
Maintaining Software Package
Installations and Repositories

for Free and Open Source Software Distributions

Ralf Treinen

PPS, Université Paris Diderot

January 13, 2012

This is joint work with

Pietro Abate Jaap Boender Yacine Boufkhad
IRILL now U Bologna LIAFA, U Paris-7

Roberto Di Cosmo Jérôme Vouillon Stefano Zacchiroli
IRILL IRILL IRILL

Contents

1 Distributions in the FOSS Ecosystem

2 Modelization and analysis of package relationships

3 Activities

The notion of distribution

How do you compose a system by selecting components from tens
of thousands developed independently?

A new idea from FOSS: distributions as intermediaries between
developers and their users

Key notions: package & package managers

The FOSS Distribution Forest

FOSS is special:

1 “reuse, reuse, reuse” ⇒
tons of small components
sharing: avoiding code duplication is importance for long-term
maintenance
packages are heavily interconnected in various ways

2 “release early, release often” ⇒
systems—as wholes—change on a daily basis
In debian, hundreds of packages change every day

Packages and their metadata

Package =

{
some files
some scripts
metadata

Identification

Inter-package rel.

Dependencies
Conflicts

Feature declarations

Other

Package maintainer
Textual descriptions

Example

Package: aterm

Version: 0.4.2-11

Depends: libc6 (>= 2.3.2.ds1-4),

libice6 | xlibs (> 4.1.0), ...

Conflicts: suidmanager (< 0.50)

Provides: x-terminal-emulator, ...

Section: x11

Installed-Size: 280

Maintainer: Göran Weinholt ...

Architecture: i386

a package is the elemental component of a distribution

a working system is deployed by installing a package set
(≈ 1000/2000 for GNU/Linux distributions)

A look at package installation

Phase Trace
User request # apt-get install aterm

Constraint resolution



Reading package lists... Done

Building dependency tree... Done

The following extra packages will be installed:

libafterimage0

The following NEW packages will be installed

aterm libafterimage0

0 upgraded, 2 newly installed, 0 to remove and 1786 not upgraded.

Need to get 386kB of archives.

After unpacking 807kB of additional disk space will be used.

Do you want to continue [Y/n]? Y

Package retrieval


Get: 1 http://debian.ens-cachan.fr testing/main libafterimage0 2.2.8-2 [301kB]

Get: 2 http://debian.ens-cachan.fr testing/main aterm 1.0.1-4 [84.4kB]

Fetched 386kB in 0s (410kB/s)

Pre-configuration {

Unpacking



Selecting previously deselected package libafterimage0.

(Reading database ... 294774 files and directories currently installed.)

Unpacking libafterimage0 (from .../libafterimage0_2.2.8-2_i386.deb) ...

Selecting previously deselected package aterm.

Unpacking aterm (from .../aterm_1.0.1-4_i386.deb) ...

Configuration

{
Setting up libafterimage0 (2.2.8-2) ...

Setting up aterm (1.0.1-4) ...

Package installation — when things go wrong

sudo apt-get install debhelper

Reading Package Lists... Done

Building Dependency Tree... Done

The following extra packages will be installed:

armagetron armagetron-common autoconf bonobo-activation codebreaker debconf debconf-i18n debconf-utils

dialog esound-common fb-music-high fontconfig frozen-bubble-data grepmail gv intltool-debian libaiksaurus-data

libaiksaurus0c102 libatk1.0-0 libatk1.0-dev libbonobo-activation4 libbonobo2-0 libbonobo2-common libdb3

libdbd-mysql-perl libdbi-perl libeel2-data libesd0 ... xlibosmesa4 xlibs xlibs-data xpdf-common

