Exercises for Chapter 5 of An Introduction to Description Logic

June 9, 2017

Exercise 1 Complete the proof of Proposition 5.1 (conversion of acyclic TBoxes into NNF) by establishing correctness of the transformation stated there.

Exercise 2

1. Let \mathcal{T} be an acyclic TBox in NNF, let $\mathcal{T}^{\sqsubseteq}$ be obtained from \mathcal{T} by replacing each definition $A \equiv C \in \mathcal{T}$ with $A \sqsubseteq C$, and let A_0 be a concept name. Prove that A_0 is satisfiable w.r.t. \mathcal{T} iff A_0 is satisfiable w.r.t. $\mathcal{T}^{\sqsubseteq}$.

Hint: Show how to extend a model of $\mathcal{T}^{\sqsubseteq}$ to a model of \mathcal{T} by making the extension of defined concept names larger, proceeding along the " \prec " order defined in the proof of Lemma 5.4.

2. Find an example which shows that the above need not be true when \mathcal{T} is not in NNF.

Exercise 3 Transform the following acyclic TBox into simple form, following exactly the steps used in Section 5.1.1:

Exercise 4 Use the \mathcal{ALC} -worlds algorithm to decide satisfiability of the concept name A_0 w.r.t. the following acyclic TBox:

$$\begin{array}{rcl} A_{0} & \equiv & A_{1} \sqcap A_{2} \\ A_{1} & \equiv & \exists r.A_{3} & A_{3} & \equiv & P \\ A_{2} & \equiv & A_{4} \sqcap A_{5} \\ A_{4} & \equiv & \exists r.A_{6} & A_{6} & \equiv & Q \\ A_{5} & \equiv & A_{6} \sqcap A_{7} \\ A_{6} & \equiv & \forall r.A_{1} \\ A_{7} & \equiv & \forall r.A_{8} & A_{8} & \equiv & \forall r.A_{9} & A_{9} \equiv \neg P \end{array}$$

Draw the recursion tree of a successful run and of an unsuccessful run. Does the algorithm return a positive or a negative result on this input?

Exercise 5 Determine whether or not Player 1 has a winning strategy in the following finite Boolean games, where in both cases $\Gamma_1 = \{p_1, p_3\}$ and $\Gamma_2 = \{p_2, p_4\}$:

- 1. $((p_1 \land p_3) \rightarrow \neg p_2) \land (\neg p_1 \rightarrow p_1) \land (\neg p_2 \rightarrow (p_3 \lor p_4))$
- 2. $(p_1 \lor \neg p_2) \land (p_2 \lor p_3) \land (\neg p_3 \lor \neg p_4) \land (\neg p_1 \lor \neg p_2 \lor p_3 \lor p_4)$

Exercise 6 Use the \mathcal{ALC} -elim algorithm to decide satisfiability of

- 1. the concept name A w.r.t. $\mathcal{T} = \{A \sqsubseteq \exists r.A, \top \sqsubseteq A, \forall r.A \sqsubseteq \exists r.A\}$
- 2. the concept $\forall r.\forall r.\neg B$ w.r.t. $\mathcal{T} = \{\neg A \sqsubseteq B, A \sqsubseteq \neg B, \top \sqsubseteq \neg \forall r.A\}$

Give the constructed type sequence $\Gamma_0, \Gamma_1, \ldots$ In case of satisfiability, also give the satisfying model constructed in the proof of Lemma 5.10.

Exercise 7 Extend the \mathcal{ALC} -elim algorithm to the description logics \mathcal{ALCH} and \mathcal{ALCI} . Prove the correctness of the extended algorithms.

Exercise 8 Prove that, in the extension \mathcal{ALC}_{R^+} of \mathcal{ALC} with transitive roles, concept satisfiability w.r.t. TBoxes is decidable. Use a polynomial time reduction to the same problem in \mathcal{ALC} . Proceed as follows:

- given an \mathcal{ALC}_{R^+} TBox \mathcal{T} , assume w.l.o.g. that \mathcal{T} contains only a single GCI (as well as role transitivity axioms), and that this GCI is of the form $\top \sqsubseteq C_{\mathcal{T}}$;
- consider the \mathcal{ALC} TBox \mathcal{T}' that contains $\top \sqsubseteq C_{\mathcal{T}}$ and, for each $\mathsf{Trans}(r) \in \mathcal{T}$ and each subconcept of (a concept in) \mathcal{T} of the form $\forall r.C$, the additional GCI $\forall r.C \sqsubseteq \forall r.\forall r.C$;
- prove that for all concept names A, the following is true: A is satisfiable w.r.t. T iff A is satisfiable w.r.t. T'.

