Exercises for Chapter 4 of An Introduction to Description Logic

June 2, 2017

Exercise 1 Given an \mathcal{ALC} TBox \mathcal{T} , we say that a concept name A is undefined in \mathcal{T} if \mathcal{T} does not contain a concept definition axiom with A on its left hand side; i.e., \mathcal{T} does not contain an axiom of the form $A \sqsubseteq C$ or $A \equiv C$. Define a procedure for transforming an acyclic \mathcal{ALC} TBox \mathcal{T} into an equivalent TBox \mathcal{T}' in which the concept descriptions on the right hand side of concept definition axioms include only undefined concepts. Prove that

1. this procedure always terminates, and

2. that \mathcal{T} is equivalent to \mathcal{T}' (i.e., that they have the same models).

Hint. consider the decision procedure for acyclic knowledge base consistency presented in 4.2.2.

Exercise 2 Consider the TBox

 $\mathcal{T} \coloneqq \{ \neg (A \sqcup B) \sqsubseteq \bot, \quad A \sqsubseteq \neg B \sqcap \exists r.B, \quad D \sqsubseteq \forall r.A, \quad B \sqsubseteq \neg A \sqcap \exists r.A \},$

and the ABox

 $\mathcal{A} := \big\{ r(a,b), \ r(a,c), \ r(a,d), \ r(d,c), \ (B \sqcap \forall r.D)(a), \ E(b), \ (\neg A)(c), \ (\exists s. \neg D)(d) \big\},$

Show how a tableau algorithm would be used to check the consistency of:

- 1. $\langle \mathcal{T}, \emptyset \rangle$,
- 2. $\langle \emptyset, \mathcal{A} \rangle$, and
- 3. $\langle \mathcal{T}, \mathcal{A} \rangle$.

In case any of them is consistent, specify the witness model.

Exercise 3 Show how the tableau algorithm from 4.2.3 can be used to decide whether the following subsumption holds:

$$\neg \forall r.A \sqcap \forall r.C \sqsubseteq_{\mathcal{T}} \forall r.E$$

where $\mathcal{T} = \{ C \equiv (\exists r. \neg B) \sqcap \neg A, D \equiv \exists r. B, E \equiv \neg (\exists r. A) \sqcap \exists r. D \}.$

Exercise 4 Prove local correctness for the lazy expansion rule \equiv_2 .

Exercise 5 Compare the tableau algorithm (with eager expansion) to the tableau algorithm extended with the \equiv_1 - and \equiv_2 -rules (lazy expansion) by applying both methods to check whether A is satisfiable w.r.t. \mathcal{T} , where

$$\mathcal{T} \coloneqq \{A \equiv \neg B \sqcap B, \ B \equiv \exists r. \exists s. (C \sqcap D)\}.$$

- 1. What is the maximal number of complete ABoxes obtained in the set of ABoxes by eager expansion? What is the minimal number for lazy expansion?
- 2. What is the maximal number of rule applications by eager expansion? What is the minimal number for lazy expansion?
- 3. What is the maximal number of assertions in a complete ABox obtained by eager expansion? What is the minimal number for lazy expansion?
- 4. Give $\kappa(\mathcal{M})$ for all sets \mathcal{M} of ABoxes considered in the tableau algorithm with eager expansion.
- 5. Give $\kappa_{\mathcal{T}}(\mathcal{M})$ for all sets \mathcal{M} of ABoxes considered in the tableau algorithm with lazy expansion.

Exercise 6 The tableau algorithm for checking consistency of \mathcal{ALC} -ABoxes w.r.t. general TBoxes can be extended to inverse roles by adapting the \exists -rule and \forall -rule as follows: Let C be an \mathcal{ALCI} -concept, and r an \mathcal{ALCI} -role, i.e. r denotes a role or an inverse role name, and $(r^{-1})^{-1} = r$ holds.

- ∃-rule: Condition: \mathcal{A} contains $(\exists r.C)(a)$, *a* is not blocked, but there is no *b* with either $\{r(a,b), C(b)\} \subseteq \mathcal{A}$ or $\{r^{-1}(b,a), C(b)\} \subseteq \mathcal{A}$
 - Action: $\mathcal{A}' \coloneqq \mathcal{A} \cup \{r(a, b), C(b)\}$ for a new individual b not occuring in \mathcal{A}
- ∀-rule: Condition: $(\forall r.C)(a) \in \mathcal{A}$ and $r(a,b) \in \mathcal{A}$ or $r^{-1}(b,a) \in \mathcal{A}$, but $C(b) \notin \mathcal{A}$

Action: $\mathcal{A}' \coloneqq \mathcal{A} \cup \{C(b)\}$

- 1. Which blocking condition needs to be introduced to obtain a correct decision procedure?
- 2. Is the extended tableau algorithm for \mathcal{ALCI} sound and complete?

