
An Algebraic Approach to
Multi-sorted Constraints

Andrei A. Bulatov and Peter Jeavons
Computing Laboratory, University of Oxford, UK

{Andrei.Bulatov,Peter.Jeavons}@comlab.ox.ac.uk

Abstract. Most previous theoretical study of the complexity of the con-
straint satisfaction problem has considered a simplified version of the
problem in which all variables have the same domain. We show here that
this apparently minor simplification can in fact change the complexity of
the problem, and hence mask the existence of certain tractable constraint
types. In this paper we describe a new algebraic framework which allows
us to deal more precisely with problems where different variables may
have different domains. Using this new framework we are able to identify
new tractable classes of constraints, by combining algorithms devised for
the simplified, single domain, problem. We also systematically develop
an algebraic structural theory for the general problem, and show that
this theory can be used to generalise earlier results about the complexity
of certain constraint types.

1 Introduction

There is a striking difference between theoretical studies of the complexity of the
Constraint Satisfaction Problem (CSP), and more applied work on this problem:
in most theoretical studies constraint satisfaction problems are assumed to have
the same domain for all variables (we will call such problems one-sorted), while
in practice the different variables of a CSP often have different domains (we will
call problems of this type multi-sorted). This apparently minor simplification
can have serious consequences for the analysis of the complexity of different
forms of constraint; it can in fact mask the difference between tractability and
NP-completeness for certain problems.

Example 1. Consider the following relation of arity 5 containing 17 tuples (shown
vertically):

% =




3 3 1 1 1 1 3 3 3 3 1 1 3 3 1 1 3
1 3 0 2 1 3 0 2 1 3 0 2 1 3 1 3 3
2 2 2 2 0 0 0 0 2 2 2 2 2 2 0 0 2
c c c c c c c c c c c c a a a a a
b b b b b b b b a a a a b b b b a




If we consider this relation in the usual way as a one-sorted relation over the
domain {0, 1, 2, 3, a, b, c}, then it does not fall into any of the many known (one-
sorted) tractable classes1 [2, 3, 7, 9, 13, 19, 20, 24, 27, 28].
1 This was established by using the program Polyanna [15] available from

http://www.comlab.ox.ac.uk/oucl/research/areas/constraints/software/

However, if we consider this relation as a multi-sorted relation, over the two
separate domains {0, 1, 2, 3} and {a, b, c} (in the sense defined below), then it
can easily be shown to be tractable, using the results obtained in this paper (see
Example 8). Note that to establish the tractability of a multi-sorted relation it
is not sufficient simply to show that the projections onto each separate domain
are tractable (see Example 5).

This paper is part of a general investigation into how the complexity of the
constraint satisfaction problem varies with the forms of constraints which are
allowed. Considerable progress has been made in this investigation over the past
few years. For example, a complete characterisation of tractable constraint types
is now known for both 2-element domains [26] and 3-element domains [1]. In
addition, a number of novel efficient algorithms have been developed for solving
particular types of CSPs [2, 10, 13, 20].

However, almost all previous work on complexity has focused on the one-
sorted CSP; the first goal of this paper is to develop an approach which allows us
to study the complexity of multi-sorted constraint satisfaction problems, where
different variables have different domains. Using this approach, we show that
many of the known algorithms for the one-sorted case can be combined, and
hence applied to much broader classes of constraint satisfaction problems.

The second goal of the paper is to further develop the strong links between
the study of complexity of the CSP and the mathematical study of finite alge-
bras. These links were introduced and developed for the one-sorted case in [19,
18, 6]. In the multi-sorted case, these links allow one to use even more effectively
the powerful mathematical theory developed for classifying the structure of fi-
nite algebras [23, 16]. For example, early versions of the results given here have
already been successfully applied to obtain new tractable classes [3, 2]. More-
over, the results described in this paper are heavily used in proving a dichotomy
theorem for constraint satisfaction problems over a 3-element domain [1].

As an example of the flexibility of the multi-sorted approach developed here,
we consider the analysis of constraints which restrict the domain of each individ-
ual variable in their scope. By using the link with finite algebras described below,
we are able to generalize and strengthen the dichotomy result of [12] classifying
all constraints which restrict the domain of each variable to two possible values.

2 The Multi-Sorted Constraint Satisfaction Problem

The central notion in the mathematical study of constraints and constraint sat-
isfaction problems is the notion of a relation. In this paper we will allow multi-
sorted relations, that is, relations over an arbitrary collection of sets. These are
defined as follows.

Definition 1. For any collection of sets A = {Ai | i ∈ I}, and any list of
indices (i1, i2, . . . , im) ∈ Im, a subset % of Ai1 × Ai2 × · · · × Aim , together with
the list (i1, i2, . . . , im), will be called a multi-sorted relation over A with arity m
and signature (i1, i2, . . . , im). For any such relation %, the signature of % will be
denoted σ(%).