Exercise 9 Consider the following infinite Boolean games and determine whether Player 2 has a winning strategy. If this is the case, give the strategy. Otherwise describe how Player 1 has to play to win. In both games, the initial configuration t_0 assigns false to all variables.

- 1. $\varphi = (p_1 \wedge p_2 \wedge \neg q_1) \vee (p_3 \wedge p_4 \wedge \neg q_2) \vee (\neg (p_1 \vee p_4) \wedge q_1 \wedge q_2), \Gamma_1 = \{p_1, \dots, p_4\}, \Gamma_2 = \{q_1, q_2\}$
- 2. $\varphi = ((p_1 \leftrightarrow \neg q_1) \land (p_2 \leftrightarrow \neg q_2) \land (p_1 \leftrightarrow p_2)) \lor ((p_1 \leftrightarrow q_1) \land (p_2 \leftrightarrow q_2) \land (p_1 \leftrightarrow \neg p_2)), \Gamma_1 = \{p_1, p_2\}, \Gamma_2 = \{q_1, q_2\}$

Exercise 10 Are the following variations of infinite Boolean games also EXPTIME-hard?

- 1. Player 1 wins if the constructed truth assignment falsifies the formula, instead of satisfying it;
- 2. Player 2 starts instead of Player 1;
- 3. The variables are not assigned to a specific player; instead, the active player can choose any variable and assign it a truth value; variables can be chosen multiple times.

Exercise 11 Prove Lemma 5.12 (correctness of the reduction of the existence of winning strategies in infinite Boolean games to concept satisfiability in \mathcal{ALC} w.r.t. general TBoxes).

Exercise 12 The *universal role* is a role name u whose interpretation is fixed as $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ in any interpretation \mathcal{I} . Let \mathcal{ALC}^u denote the extension of \mathcal{ALC} with the universal role. Show that concept satisfiability in \mathcal{ALC}^u is EXPTIME-complete (without TBoxes).

Hint: for the upper bound, find a polynomial-time reduction to concept satisfiability in \mathcal{ALCOI} ; for the lower bound, reduce concept satisfiability in \mathcal{ALCOI} ; w.r.t. general TBoxes.

Exercise 13 Let a *cardinality axiom* be of the form $(C \ge n)$ or $(C \le n)$ where C is a concept and $n \ge 0$. An interpretation \mathcal{I} satisfies $(C \ge n)$ if the cardinality of $C^{\mathcal{I}}$ is at least n, and likewise for $(C \le n)$. Determine the complexity of concept satisfiability w.r.t. general TBoxes in \mathcal{ALC} with cardinality axioms.

Exercise 14 For $i \geq 0$, let \mathcal{ALCOIQ}_i denote the fragment of \mathcal{ALCOIQ} in which only *i* nominals are available. Prove that there is a polynomial time reduction from the satisfiability of \mathcal{ALCOIQ} concepts to the satisfiability of \mathcal{ALCOIQ}_1 concepts (both without TBoxes).

Exercise 15 Complete the proof of Proposition 5.22 (undecidability of \mathcal{ALC} with local role value maps) by showing that D is satisfiable if and only if C is satisfiable.

Exercise 16 Construct a two-register machine that, started with register contents n and m, terminates after finitely many steps with the first register containing n + m. Is it also easy to multiply two numbers with only two registers?

Exercise 17 Find out for which of the following concrete domains D_i , concept satisfiability w.r.t. general TBoxes is decidable:

1. Δ^{D_1} is the set of all non-negative numbers and Φ^{D_1} contains a unary predicate $=_k$ for each $k \in \Delta^{\mathsf{D}_1}$ with $(=_k)^{\mathsf{D}_1} = \{k\}$.

2. Δ^{D_2} is the set of all finite words over the alphabet $\{a, b\}$ and Φ^{D_2} contains the ternary concatenation predicate \circ and the binary equality predicate =, with the obvious extensions. In particular, $\circ^{\mathsf{D}_2} = \{(u, v, w) \mid w = u \circ v\}.$

Exercise 18 If you feel brave, prove undecidability of \mathcal{ALC} with global role value maps by reducing the halting problem for two-register machines instead of the tiling problem.