcal{ALCN} and \mathcal{ALCI} have the bounded model property.

Exercise 12 Show that an \mathcal{ALC} concept *C* of size *n* has a tree model (with respect to the empty TBox) of depth at most *n*, where the depth of a tree model is the length of the longest path from the root to a leaf of the corresponding tree.

Exercise 13 Consider the TBox

$$\mathcal{T} = \{ A \sqsubseteq \exists r.A, B \sqsubseteq \exists s.B, \neg A \sqsubseteq \forall s.A, \neg B \sqsubseteq \forall r.B \}$$

and the concept $C = A \sqcap B$.

- 1. Construct two tree models of C with respect to \mathcal{T} such that the underlying trees are not isomorphic.
- 2. Apply filtration to these two tree models.
- 3. What is the minimal cardinality of a model of C with respect to \mathcal{T} .

Exercise 14 The tree model property of \mathcal{ALC} also implies the *connected model* property, i.e., if the \mathcal{ALC} concept C is satisfiable with respect to the \mathcal{ALC} TBox \mathcal{T} , then its is satisfiable in a connected model, i.e., in a model \mathcal{I} of \mathcal{T} that contains an element d such that $d \in C^{\mathcal{I}}$ and every element of \mathcal{I} is reachable via a role path from d.

Show the connected model property of \mathcal{ALC} without using the tree model property or unravelling.