
On the Compiled Approach of Solving
Configuration Constraint Problems

2012 Oxford Configuration Workshop

Henrik Reif Andersen et al

About Configit

• Founded in 2000 as spin off from academia

• Part of Moesgaard Group (~200 employees)

• >1.3 mio. users of Configit’s software

• Customers in 14 countries

• More than 25% of employees in Configit have
PhDs in Computer Science

Configit headquarters Copenhagen

New R&D center in Warwick, UK
PhDs in Computer Science

2

Palo Alto, CA

Warwick, UK (2012) Copenhagen

Lahore, PAK (2012)
Atlanta, GA (2012)

Rochester, NY

Columbus, OH Radolfzell, DE

Hamburg, DE
Basel, CH

Lugano, CH
Varese, IT

Interactive Configuration Problems

Constraint satisfaction problem (CSP):

• Finite domains D1 , … , Dn

• Variables x1 , …, xn

• Constraints C1 , …, Cm each over a subset of the variables

• Correctness formula φ(x1, …, xn) = C1 and … and Cm

• CSP: Is φ satisfiable?

def

• A user repeatedly selects any variable xi and a value v for it, giving at any
point in time a sequence of assignments ρ

• A valid domains computation is performed by finding, for a given ρ, for
each j the set of valid values Vj Dj defined as:

v ϵ Vj iff φ[ρ][v/xj] is satisfiable.

• The valid domain computation enables an interactive guided search

∩

Example of Interactive Configuration: 8-Queens

Live at
www.configit.com
(under demos)

(A bit) More Realistic Example

Why full user guidance?

• The purpose of interactive configurators is to enable valid configuration of
complex products for non-experts

• We therefore strongly believe in the need for full guidance

• What is full guidance?

– The user can never unknowingly be led down a blind path

– The user is guided towards a valid configuration

Guaranteed
valid choice

Guaranteed
invalid choice

Current choice
(none)

Conflict
resolution for
invalid choices

Two types of users in interactive configuration

modeller configurator

Product model =
CSP

Interactive
configurator
application

• The modeller models the
products: the options and
rules (in essence, authors the
CSP)

modeller configurator

• The configurator uses the
configurator application to
perform an interactive
configuration of a product

A trade-off between the user experiences for
the configurator and the modeller

Configurator

Modeller

Configurator

First generation of commercial configurators:
Rule-based systems

Configurator

1980’s
Technology: ”Truth-
maintenance systems”,
Doyle ’78; ”Rete”, Forgy
’74
First commercial system:
DEC XCON for PDP
computers

Modeller

Configurator
computers
Today: Engine in SAP VC,
various business rules
engines

Second generation of commercial
configurators: Constraint-based systems

Configurator

1990’s
Technology: ”Constraint
solvers”, constraint
propagation + branching, DPLL
’60, ’62
Lots of commercial
implementations of sales and

Modeller

Configurator implementations of sales and
product configurators
Today: Engine in Tacton,
Oracle, Selectica, Trilogy, SAP
Adv. Mode, …

Third generation of commercial
configurators: Compilation-based systems

Configurator

2000’s
Technology: ”Virtual
Tables”, ”Binary
Decision Diagrams”,

Modeller

Configurator
Decision Diagrams”,
Bryant ’86
Today: Engine in
Configit’s products

Reduced Ordered Binary Decision
Diagrams [Bryant’86]

Given a variable ordering x1 < x2 < … < xn

DEFINITIONDEFINITIONDEFINITIONDEFINITION

An ROBDD (BDD) is a rooted and directed acyclic graph with:

– Terminal nodes 0000 and 1 1 1 1 with no out-going edges.

– Non-terminal nodes u labelled with var(u) = xi and two
out-going edges low(u) and high(u).

(Ordered) On any path from the root to a terminal node, the
labels on the non-terminal nodes respect the ordering.

THEOREM (ROBDDs are canonical)THEOREM (ROBDDs are canonical)THEOREM (ROBDDs are canonical)THEOREM (ROBDDs are canonical)

For any f: {0,1}n -> {0,1} there is exactly
one ROBDD u with f = f

x1

x2 x3

x4 x4

0 1

low high

labels on the non-terminal nodes respect the ordering.