In the special case where A contains only a single set A, we shall refer to a
relation over A as a one-sorted relation over the set A.

Example 2. Let A = {A1, A2}, where A1 = {0, 1, 2, 3} and A2 = {a, b, c}.
The relation %, defined in Example 1, can be viewed as a multi-sorted relation

over A with arity 5 and signature (1, 1, 1, 2, 2).

Given any set of multi-sorted relations, we can define a corresponding class of
multi-sorted constraint satisfaction problems, in the following way.

Definition 2. Let Γ be a set of multi-sorted relations over a collection of sets
A = {Ai | i ∈ I}. The multi-sorted constraint satisfaction problem over Γ ,
denoted MCSP(Γ), is defined to be the decision problem with

Instance: A quadruple (V ;A; δ; C) where
– V is a set of variables;
– δ is a mapping from V to I, called the domain function;
– C is a set of constraints, where each constraint C ∈ C is a pair 〈s, %〉,

such that
• s = (v1, . . . , vmC

) is a tuple of variables of length mC , called the
constraint scope;

• % is an element of Γ with arity mC and signature (δ(v1), . . . , δ(vmC
)),

called the constraint relation.
Question: Does there exist a solution, i.e., a function ϕ, from V to

⋃
A∈AA,

such that, for each variable v ∈ V , ϕ(v) ∈ Aδ(v), and for each constraint
〈s, %〉 ∈ C, with s = (v1, . . . , vm), the tuple (ϕ(v1), . . . , ϕ(vm)) belongs to %?

Example 3. Constraint satisfaction problems in which each variable has a dis-
tinct set of possible values frequently arise in the study of databases, although a
rather different vocabulary is normally used, as in the following definition.

Definition 3. A relational database is a finite collection of tables. A table con-
sists of a scheme and an instance:

A scheme is a finite set of attributes, where each attribute has an associated
set of possible values, referred to as a domain.

An instance is a finite set of rows, where each row is a mapping that associates
with each attribute of the scheme a value in its domain.

A standard problem in the context of relational databases is the Conjunctive
Query Evaluation problem [21, 29]. In this problem we are asked if a conjunc-
tive query to a relational database, that is, a query of the form ∃x1 . . . ∃xk(%1 ∧
. . . ∧ %n) where %1, . . . , %n are atomic formulas, has a solution. An instance of a
multi-sorted constraint satisfaction problem corresponds to a conjunctive query
over a relational database by a simple translation of terms: ‘attributes’ have to
be replaced with ‘variables’, ‘tables’ with ‘constraint relations’, ‘scheme’ with
‘signature’, ‘instance’ with ‘constraint relation’, and ‘rows’ with ‘tuples’. Hence
a conjunctive query is equivalent to a multi-sorted CSP instance whose variables
are the variables of the query. For each atomic formula %i in the query, there
is a constraint C such that the scope of C is the list of variables of %i and the
constraint relation of C is the set of models of %i.

In the special case where Γ is a set of one-sorted relations over a single set A, we
shall use the notation CSP(Γ), and refer to this as a one-sorted problem class.
An instance of CSP(Γ) can be specified by a triple (V ; A; C).
Example 4. Consider the Graph q-Colorability problem. An instance of this
problem consists of a graph G, and the question is whether the vertices of G can
be labelled with q colours so that adjacent vertices are assigned different colours.

Each instance G of Graph q-Colorability corresponds to an instance PG

of CSP({6=A}), where A is a q-element set and 6=A = {(a, b) ∈ A2 | a 6= b}. The
variables of PG are the vertices of the graph G, and for each edge {v, w} of G,
there is a constraint ({v, w}, 6=A) in PG.

In the remainder of the paper we shall be concerned with distinguishing between
those sets of relations which give rise to tractable problems (i.e., problems for
which there exists a polynomial-time solution algorithm) and those which do
not. In order to be able to classify infinite, as well as finite, sets of relations, we
define the notion of a tractable set of relations in a way that depends on finite
subsets only.

Definition 4. A set of multi-sorted relations, Γ , is said to be tractable, if
MCSP(Γ ′) is tractable for each finite subset Γ ′ ⊆ Γ .

A set of multi-sorted relations, Γ , is said to be NP-complete, if MCSP(Γ ′)
is NP-complete for some finite subset Γ ′ ⊆ Γ .

It might be tempting to assume that the complexity of a set of multi-sorted
relations could be determined by considering each of the domains involved sep-
arately; in other words, by separating the relations into a number of one-sorted
relations, and analysing the complexity of each of these. However, in general this
simple approach does not work, as the next example demonstrates.