The following packages will be REMOVED:

autoconf2.13 frozen-bubble frozen-bubble-lib gconf2 gnomemeeting itk3.1-dev libbonoboui2-0 libbonoboui2-common

libdigest-md5-perl libforms0.89 libgconf2-4 libgnome2-0 libgnome2-common libgnomeui-0 libgnomevfs2-0

libgnomevfs2-common libgtk1.2-dev libgtk2.0-0png3 libgtk2.0-dev libmime-base64-perl libpango1.0-dev

libsdl-mixer1.2-dev libsdl-perl libsdl-ttf1.2-dev libsdl1.2-dev libsmpeg-dev libstorable-perl nautilus

tk8.3-dev tktable-dev x-window-system x-window-system-core xaw3dg-dev xlib6g xlib6g-dev xlibmesa-dev

xlibmesa3 xlibosmesa3 xlibs-dev xlibs-pic xpdf xpdf-reader

The following NEW packages will be installed:

armagetron-common debconf-i18n fb-music-high fontconfig intltool-debian libaiksaurus-data libaiksaurus0c102

libeel2-data libfilehandle-unget-perl libfontconfig1 libforms1 libgdbm3 libgnutls7 libgsf-1 libice-dev

libice6 libidl0 liblzo1 libmagick5.5.7 libmail-mbox-messageparser-perl libmysqlclient12 libncursesw5

libnet-daemon-perl libnewt0.51 libpaper1 libplrpc-perl libsdl-console ... xlibmesa-gl xlibmesa-gl-dev

xlibs-data

75 packages upgraded, 80 newly installed, 42 to remove and 858 not upgraded.

Need to get 67.1MB of archives. After unpacking 26.9MB will be used.

Do you want to continue? [Y/n] Abort.

Research Directions

Research direction #1: better installation tools

Foster the development of better tools for the SysAdmin for the
installation of upgrade of package-based FOSS systems.

Research direction #2: quality assurance

Urgent need of viable (semi-)automatic tools for QA of both
individual packages and the distribution as a whole

Why do we find this interesting?

Challenge: Scale

Number of packages in the debian development branch for
linux on popular architectures : > 30.0000

Number of architecture/OS pairs in debian : 14

Challenge: Fast moving

The development branch of a distributions is updated daily, or
more often.

And last, not least . . .

It helps improve Free Software that we are using.

EDOS, Mancoosi, and Aeolus

EDOS European project (Jan 2004 −→ Jun 2007)

Mancoosi: Managing the Complexity of the Open Source
Infrastructure

European Research Project in the 7th Framework

Duration: Feb 2008 −→ Mai 2011

Ongoing: ANR (national) research projet Aeolus

Concrete view of packages

A package has prerequisites:

System resources (disk space, . . .)

A certain version of a certain operating system

File system structure (existence of, and access rights to
certain directories)

Availability of software libraries in a specific version

Executability of other stand-alone tools

EDOS/Mancoosi: Abstract view of packages

A package contains metadata:

A package provides a certain functionality that is denoted by
the name of the package, probably refined by the version
number.

A package may also provide an even more abstract
functionality (feature, virtual package), i.e. web-browser

All prerequisites are expressed through relations to other
packages (or virtual packages), or possibly other meta-data
i.e. space consumption of the package.

Model (simplified)

Names, Versions and Constraints

Set N of names

Set V of versions: total and dense order

Set Con of constraints : = v , > v , < v , . . . where v ∈ V

A package (n, v ,D,C) consists of

a package name n,

a version v ,

a set of dependencies D ∈ P(P(N×Con)),

a set of conflicts C ∈ P(N×Con),

A repository

is a set of packages, such that no two different packages carry the
same name and version.

An R-installation

is a set I ⊆ R with:

abundance For each element d ∈ p.D there exists (n, c) ∈ d and
a package q ∈ I such that q.n = n and p.v ∈ [[c]].

peace For each (n, c) ∈ p.C and package q ∈ I , if q.n = n
then q.v 6∈ [[c]].

flatness For all p, q ∈ I : if p 6= q then p.n 6= q.n

Installability

p ∈ R is R-installable if there exists an R-installation I with p ∈ I .

Example: Is a installable in R?

Repository R

Package: a

Vers ion : 1

Depends: b, c|d

Package: b

Vers ion : 17

Package: c

Vers ion : 42

Con f l i c t s : b > 15

Package: d

Vers ion : 87

Depends: b < 20

Propositional Modeling without conflicts

Closed World Assumption

(Package,version) = Propositional variable
(package installed = value true)

Complete installation = propositional model

Dependencies

Modeling dependencies: p → φ where φ is a positive formula

Package p is not available: ¬p.