(Reduced) There are no occurrences of redundant nodes

– low(u)=high(u)

– If low(u)=low(v) and high(u)=high(v) then u=v

DEFINITIONDEFINITIONDEFINITIONDEFINITION

An node u defines a Boolean function fu : {0,1}n -> {0,1} :

f0 = 0, f1 = 1, fu = if var(u) then fhigh(u) else flow(u)

OBSERVATION OBSERVATION OBSERVATION OBSERVATION

A node u represents a set: Su = { (x1, … ,xn) | fu =1 }

(fu is the indicator/characteristic function for the set Su)

one ROBDD u with fu = f

ALGORITHMSALGORITHMSALGORITHMSALGORITHMS

(Apply) Given ROBDDs u and v there is an
algorithm apply(op,u,v) that
computes any Boolean operation u
op v in space and time O(|u||v|)

(Exists) Given ROBDD u and a subset of
the variables X there is an efficient
algorithm to compute ƎX.u (a
projection)

Compilation, BDDs

Constraint satisfaction problem (CSP):

• Finite domains D1 , … , Dn

• Variables x1 , …, xn

• Constraints C1 , …, Cm

Compilation (if Di’s are Boolean)

• Select ordering x < … < x

Compile each constraint Compile each constraint Compile each constraint Compile each constraint Cjjjj ���� uuuujjjj

Construct BDD for Cj using BDD
apply-operation (and others)

• Select ordering x1 < … < xn

• Compile each constraintCompile each constraintCompile each constraintCompile each constraint

CCCCjjjj ���� uuuuj j j j

• Decide conjunctive schedule

C1 < … < Cm

• Compute according to schedule

u <- (… ((u1 and u2) and u3) … and um

Runtime, BDDs

• The CSP is represented by u: φ=fu
• A valid domains computation is

performed by finding, for a given ρ,
for each j the set of valid values Vj

Dj defined as:

v ϵ Vj iff φ[ρ][v/xj] is
satisfiable

• ρ <- empty

∩

ComputeComputeComputeCompute Vj’s’s’s’s

For each xi not in ρ :
Vi <- solutions represented

by projecting u onto
dimension i

Can be done in time linear in the • ρ <- empty

Loop until done

– Compute Compute Compute Compute VVVVjjjj’s’s’s’s

– Display Vj’s to user

– User selects xi := v

– ρ <- ρ[v/xi]

End loop

Can be done in time linear in the
sum of the sizes of the domains

∑j=1,…,n | Dj |

”Goodies”: explanations

Modular compilation; join graphs

• A join graph for a CSP

– Vertices, V, are the constraints

– Edges, E, are between
constraints sharing variables;
must fulfill connectedness
condition: if x in v and x in w
then there is a path from v to

x

x
x,y

then there is a path from v to
w containing x in each node

• Observation: If a CSP has an acyclic
join graph, valid domains can be
computed in polytime. x y

Modular compilation, tree decomposition

Compile time

• Start with first two steps of BDD
compilation (up to conjunctive
schedule)

• Perform tree decomposition:

– Transform CSP into an CSP with
acyclic join graph ”and’ing”

x

x
x,y

acyclic join graph ”and’ing”
constraints into new
constraints Ci’ as BDDs ui ’

Runtime

• Run polytime valid domains
algorithm with BDD operations on
join graph

x y

(A bit) More Realistic Example
58 finite domain
variables;
3,379,130,496
solutions;
VT size: 109 kB

+20,000 finite
domain variables!

GEA Tuchenhagen, Germany

Baldor Electric Company, US

Jaguar Land Rover, UK

How to use the compilation
technology in practice?

(We call it Virtual Tabulation®)

Standard or customized UIs

Configit Product Modeler

• Graphical modeling environment for authoring, testing, debugging and
running product models.

Quality assurance cycle

Questions / discussion

www.configit.com www.configit.com/about_us/jobs.html

Legal notes.

This presentation is © Copyright Configit A/S and may not be distributed without permission from Configit.

This presentation is strictly confidential and only intended for those receiving this directly from Configit.

Configit, the Configit logo, Virtual Tabulation, Configit Product Modeler, Configit Runtime, Configit Quote for SAP and other Configit product
names are trademarks or registered trademarks of Configit A/S.

All other product and service names mentioned and associated logos displayed are the trademarks of their respective companies.