Example 5. Consider the sets A1 = {0, 1} and A2 = {a, b, c}, and the relations

%1 =
(

1 0 0
a b c

)
, %2 =

(
0 1 0
a b c

)
, %3 =

(
0 0 1
a b c

)

over {A1, A2}, each with signature (1, 2).
If we divide each of these relations into two separate one-sorted relations,

then we obtain just the unary relations {0, 1} and {a, b, c} over the sets A1 and
A2 respectively. Each of these unary relations individually is clearly tractable.

However, by establishing a reduction from the NP-complete problem One-in-
Three [14], it can be shown that the set of multi-sorted relations Γ = {%1, %2, %3}
is NP-complete.

To obtain the reduction we note that the One-in-Three problem may
be expressed as CSP({%}) where % = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Given any
problem instance P = (V ; {0, 1}; {C1, . . . , Cq}) ∈ CSP({%}), we introduce q
auxiliary variables v1, . . . , vq, distinct from the variables in V , and set P ′ =
(V ∪{v1, . . . , vq}; {A1, A2}; δ; {C1

1 , C2
1 , C3

1 , C1
2 , . . . , C3

q }), where δ(v) = 1 if v ∈ V ,
δ(v) = 2 otherwise, and for each Ci = 〈(w1, w2, w3), %〉, the new constraints are
C1

i = 〈(w1, vi), %1〉, C2
i = 〈(w2, vi), %2〉, and C3

i = 〈(w3, vi), %3〉. It is easy to
check that P and P ′ are equivalent.

The next example indicates that a set of constraints which is NP-complete when
viewed as one-sorted, can become tractable when viewed as multi-sorted: the
tractability is due to the signatures of the relations rather than the tuples they
contain.

Example 6. Let A1 and A2 be two distinct supersets of a set A0, and let Γ
be the set containing the single binary disequality relation 6=A0 , as defined in
Example 4, but now considered as a multi-sorted relation over {A1, A2} with
signature (1, 2).

Because of the signature, this constraint can only be imposed between two
variables when one of them has domain A1 and the other has domain A2. Hence,
in this case MCSP(Γ) corresponds to the problem of colouring a bipartite graph
with |A0| colours, which is clearly tractable.

It is often desirable to convert a multi-sorted constraint satisfaction problem
into a one-sorted problem. The most straightforward way to do this for a given
multi-sorted problem instance (V ;A; δ; C), is to take B =

⋃
A∈AA, and replace

each constraint relation with a one-sorted relation over B containing exactly the
same tuples.

However, applying this procedure to the disequality relation in Example 6
gives the usual disequality relation over A, which for |A| > 2 is NP-complete (see
Example 4). Hence, this straightforward conversion method does not necessarily
preserve the tractability of Γ . To ensure that we do preserve the tractability of
Γ , we shall make use of a more sophisticated conversion technique, based on the
following definition. Note that in this definition, and throughout the paper, the
ith component of a tuple a is denoted by a[i].

Definition 5. For any m-ary relation % over {A1, . . . , An} with signature σ(%) =
(i1, . . . , im), let A = A1×A2×· · ·×An and define the one-sorted m-ary relation
χ(%) over A as follows:

χ(%) = {(a1, a2, . . . , am) ∈ Am | (a1[i1], . . . , am[im]) ∈ %}.
For any set of relations Γ , the set {χ(%) | % ∈ Γ} will be denoted χ(Γ).

Note that for any one-sorted relation %, we have χ(%) = %.

Example 7. Let % be the binary disequality relation 6=A0 over {A1, A2} with
signature (1, 2), as in Example 6. In this case χ(%) is the relation consisting of
all pairs ((a, a′), (b, b′)) ∈ (A1×A2)× (A1×A2) such that a, b′ ∈ A0 and a 6= b′.

Proposition 1. Let Γ be a set of multi-sorted relations over the finite sets
A1, . . . , An. The set Γ is tractable if and only if the corresponding set of one-
sorted relations χ(Γ) is tractable.

Proof: Let P = (V ; {A1, . . . , An}; δ; C) be an instance of MCSP(Γ) where C =
{C1, C2, . . . , Cq} and each Ci = 〈si, %i〉.

Consider the one-sorted instance P ′ = (V ; A; C′) where A = A1 ×A2 × · · · ×
An, C′ = {C ′1, C ′2, . . . , C ′q}, and each C ′i = 〈si, χ(%i)〉. Note that every solution
to P can be used to construct a solution for P ′ by extending the value assigned

to each variable (arbitrarily) to a tuple over A. Conversely, every solution to P ′
can be used to obtain a solution for P by projecting the tuple over A assigned
to each variable v onto the co-ordinate given by δ(v). Hence we have a reduction
from MCSP(Γ) to CSP(χ(Γ)).

Furthermore, every tuple in every constraint relation of P is replaced by a
fixed number of tuples (depending only on the cardinalities of the sets A1, . . . , An

and on the arities of the constraint relations), to obtain the corresponding con-
straint relation in P ′. Hence, for any finite subset of Γ the reduction can be
carried out in linear time.