Dependency theory D: dual Horn theory:
Models are closed under union

p is installable w.r.t. D : D ∧ p satisfiable.

Since D is dual Horn: p, q co-installable iff p installable and q
installable (so far).

Propositional Modeling with conflicts

Conflicts

A package p may be in conflict with several other packages
q1, q2,

Conflict theory C: {¬(p ∧ q1),¬(p ∧ q2), . . .}
(neither Horn nor dual Horn)

p is installable: p ∧ P ∧ C is satisfiable.

A result from EDOS [ASE 2006]

Installability of packages (measured in the number of packages) is
NP-complete.

Limitation of this modelisation

Closed world assumption: we assume complete knowledge of
all packages.

Does not capture the dynamic nature of distributions.

Special cases that are polynomial

No conflicts (and installations may be non-flat):

Theory is dual Horn
Construction of a maximal model in PTime

No disjunctions in dependencies (and no features, no multiple
versions of packages)

all clauses are binary:

a→ (b ∧ c ∧ d)

is equivalent to

{a→ b, a→ c , a→ d}

Construction of all consequences in PTime

EDOS-debcheck

Written by Jérôme Vouillon in 2005, using SAT-solver
technology

Computes, for a complete distribution, all non-installable
packages with explanation.

And it does this in a few seconds.

Integration into pkglab, an interactive system to explore
package repositories of package-based software distributions.

Paper at ASE 2006.

Co-installability

The Problem

A set P of packages is co-installable (w.r.t. R) if there is an
R-installation containing P.

Generalisation of strong conflicts.

There is a hugh number of co-installable sets.

Result

Jérôme Vouillon and Roberto Di Cosmo. On Software
Component Co-Installability. ESEC/FSE, September 2011.

Drastical reduction of the problem by:

Elimination of irrelevant (for this problem) package
relationships.
Collapsing the package graph by building a quotient.

Speculative analysis

Finding outdated packages

p is outdated if p is not installable, and it remains
uninstallable how matter how the other packages evolve.

Efficient calculation by reduction to the installability problem.

Approach

Construct a (finite) repository containg representatives of
relevant future versions of packages.

Installations w.r.t. this repository are representative for
installations in any possible future evolution.

The CUDF format

CUDF as data interchange format

Pietro Abate, Roberto Di Cosmo, Ralf Treinen, Stefano
Zacchiroli. MPM: A Modular Package Manager, CBSE 2011.

MISC: The Mancoosi Solver Competition

What a good solver should be:

Correct: do not propose a wrong solution

Complete: find a solution if there exists one

Flexible: allow for a rich language of user preferences

Efficient

Organizing a Competition

We (at IRILL) are no experts in building such solvers

Our role is to foster the development of better solvers by
organizing a yearly international competition.

www.mancoosi.org/misc

MISC competitions

Past and Future Competitions

Competitions associated with the LoCoCo workshop (see
later)

1st MISC: FLoC 2010, Edinburgh, UK

2nd MISC: CP 2011, Perugia IT

3rd MISC, 2012: upcoming

Optimisation Criteria

Several mesurements : number of removed packages, new
packages, . . .

Lexicographic combinations of mesurements

Paranoid track : as less changes as possible

Trendy track : a system as up to date as possible

User track : user-defined criteria

Towards a better apt

Outcome of MISC: Currently three solvers of the MISC 2010
competition are packaged in debian.

The experimental branch of apt is now containing an
experimental interface to external CUDF solvers.

Ongoing discussion with FOSS community about the
evolution of the CUDF format.

Ongoing

Better languages for describing user preferences for system
upgrades

Installation and upgrade problems not on a single machine but
on a cluster (cloud) with shared ressources and services.

Analyses of scripts that are executed at package installation:
from the abstract view of packages to a concrete view.

	Distributions in the FOSS Ecosystem
	Modelization and analysis of package relationships
	Activities

