
Reasoning in LoCo
with

Answer Set Programming

M.Aschinger, C. Drescher, G. Gottlob

2012 Oxford Configuration Workshop

13.01.2012

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 1 / 30

Transformation to target languages

LoCo is a high-level representation language
declarative modelling without knowledge about underlying solving
algorithms
automated transformation into target languages such as

ASP (current work)
SAT, Integer Programming, Constraint Solving
High-level languages for combinatorial optimisation, e.g. MiniZinc

restriction to finite models: finite upper bounds on all components
via Bounds Propagation algorithm

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 2 / 30

Necessary steps

Problem analysis
Definition of LoCo Domain Knowledge
Putting problem instances into LoCo Instance Knowledge format
Computation of bounds
Transformation into target language

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 3 / 30

Problem description
of the

House Problem

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 4 / 30

House Problem

toy version of a real-world problem: placement of modules in racks
with lots of complicated constraints
basically sort of a modified Bin-Packing problem
TASK: A house is inhabited by people owning things of various
types and sizes. Those things have to be stored in cabinets in
rooms of the house. The type, size and other attributes put
constraints on to where a thing can be stored.
GOAL: Find a minimal number of cabinets, counting twice all big
cabinets.

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 5 / 30

House Problem

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 6 / 30

LoCo Domain Knowledge

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 7 / 30

Constants and components

Constants
const cabMaxSize.
const roomCabSpace.
const maxHouseHeight.
const maxHouseWidth.

Components
house: IC (ID; height:Integer; width:Integer)
person: IC (ID)
thing: IC (ID; size:Integer[0..cabMaxSize]; big:Bool; dirty:Bool;
forUpper:Bool)
cabinet: GC (ID; size:Integer[0..cabMaxSize]; big:Bool; dirty:Bool;
top:Bool)
position: GC (ID; number:Integer[1..roomCabSpace])
room: GC (ID; floor:Integer[0..maxHouseHeight]; pos:Integer[0,
maxHouseWidth])

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 8 / 30

Connection predicates

Binary connections
house2Person: IIC (house x person)
person2Thing: IIC (person x thing)
thing2Cabinet: IGC (thing x cabinet)
cabinet2Position: GGC (cabinet x position)
position2Room: GGC (position x room)
room2Person: GIC (room x person)

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 9 / 30

Connection axioms

Thing→ Cabinet:

(∀t)thing(t)⇒ (∃1
1c)cabinet(c) ∧ thing2Cabinet(t , c)∧

[(c.big ∧ t .big) ∨ ¬t .big]

Cabinet→ Thing:

(∀c)cabinet(c)⇒ (∃cabMaxSize
1 t)thing(t)∧

thing2Cabinet(t , c) ∧ (
∑

t .size < cabMaxSize)∧

(t .dirty == c.dirty) ∧ (¬c.top ∨ t .forUpper)

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 10 / 30

Non-local constraints
Integrity rules:

(∀c)cabinet(c) ∧ c.big ⇒ ¬c.top

(∀r1, r2)room(r1) ∧ room(r2) ∧ r1.floor = r2.floor∧
r1.position = r2.position⇒ r1 = r2

Connection-generating rules:

(∀ pe, t , c,po, r)person2Thing(pe, t) ∧ thing2Cabinet(t , c)∧
cabinet2Position(c,po) ∧ position2Room(po, r)⇒

room2Person(r ,pe)

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 11 / 30

LoCo Instance Knowledge
and

Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 12 / 30

LoCo Input file
Constants

const cabMaxSize = 5.
const roomCabSpace = 4.
const maxHouseHeight = 10.
const maxHouseWidth = 20.

Input components
house(1).
person(1..2).
thing(1..20).
thingSize(1,4). thingBig(1,0). thingDirty(1,1). ...
...

Input connections
house2Person(1,1). house2Person(1,2).
person2Thing(1,3). person2Thing(1,1).
person2Thing(2,2). person2Thing(2,4). ...
...

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 13 / 30

Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 14 / 30

Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 15 / 30

Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 16 / 30

Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 17 / 30

Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 18 / 30

Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 19 / 30

Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 20 / 30

Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 21 / 30

Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 22 / 30

Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 23 / 30

Digression: Zeros and one-to-many

(∀s)sensor(s)⇒ (∃1
1 u)unit(u) ∧ sensor2Unit(s,u)

(∀u)unit(u)⇒ (∃2
0 s)sensor(s) ∧ sensor2Unit(s,u)

(∀z)zone(z)⇒ (∃1
1 u)unit(u) ∧ zone2Unit(z,u)

(∀u)unit(u)⇒ (∃2
0 z)zone(z) ∧ zone2Unit(z,u)

(∀u)unit(u)⇒ (∃4
1 x)

[(sensor(x) ∧ sensor2Unit(x ,u)) ∨
(zone(x) ∧ zone2Unit(x ,u))]

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 24 / 30

Transformation to ASP

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 25 / 30

Constants and components

Constants
straight-forward

Components
cabinetGen(1..20).
4 { cabinet(C) : cabinetGen(C) } 20.

Attributes
1 { cabinetSize(C,S) : S = 0..cabMaxSize } 1← cabinet(C).
1 { cabinetDirty(C,D) : D = 0..1 } 1← cabinet(C).
1 { cabinetBig(C,B) : B = 0..1 } 1← cabinet(C).
1 { cabinetTop(C,T) : T = 0..1 } 1← cabinet(C).

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 26 / 30

Binary connections

Thing→ Cabinet:

(∀t)thing(t)⇒ (∃1
1c)cabinet(c) ∧ thing2Cabinet(t , c)∧

[(c.big ∧ t .big) ∨ ¬t .big]

1 { thing2Cabinet(T,C) : cabinetGen(C) } 1← thing(T).
1 { thing2Cabinet(T,C) : thing(T) } cabMaxSize← cabinet(C).
← thing2Cabinet(T,C), not cabinet(C).

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 27 / 30

Binary connections
Thing→ Cabinet:

(∀t)thing(t)⇒ (∃1
1c)cabinet(c) ∧ thing2Cabinet(t , c)∧

[(c.big ∧ t .big) ∨ ¬t .big]

← not C1(T,C), thing2Cabinet(T,C).
C1(T,C)← C1 1(T,C).
C1(T,C)← C1 2(T,C).
C1 1(T,C)← C1 11(T,C), C1 12(T,C).
C1 2(T,C)← thing2Cabinet(T,C), thingBig(T,TB), TB == 0.
C1 11(T,C)← thing2Cabinet(T,C), cabinetBig(C,CB), CB == 1.
C1 12(T,C)← thing2Cabinet(T,C), thingBig(C,CB), TB == 1.

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 28 / 30

Ongoing and Future Work

Benchmarks
Determine complexity of reasoning tasks (at least NP hard)
Identify tractable islands
Map to executable formats
Graphical User Interface
Extended optimization functionality

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 29 / 30

Thank you for your attention

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 30 / 30

