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Transformation to target languages

LoCo is a high-level representation language
declarative modelling without knowledge about underlying solving
algorithms
automated transformation into target languages such as

ASP (current work)
SAT, Integer Programming, Constraint Solving
High-level languages for combinatorial optimisation, e.g. MiniZinc

restriction to finite models: finite upper bounds on all components
via Bounds Propagation algorithm
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Necessary steps

Problem analysis
Definition of LoCo Domain Knowledge
Putting problem instances into LoCo Instance Knowledge format
Computation of bounds
Transformation into target language
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Problem description
of the

House Problem
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House Problem

toy version of a real-world problem: placement of modules in racks
with lots of complicated constraints
basically sort of a modified Bin-Packing problem
TASK: A house is inhabited by people owning things of various
types and sizes. Those things have to be stored in cabinets in
rooms of the house. The type, size and other attributes put
constraints on to where a thing can be stored.
GOAL: Find a minimal number of cabinets, counting twice all big
cabinets.
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House Problem
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LoCo Domain Knowledge
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Constants and components

Constants
const cabMaxSize.
const roomCabSpace.
const maxHouseHeight.
const maxHouseWidth.

Components
house: IC (ID; height:Integer; width:Integer)
person: IC (ID)
thing: IC (ID; size:Integer[0..cabMaxSize]; big:Bool; dirty:Bool;
forUpper:Bool)
cabinet: GC (ID; size:Integer[0..cabMaxSize]; big:Bool; dirty:Bool;
top:Bool)
position: GC (ID; number:Integer[1..roomCabSpace])
room: GC (ID; floor:Integer[0..maxHouseHeight]; pos:Integer[0,
maxHouseWidth])
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Connection predicates

Binary connections
house2Person: IIC ( house x person )
person2Thing: IIC ( person x thing )
thing2Cabinet: IGC ( thing x cabinet )
cabinet2Position: GGC ( cabinet x position )
position2Room: GGC ( position x room )
room2Person: GIC (room x person)
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Connection axioms

Thing→ Cabinet:

(∀t)thing(t)⇒ (∃1
1c)cabinet(c) ∧ thing2Cabinet(t , c)∧

[(c.big ∧ t .big) ∨ ¬t .big]

Cabinet→ Thing:

(∀c)cabinet(c)⇒ (∃cabMaxSize
1 t)thing(t)∧

thing2Cabinet(t , c) ∧ (
∑

t .size < cabMaxSize)∧

(t .dirty == c.dirty) ∧ (¬c.top ∨ t .forUpper)
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Non-local constraints
Integrity rules:

(∀c)cabinet(c) ∧ c.big ⇒ ¬c.top

(∀r1, r2)room(r1) ∧ room(r2) ∧ r1.floor = r2.floor∧
r1.position = r2.position⇒ r1 = r2

Connection-generating rules:

(∀ pe, t , c,po, r)person2Thing(pe, t) ∧ thing2Cabinet(t , c)∧
cabinet2Position(c,po) ∧ position2Room(po, r)⇒

room2Person(r ,pe)
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LoCo Instance Knowledge
and

Bounds Computation
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LoCo Input file
Constants

const cabMaxSize = 5.
const roomCabSpace = 4.
const maxHouseHeight = 10.
const maxHouseWidth = 20.

Input components
house(1).
person(1..2).
thing(1..20).
thingSize(1,4). thingBig(1,0). thingDirty(1,1). ...
...

Input connections
house2Person(1,1). house2Person(1,2).
person2Thing(1,3). person2Thing(1,1).
person2Thing(2,2). person2Thing(2,4). ...
...
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Bounds Computation
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Bounds Computation
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(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 18 / 30



Bounds Computation

(2012 Oxford Configuration Workshop) Reasoning in LoCo with Answer Set Programming 13.01.2012 19 / 30



Bounds Computation
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Bounds Computation
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Bounds Computation
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Digression: Zeros and one-to-many

(∀s)sensor(s)⇒ (∃1
1 u)unit(u) ∧ sensor2Unit(s,u)

(∀u)unit(u)⇒ (∃2
0 s)sensor(s) ∧ sensor2Unit(s,u)

(∀z)zone(z)⇒ (∃1
1 u)unit(u) ∧ zone2Unit(z,u)

(∀u)unit(u)⇒ (∃2
0 z)zone(z) ∧ zone2Unit(z,u)

(∀u)unit(u)⇒ (∃4
1 x)

[(sensor(x) ∧ sensor2Unit(x ,u)) ∨
(zone(x) ∧ zone2Unit(x ,u))]
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Transformation to ASP
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Constants and components

Constants
straight-forward

Components
cabinetGen(1..20).
4 { cabinet(C) : cabinetGen(C) } 20.

Attributes
1 { cabinetSize(C,S) : S = 0..cabMaxSize } 1← cabinet(C).
1 { cabinetDirty(C,D) : D = 0..1 } 1← cabinet(C).
1 { cabinetBig(C,B) : B = 0..1 } 1← cabinet(C).
1 { cabinetTop(C,T) : T = 0..1 } 1← cabinet(C).
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Binary connections

Thing→ Cabinet:

(∀t)thing(t)⇒ (∃1
1c)cabinet(c) ∧ thing2Cabinet(t , c)∧

[(c.big ∧ t .big) ∨ ¬t .big]

1 { thing2Cabinet(T,C) : cabinetGen(C) } 1← thing(T).
1 { thing2Cabinet(T,C) : thing(T) } cabMaxSize← cabinet(C).
← thing2Cabinet(T,C), not cabinet(C).
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Binary connections
Thing→ Cabinet:

(∀t)thing(t)⇒ (∃1
1c)cabinet(c) ∧ thing2Cabinet(t , c)∧

[(c.big ∧ t .big) ∨ ¬t .big]

← not C1(T,C), thing2Cabinet(T,C).
C1(T,C)← C1 1(T,C).
C1(T,C)← C1 2(T,C).
C1 1(T,C)← C1 11(T,C), C1 12(T,C).
C1 2(T,C)← thing2Cabinet(T,C), thingBig(T,TB), TB == 0.
C1 11(T,C)← thing2Cabinet(T,C), cabinetBig(C,CB), CB == 1.
C1 12(T,C)← thing2Cabinet(T,C), thingBig(C,CB), TB == 1.
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Ongoing and Future Work

Benchmarks
Determine complexity of reasoning tasks (at least NP hard)
Identify tractable islands
Map to executable formats
Graphical User Interface
Extended optimization functionality
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Thank you for your attention
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