The same arguments can be applied in the reverse direction to obtain a
polynomial-time reduction from CSP(χ(Γ)) to MCSP(Γ). 2

3 Polymorphisms and Tractability Results

In earlier papers [19, 18, 6] it has been shown that in the one-sorted case the
complexity of CSP(Γ) is determined by certain algebraic properties of the rela-
tions in Γ , known as polymorphisms. In this section, we first state some of these
earlier results on the complexity of the one-sorted case, and then show how they
can be extended to the multi-sorted case.

Definition 6. Let % be a one-sorted relation over a set A, with arity m.
The operation f : Ak → A is said to be a polymorphism of the relation % if,

for any tuples (a11, . . . , am1), . . . , (a1k, . . . , amk) ∈ % the tuple (f(a11, . . . , a1k), . . . ,
f(am1, . . . , amk)) also belongs to %.

For any given set of one-sorted relations Γ , the set of all those operations which
are polymorphisms of every relation in Γ is denoted Pol(Γ).

Theorem 1 ([19, 17]). Let Γ, Γ0 be sets of one-sorted relations over a finite
set A. If Γ0 is finite, and Pol(Γ) ⊆ Pol(Γ0), then there is a polynomial time
reduction from CSP(Γ0) to CSP(Γ).

Furthermore, certain simple forms of polymorphism have been shown to be suf-
ficient to ensure tractability of the associated one-sorted relations [19, 18].

Definition 7. – An operation f is called a constant operation if there is some
fixed c ∈ A such that f(x1, . . . , xn) = c for all x1, . . . , xn.

– A binary operation f is called a semilattice operation2 if it satisfies the
following three identities: f(x, f(y, z)) = f(f(x, y), z); f(x, y) = f(y, x);
f(x, x) = x.

– An n-ary operation f is called a near-unanimity operation if f(y, x, . . . , x) =
f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y) = x for all x, y ∈ A.

– A ternary operation f is called an affine operation if f(x, y, z) = x − y + z
for all x, y, z ∈ A, where (A,+,−) is an Abelian group.

2 Note that in some earlier papers [19, 17] the term ACI operation is used

Proposition 2 ([19, 18]). Let Γ be a set of one-sorted relations over a finite
set A.

If Pol(Γ) contains either a constant operation, or a semilattice operation, or
a near-unanimity operation, or an affine operation, then CSP(Γ) is tractable.

To extend the above results to the multi-sorted case, we need to define a suitable
extension of the notion of a polymorphism. As we have shown in the previous
section (see Example 5), we cannot simply separate out different domains and
consider polymorphisms on each one separately; we must ensure that all of the
domains are treated in a co-ordinated way. In the following definition, this is
achieved by defining different interpretations for the same operation applied to
different sets.

Definition 8. Let A be a collection of sets. An n-ary multi-sorted operation
t on A is defined by a collection of interpretations {tA | A ∈ A}, where each
tA is an n-ary operation on the corresponding set A. The multi-sorted operation
t on A is said to be a polymorphism of a multi-sorted relation % over A with
signature (δ(1), . . . , δ(m)) if, for any (a11, . . . , am1), . . . , (a1n, . . . , amn) ∈ %, we
have

t




a11 · · · a1n

...
...

am1 · · · amn


 =




tAδ(1)(a11, . . . , a1n)
...

tAδ(m)(am1, . . . , amn)


 ∈ %.

For any given set of multi-sorted relations Γ , the set of all those multi-sorted
operations which are polymorphisms of every relation in Γ is denoted MPol(Γ).

The next theorem is the main result of this section. It establishes the re-
markable fact that the known one-sorted tractable classes listed in Proposition 2
can be combined in almost arbitrary ways to obtain new multi-sorted tractable
classes.

Note that a multi-sorted operation, t, is said to be idempotent if all of its
interpretations tA satisfy the identity tA(x, x, . . . , x) = x.

Theorem 2. Let Γ be a set of multi-sorted relations over a collection of finite
sets A = {A1, . . . , An}.

If, for each Ai ∈ A, MPol(Γ) contains a multi-sorted operation fi such that

– fAi
i is a constant operation; or

– fAi
i is a semilattice operation; or

– fAi
i is a near-unanimity operation; or

– fi is idempotent and fAi
i is an affine operation,

then MCSP(Γ) is tractable.

The proof of Theorem 2 is set out in Propositions 3, 4, and 5.
Before giving these proofs, we need to give a precise definition for the notion

of k-consistency, which is widely used in the study of constraint satisfaction
problems, but is unfortunately defined in the literature in a number of slightly
different ways.

For an n-ary relation % and a set of indices I = {i1, . . . , ik} ⊆ {1, . . . , n},
the relation prI% = {(ai1 , . . . , aik

) | (a1, . . . , an) ∈ %} is called the projection
of % onto I. (It will sometimes be convenient to abuse this notation by using
the variables from a constraint scope as indices of the corresponding constraint
relation.)