Exercise 7 We consider another form of blocking, where an individual can be blocked by an individual that is not necessarily an ancestor: *anywhere blocking*. Instead of the depth of an individual and the ancestor relation, it uses the age of an individual and the relation <.

The *age* of an individual x, denoted by age(x), is defined as 0 for old individuals and n for a new individual x which was generated by the *n*th application of the \exists -rule.

Let \mathcal{A} be an ABox obtained by applying the tableau rules and the \sqsubseteq -rule to an initial ABox \mathcal{A}_0 . A new individual x is *anywhere blocked* by an individual ain \mathcal{A} iff

- $\{C \mid C(x) \in \mathcal{A}\} \subseteq \{D \mid D(a) \in \mathcal{A}\}, \text{ and }$
- age(a) < age(x).

Prove that the tableau algorithm with anywhere blocking is a decision procedure for consistency of \mathcal{ALC} -knowledge bases with general TBoxes. **Hint:** For what subset of the complete tableau do we need to construct a model?

Exercise 8 Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}_0 \rangle$ be an \mathcal{ALC} -knowledge base, where \mathcal{T} is a general TBox. The *precompletion of* \mathcal{K} is the set of ABoxes \mathcal{M} that is produced by the tableau algorithm when starting with the set of ABoxes $\{\mathcal{A}_0\}$ and exhaustively applying all tableau rules except the modified \exists -rule.

1. Show that \mathcal{K} is consistent iff there is an open ABox $\mathcal{A} \in \mathcal{M}$ such that for all individual names *a* occurring in \mathcal{A} , the concept $C^a_{\mathcal{A}} \coloneqq \prod_{C(a) \in \mathcal{A}} C$ is

satisfiable w.r.t. \mathcal{T} .

Hint: For the "if" direction, proceed as follows: The correctness of the tableau algorithm for \mathcal{ALC} implies that, if $C^a_{\mathcal{A}}$ is satisfiable, then exhaustively applying all (!) rules to the set of ABoxes $\{\{C^a_{\mathcal{A}}(a)\}\}$ yields a set \mathcal{M}' that contains an open and complete ABox. Show how to join all these ABoxes to obtain an open and complete tableau for \mathcal{A} and conclude that \mathcal{A}_0 is consistent w.r.t. \mathcal{T} .

2. Use the result from a) to prove that ABox consistency in \mathcal{ALC} can be decided in deterministic exponential time.

Exercise 9 Show that the size of $|C|_{\mathcal{T}}$ of a concept C w.r.t. an acyclic TBox \mathcal{T} is well-defined.

Exercise 10 For each of the following \mathcal{ALC} -concept descriptions C and \mathcal{ALC} -TBoxes \mathcal{T} , decide whether C is satisfiable w.r.t. \mathcal{T} by using the tableau algorithm for ABox consistency (Section 4.2.1), acyclic KB consistency (Section 4.2.2) or general KB consistency (Section 4.2.3) in order to construct a model or show that no model exists. In each case use the simplest applicable algorithm, and explain why it is applicable.

1.
$$C := A$$

 $\mathcal{T} := \{A \sqsubseteq \neg A\}$
2. $C := A$
 $\mathcal{T} := \emptyset$

3.
$$C := A \sqcap \exists r.A$$
$$\mathcal{T} := \{A \sqsubseteq \forall r.\neg A\}$$

4.
$$C := A \sqcap \exists r.(B \sqcup \exists r.C)$$
$$\mathcal{T} := \{A \sqsubseteq \forall r.\neg B\}$$

5.
$$C := A \sqcap \exists r.(B \sqcup \exists r.C)$$
$$\mathcal{T} := \{A \sqsubseteq \forall r.\neg B, \neg B \sqsubseteq \forall r.\neg C\}$$

Exercise 11 Use a tableau algorithm to decide whether the following \mathcal{ALC} -knowledge base is consistent:

$$\mathcal{T} \coloneqq \{ A \sqcap \forall r. \neg A \sqsubseteq \bot \} \\ \mathcal{A} \coloneqq \{ (\forall r. \neg A)(a), \ (\exists r. A)(b), \ r(a, b) \}$$