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Interactive Configuration Problems

Constraint satisfaction problem (CSP):

• Finite domains D1 , … , Dn

• Variables x1 , …, xn

• Constraints C1 , …, Cm each over a subset of the variables

• Correctness formula φ(x1, …, xn)  =  C1 and … and Cm

• CSP: Is φ satisfiable?

def

• A user repeatedly selects any variable xi and a value v for it, giving at any 
point in time a sequence of assignments ρ

• A valid domains computation is performed by finding, for a given ρ, for 
each j the set of valid values Vj Dj defined as: 

v ϵ Vj iff  φ[ρ][v/xj] is satisfiable.

• The valid domain computation enables an interactive guided search

∩



Example of Interactive Configuration: 8-Queens 

Live at 
www.configit.com
(under demos)



(A bit) More Realistic Example



Why full user guidance?

• The purpose of interactive configurators is to enable valid configuration of 
complex products for non-experts

• We therefore strongly believe in the need for full guidance

• What is full guidance?

– The user can never unknowingly be led down a blind path

– The user is guided towards a valid configuration

Guaranteed 
valid choice

Guaranteed 
invalid choice

Current choice 
(none)

Conflict 
resolution for 
invalid choices



Two types of users in interactive configuration

modeller configurator

Product model = 
CSP

Interactive 
configurator 
application

• The modeller models the 
products: the options and 
rules (in essence, authors the 
CSP)

modeller configurator

• The configurator uses the 
configurator application to 
perform an interactive 
configuration of a product



A trade-off between the user experiences for 
the configurator and the modeller

Configurator

Modeller

Configurator



First generation of commercial configurators: 
Rule-based systems

Configurator

1980’s
Technology: ”Truth-
maintenance systems”, 
Doyle ’78; ”Rete”, Forgy 
’74
First commercial system: 
DEC XCON for PDP 
computers

Modeller

Configurator
computers
Today: Engine in SAP VC, 
various business rules 
engines



Second generation of commercial 
configurators: Constraint-based systems

Configurator

1990’s
Technology: ”Constraint 
solvers”, constraint 
propagation + branching, DPLL 
’60, ’62
Lots of commercial 
implementations of sales and 

Modeller

Configurator implementations of sales and 
product configurators
Today: Engine in Tacton, 
Oracle, Selectica, Trilogy, SAP 
Adv. Mode, …



Third generation of commercial 
configurators: Compilation-based systems

Configurator

2000’s
Technology: ”Virtual 
Tables”, ”Binary 
Decision Diagrams”, 

Modeller

Configurator
Decision Diagrams”, 
Bryant ’86
Today: Engine in 
Configit’s products



Reduced Ordered Binary Decision 
Diagrams [Bryant’86]

Given a variable ordering  x1 < x2 < … < xn

DEFINITIONDEFINITIONDEFINITIONDEFINITION

An ROBDD (BDD) is a rooted and directed acyclic graph with:

– Terminal nodes 0000 and 1 1 1 1 with no out-going edges.

– Non-terminal nodes u labelled with var(u) = xi and two 
out-going edges low(u) and high(u).

(Ordered) On any path from the root to a terminal node, the 
labels on the non-terminal nodes respect the ordering.

THEOREM (ROBDDs are canonical)THEOREM (ROBDDs are canonical)THEOREM (ROBDDs are canonical)THEOREM (ROBDDs are canonical)

For any f: {0,1}n -> {0,1} there is exactly 
one ROBDD u with f = f

x1

x2 x3

x4 x4

0 1

low high

labels on the non-terminal nodes respect the ordering.

(Reduced) There are no occurrences of redundant nodes 

– low(u)=high(u)

– If low(u)=low(v) and high(u)=high(v) then u=v

DEFINITIONDEFINITIONDEFINITIONDEFINITION

An node u defines a Boolean function fu : {0,1}n -> {0,1} : 

f0 = 0, f1 = 1, fu = if var(u) then fhigh(u) else flow(u)

OBSERVATION OBSERVATION OBSERVATION OBSERVATION 

A node u represents a set: Su = { (x1, … ,xn) | fu =1 }

(fu is the indicator/characteristic function for the set Su)

one ROBDD u with fu = f

ALGORITHMSALGORITHMSALGORITHMSALGORITHMS

(Apply) Given ROBDDs u and v there is an 
algorithm apply(op,u,v) that 
computes any Boolean operation  u 
op v in space and time O(|u||v|)

(Exists) Given ROBDD u and a subset of 
the variables X there is an efficient 
algorithm to compute ƎX.u (a 
projection)



Compilation, BDDs

Constraint satisfaction problem (CSP):

• Finite domains D1 , … , Dn

• Variables x1 , …, xn

• Constraints C1 , …, Cm

Compilation (if Di’s are Boolean)

• Select ordering x < … < x

Compile each constraint Compile each constraint Compile each constraint Compile each constraint Cjjjj ���� uuuujjjj

Construct BDD for Cj using BDD 
apply-operation (and others)

• Select ordering x1 < … < xn

• Compile each constraintCompile each constraintCompile each constraintCompile each constraint

CCCCjjjj ���� uuuuj j j j 

• Decide conjunctive schedule

C1 < … < Cm

• Compute according to schedule

u <- (… ((u1 and u2 ) and u3 ) … and um



Runtime, BDDs

• The CSP is represented by u: φ=fu
• A valid domains computation is 

performed by finding, for a given ρ, 
for each j the set of valid values Vj

Dj defined as: 

v ϵ Vj iff  φ[ρ][v/xj] is 
satisfiable

• ρ <- empty

∩

ComputeComputeComputeCompute Vj’s’s’s’s

For each xi not in ρ :
Vi <- solutions represented 

by projecting u onto 
dimension i

Can be done in time linear in the        • ρ <- empty

Loop until done

– Compute Compute Compute Compute VVVVjjjj’s’s’s’s

– Display Vj’s to user

– User selects xi := v

– ρ <- ρ[v/xi]

End loop

Can be done in time linear in the        
sum of the sizes of the domains 

∑j=1,…,n | Dj | 

”Goodies”: explanations



Modular compilation; join graphs

• A join graph for a CSP

– Vertices, V, are the constraints

– Edges, E, are between 
constraints sharing variables; 
must fulfill connectedness 
condition: if x in v and x in w
then there is a path from v to 

x

x
x,y

then there is a path from v to 
w containing x in each node

• Observation: If a CSP has an acyclic 
join graph, valid domains can be 
computed in polytime. x y



Modular compilation, tree decomposition

Compile time

• Start with first two steps of BDD 
compilation (up to conjunctive 
schedule) 

• Perform tree decomposition: 

– Transform CSP into an CSP with 
acyclic join graph ”and’ing” 

x

x
x,y

acyclic join graph ”and’ing” 
constraints into new 
constraints Ci’ as BDDs ui ’

Runtime

• Run polytime valid domains 
algorithm with BDD operations on 
join graph

x y



(A bit) More Realistic Example
58 finite domain 
variables; 
3,379,130,496 
solutions; 
VT size: 109 kB



+20,000 finite 
domain variables!



GEA Tuchenhagen, Germany



Baldor Electric Company, US



Jaguar Land Rover, UK



How to use the compilation 
technology in practice?

(We call it Virtual Tabulation®)



Standard or customized UIs



Configit Product Modeler

• Graphical modeling environment for authoring, testing, debugging and 
running product models.



Quality assurance cycle



Questions / discussion

www.configit.com www.configit.com/about_us/jobs.html
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