Definition 9. Let P = (V ;A; δ; C) be an instance of a multi-sorted constraint
satisfaction problem. For any subset W of V , the subproblem of P generated
by W , denoted P

W
, is defined to be the problem instance (W ;A; δ

W
; C′), where

the constraints C′ are obtained from the constraints of P as follows: for each
constraint 〈s, %〉 ∈ C of P, choose s′ = s∩W to be a list of those elements of W
occurring in s, and set 〈s′,prs′%〉 as a constraint of P

W
.

Definition 10. For any k ≥ 2, a constraint satisfaction problem P is said to be
k-consistent if for any subset W containing k − 1 variables, and any variable v,
any solution to P

W
can be extended to a solution to P

W∪{v}
.

If P is i-consistent for 1 ≤ i ≤ k, then it is said to be strong k-consistent.

Any constraint satisfaction problem instance P can be modified to obtain a k-
consistent problem instance P ′ without changing the set of solutions, by solving
all subproblems involving k variables, and then imposing additional constraints
on all subsets of k−1 variables that allow only these solutions. This procedure is
called ‘establishing k-consistency’, and P ′ is said to be the k-consistent instance
associated with P (see [8] for the one-sorted case).

Definition 11. A class C of constraint satisfaction problems is said to be of
essential width k if any problem instance P from C has a solution if and only if
the k-consistent problem associated with P contains no empty constraint.

Note that Feder and Vardi [13] introduced a very similar notion of width, which
they characterised in terms of Datalog programs.

Every class of problems with finite essential width is tractable, because, for
any fixed k, establishing k-consistency takes polynomial time, and recognising
the presence of empty constraints can be carried out in linear time.

Proposition 3. Let Γ be a set of multi-sorted relations over A = {A1, . . . , An}.
If, for each Ai ∈ A, MPol(Γ) contains a multi-sorted operation fi such that fAi

i

is either a semilattice operation or a near-unanimity operation, then MCSP(Γ)
has finite essential width, and is, therefore, tractable.

A proof of Proposition 3 can be derived from the results of [13, 18, 19].
The next proposition deals with the most involved part of the proof of The-

orem 2, because it exploits the subtle interaction between affine operations, and
the operations considered in Proposition 3, above. To state this proposition, we
first need to define certain sets of multi-sorted relations which can be associated
with a given set of multi-sorted relations.

Definition 12. Let Γ be a set of multi-sorted relations over a collection of sets
A.

– The set of all multi-sorted relations over A which have the same multi-sorted
polymorphisms as Γ will be denoted 〈Γ 〉.

– For any subset B of A, the set of all multi-sorted relations in Γ which are
multi-sorted relations over B will be denoted ΓB.

Proposition 4. Let Γ be a set of multi-sorted relations over A = {A1, . . . , An}.
If MCSP(〈Γ 〉Al+1,...,An

) is of finite essential width, and for each Ai ∈ A with
i ≤ l, MPol(Γ) contains an idempotent multi-sorted operation gi such that gAi

i

is affine, then MCSP(Γ) is tractable.

Proof: (sketch) Due to space restrictions, we can only give a very brief outline
here of a polynomial-time algorithm for MCSP(Γ).

Let P be any instance of MCSP(Γ). The variables of P can be split into
two parts, those with domains in A1, . . . , Al (the “affine” part), and those with
domains in Al+1, . . . , An (the “finite width” part).

Consider first the affine part. The conditions of Proposition 4 mean, in par-
ticular, that, for i ≤ l, gAi

i (x, y, z) = x−iy+iz where +i,−i are the operations of
an Abelian group on the base set Ai. It can be shown that in this case MPol(Γ)
also contains a single ternary idempotent operation d such that dAi(x, y, z) =
gAi

i (x, y, z) for i = 1, 2, . . . , l. It follows that Pol(χ(〈Γ 〉A1,...,Al
)) contains an affine

operation, and hence, any problem instance from CSP(χ(〈Γ 〉A1,...,Al
)) is solvable

in polynomial time, by an algorithm similar to Gaussian elimination. The same
is true for the class MCSP(〈Γ 〉A1,...,Al

). Moreover, this solution algorithm can
be modified to efficiently compute a basis of the solution space; in other words,
to find a representation for the complete set of solutions which is polynomial in
the size of the problem.

Now consider the finite width part. If we restrict P to these variables, then we
need only consider subproblems of size at most k, where k is the essential width
of CSP(〈Γ 〉Al+1,...,An). For each solution to such a bounded-size subproblem we
can efficiently compute a basis for the possible extensions of that solution to the
affine part, as described above. Combining these basis sets, we can find a basis for
the complete set of possible solutions to the affine part, and check if it is empty. 2

Proposition 5. Let Γ be a set of multi-sorted relations over A = {A1, . . . , An}.
If MCSP(〈Γ 〉Al+1,...,An) is tractable, and for each Ai ∈ A with i ≤ l, MPol(Γ)
contains a multi-sorted operation gi such that gAi

i is constant, then MCSP(Γ) is
tractable.

Proof: Assume that MPol(Γ) contains a multi-sorted operation gi, for i =
1, 2, . . . , l, such that gAi

i is constant. Note that in this case the unary opera-
tion g′i(x) = gi(x, . . . , x) also belongs to MPol(Γ). Hence, the operation g(x) =
g′1(. . . g

′
l(x) . . .) belongs to MPol(Γ) and is constant for all A1, . . . , Al. Denote

the constant value of gAi by ci.
Take a problem instance P = (V ; {A1, . . . , An}; δ; C) of MCSP(Γ), and set

W = {v ∈ V | δ(v) > l}. Then the instance P
W

belongs to MCSP(〈Γ 〉Al+1,...,An),

and therefore is tractable, by assumption. Solve P
W

. If it has no solution then
neither does P. Otherwise, let ϕ be a solution. We claim that the mapping
ψ : V → A1 ∪ . . . ∪An defined as follows

ψ(v) =
{

cδ(v), if δ(v) ≤ l,
gAδ(v)(ϕ(v)), otherwise

is a solution to P.
To establish this, note that for any constraint C = 〈s, %〉 ∈ C there is a tu-

ple a ∈ % such that a[v] = ϕ(v) for v ∈ s ∩ W . Setting b = g(a) ∈ % we get
b[v] = cδ(v) = ψ(v) if δ(v) ≤ l, and b[v] = gAδ(v)(ϕ(v)) = ψ(v) otherwise. Thus
ψ satisfies every constraint in C, and hence is a solution to P. 2

Example 8. Recall the relation % over the sets A1 = {0, 1, 2, 3} and A2 =
{a, b, c}, defined in Example 1. We can now prove that {%} is tractable. To
see this, it is sufficient to check that % has two multi-sorted polymorphisms
t(x, y, z) and g(x, y), where

– tA1 is the affine operation of the group Z4, and tA2 is the (ternary) maximum
operation on A2, with respect to the order a < b < c (which is idempotent).

– gA1(x, y) = y, and gA2 is the (binary) maximum operation on A2, with
respect to the order a < b < c (which is a semilattice operation).

Hence we can apply Theorem 2, and conclude that MCSP({%}) is tractable.

4 From Polymorphisms to Algebras

Polymorphisms provide a powerful tool for studying the constraint satisfaction
problem. However, as was observed in [6], we get an even more powerful tool
if we consider the set of polymorphisms along with the set on which they are
defined.

Definition 13. An algebra is an ordered pair (A; F), where A is a nonempty
set and F is a family of finitary operations on A. The set A is called the universe
(or the base set), and the operations from F are called basic. An algebra is said
to be finite if its universe is finite.

The advantage of working explicitly with algebras, rather than just sets of poly-
morphisms, is that one can exploit the well-developed mathematical theory of
algebras. This idea was pursued for the one-sorted case in [6]. Here we briefly
summarise the relevant aspects of the one-sorted case, and then consider how
the link with algebras can be extended to the multi-sorted case.

First we observe that we can associate any set Γ of one-sorted relations with
a corresponding algebra AΓ = (A; PolΓ). In the reverse direction, we can start
with an algebra and obtain a corresponding set of one-sorted relations, in the
following way. Given any set of operations, C, on a set A, the set of all relations
over A for which all operations from C are polymorphisms is denoted Inv(C).
Hence, given any algebra (A; F), we can define an associated set of one-sorted

relations Inv(F). We will say that an algebra (A;F) is tractable if the associated
set of one-sorted relations Inv(F) is tractable.

Using the definitions above, and Theorem 1, we can translate questions about
the tractability of a set of one-sorted relations into questions about the tractabil-
ity of the corresponding algebra.

Corollary 1. Let Γ be a set of one-sorted relations over a finite set A. The set
Γ is tractable if and only if the corresponding algebra AΓ is tractable.

It follows from Corollary 1 that all maximal tractable sets of one-sorted relations
can be defined by specifying a suitable algebra. Of course, we may need very
many operations to define an arbitrary algebra. However, in all known cases,
including those listed in Proposition 2 and in papers [1–3, 5, 10, 11], we need very
few operations to ensure that an algebra is tractable. Hence the algebraic theory
we have sketched here allows a very concise description of all known maximal
tractable sets of one-sorted relations, even though each maximal tractable set
contains infinitely many relations.

One simple way to extend these ideas to the multi-sorted case is to combine
Corollary 1 with Proposition 1, as follows.

Corollary 2. Let Γ be a set of multi-sorted relations over the collection of finite
sets {A1, . . . , An}. The set Γ is tractable if and only if the corresponding algebra
Aχ(Γ) is tractable.

However, this simple extension is rather unsatisfactory, because of the potentially
large size of the universe of Aχ(Γ). For example, if we have 10 distinct domains
each with 20 elements then Aχ(Γ) is an algebra with 2010 elements. In the
remainder of this section we are going to show that, for any set of multi-sorted
relations over {A1, . . . , An}, we can define a collection of algebras {A1, . . . ,An},
where the universe of each Ai is the set Ai, and the complexity of the multi-
sorted problem is determined by this collection of smaller algebras. Using these
results for the case just mentioned, we may deal with 10 individual 20-element
algebras, which is much more convenient, and allows a more complete analysis
of the algebraic structure.

To develop this novel theory concerning the tractability of collections of al-
gebras we need to introduce a little more standard algebraic terminology. First
we note that algebras can be grouped into families which share the same set of
basic operations.

Definition 14. The collection of algebras A = {(Ai; FAi) | i ∈ I} is said to
be a collection of similar algebras if there exists some fixed set F of multi-sorted
operations over the sets {Ai | i ∈ I}, such that each set of basic operations FAi

is the set of interpretations of the functions in F on the set Ai. The set F is
called the set of basic operations of the collection A.

Definition 15. For any collection of similar algebras A = {(Ai;FAi) | i ∈ I}
with basic operations F , we define MInv(A) to be the set Γ of all multi-sorted
relations over the sets {Ai | i ∈ I} such that MPol(Γ) = F .

A collection of algebras A will be called tractable if the set of multi-sorted rela-
tions MInv(A) is tractable. Similarly, A will be called NP-complete if MInv(A)
is NP-complete.

The following theorem shows that, for any set Γ of multi-sorted relations
over a finite collection of finite sets, A, there exists a finite algebra A, and a
collection A of similar algebras whose universes are the members of A, such
that Γ , A, and A are all tractable or intractable simultaneously.

Definition 16. Let A1 and A2 be similar algebras with universes A1, A2 and
basic operations F . A mapping ϕ : A1 → A2 is called a homomorphism from
A1 to A2 if ϕfA1(a1, . . . , ak) = fA2(ϕ(a1), . . . , ϕ(ak)) for all f ∈ F and all
a1, . . . , ak ∈ A1, where k is the arity of f .

If the map ϕ is surjective, then A2 is called a homomorphic image of A1.

Theorem 3. Let Γ be a set of multi-sorted relations over the finite sets {A1, . . . , An}.
The following are equivalent:

(a) Γ is tractable;
(b) Aχ(bΓ) is tractable, where Γ̂ = Γ ∪ {=A1 , . . . , =An}, and each =Ai is the

binary equality relation on Ai;
(c) {A1, . . . ,An} is tractable, where each Ai is the image of Aχ(bΓ) under the

homomorphism ϕi given by ϕi(a) = a[i].

A corresponding equivalence also holds when “tractable” is replaced by “NP-
complete”.

Proof: Omitted, see [4]. 2

5 Applications to One-Sorted Problems

As well as providing a sound framework for the analysis of the complexity of
multi-sorted constraint satisfaction problems, the results developed in this paper
have some surprising applications to the one-sorted case. (For example, see [1].)

We will complete this paper by describing an application of the results pre-
sented above to the analysis of the complexity of one-sorted constraint satis-
faction problems in which the constraints limit each variable to at most two
possible values (which may be different for different variables). In other words,
we consider sets Γ , containing one-sorted relations, such that for each % ∈ Γ ,
each unary projection pri% contains at most two elements. This problem was
previously considered in [12], which established a dichotomy theorem for the
complexity of such sets of relations: they are either tractable or NP-complete.

Using the results of this paper we can not only establish this dichotomy,
we can also give a precise characterisation of the tractable cases (which are not
described in [12]). In fact, we establish the general result that for any set, Γ , con-
taining one-sorted relations, the one-sorted problem class CSP(Γ) is polynomial-
time equivalent to a certain multi-sorted constraint satisfaction problem, where

the domains are the unary projections of the (non-unary) relations in Γ . In the
case where all these projections have size at most 2, we can then apply Theo-
rems 2 and 3 to obtain a complete characterisation of all the tractable cases.

Definition 17. Let Γ be a set of one-sorted relations.
For any relation % ∈ Γ , the set ∆(%) is defined to be the set of all unary

projections of %, and the set ∆(Γ) is defined to be the union of the sets ∆(%)
over all non-unary % ∈ Γ .

Definition 18. Let Γ be a set of one-sorted relations where ∆(Γ) = {A1, . . . , Ak}.
For any relation % ∈ Γ with arity n, the set Γ% is defined to be the set of all

multi-sorted relations over ∆(Γ) of the form %∩ (Ai1 × . . .×Ain
) with signature

(i1, . . . , in), for all possible choices of i1, . . . , in.
The set Γ+ is defined to be the union of the sets Γ% over all non-unary % ∈ Γ .

Proposition 6. Let Γ be a finite set of one-sorted relations.
The one-sorted problem CSP(Γ) is polynomial-time equivalent to the multi-

sorted problem MCSP(Γ+).

Proof: First we reduce CSP(Γ) to MCSP(Γ+). Consider any problem instance
P = (V ; A; C) ∈ CSP(Γ). Let U be the set of variables constrained by unary
constraints only. For any v ∈ U , if the intersection of the unary constraints
imposed on v is empty, then P has no solution. Otherwise, we can assign v with
an arbitrary value from this intersection. Hence, we may assume that U =∅.

Let ∆(Γ) = {A1, A2, . . . , Ak}. For each v ∈ V , let 〈sv, %v〉 ∈ C be a non-
unary constraint whose scope contains v. The set prv%v is equal to some element
Ai ∈ ∆(Γ); set δ(v) equal to i. It is not hard to see that P is equivalent to
the multi-sorted problem P ′ = (V ; {A1, . . . , Ak}; δ; C′) where C′ contains the
constraint 〈s, % ∩∏

v∈s Aδ(v)〉 for each 〈s, %〉 ∈ C.
To show the converse reduction, we notice that Γ+ can be viewed as a set

of one-sorted relations over the set A. Moreover, every multi-sorted problem in-
stance in MCSP(Γ+) can be viewed as a one-sorted instance. Hence, we have
a trivial reduction from MCSP(Γ+) to CSP(Γ+). By using well-known basic
properties of polymorphisms (see, for example, [25]), any f ∈ Pol(Γ) is also
a polymorphism of all unary relations Ai, all Cartesian products of the form
Ai1 × . . .×Ail

, and all relations of the form %∩ (Ai1 × . . .×Ail
), for any % ∈ Γ .

Hence, Pol(Γ) ⊆ Pol(Γ+), so CSP(Γ+) is polynomial-time reducible to CSP(Γ),
by Theorem 1. 2

Corollary 3. Let Γ be a set of one-sorted relations over a finite set, such that
|Ai| ≤ 2 for each Ai ∈ ∆(Γ).

If, for each Ai ∈ ∆(Γ) there is an operation fi ∈ MPol(Γ+) such that fAi
i

is either a constant operation, or a semilattice operation, or a near-unanimity
operation, or an affine operation, then CSP(Γ) is tractable. Otherwise, it is NP-
complete.

Proof: Let A1, . . . ,Ak be the algebras corresponding to Γ+ as defined in The-
orem 3. If the conditions of the corollary hold, then Γ+ ⊆ MInv(A1, . . . ,Ak) is
tractable, by Theorem 2. (The requirement in Theorem 2 for affine operations
to be idempotent can be shown to be unnecessary when all sets contain at most
2 elements, by a careful examination of the possible cases.)

Conversely, if for a certain Ai there is no operation with the required proper-
ties then, by the dichotomy theorem for one-sorted constraints on a two-element
set [26, 6], MInv({Ai}) ⊆ MInv({A1, . . . ,Ak}) is NP-complete. Hence, by The-
orem 3, Γ+ is also NP-complete, and therefore Γ is NP-complete, by Proposi-
tion 6. 2

6 Conclusion

Practical constraint satisfaction problems often involve different domains for
different variables. We have shown in this paper that analyzing the complexity
of such problems by simply assuming that all these domains are subsets of some
single large domain can give a misleading picture of their complexity. To remedy
this problem, we have presented a set of algebraic tools that allow one to deal
more accurately with such multi-sorted problems.

Using these tools we have been able to show that certain existing polynomial-
time algorithms for the one-sorted case can be combined, to give a more powerful
polynomial-time algorithm, solving much wider classes of multi-sorted problems.

Finally, we have further investigated the significant link between the study
of the constraint satisfaction problem and the study of finite algebras, by ex-
tending this link to the multi-sorted case. Elements of this extended algebraic
machinery have already proved to be essential tools in the study of the complex-
ity of the conventional one-sorted constraint satisfaction problem. We therefore
believe that the theory developed here will lead to a deeper understanding of the
structure of both one-sorted and multi-sorted constraint satisfaction problems.

References

1. A.A. Bulatov. A dichotomy theorem for constraints on a three-element set. In Pro-
ceedings 43rd IEEE Symposium on Foundations of Computer Science, FOCS’02,
pages 649–658, Vancouver, Canada, November 2002.

2. A.A. Bulatov. Mal’tsev constraints are tractable. Technical Report PRG-RR-02-
05, Computing Laboratory, University of Oxford, Oxford, UK, 2002.

3. A.A. Bulatov and P.G. Jeavons. Tractable constraints closed under a binary op-
eration. Technical Report PRG-TR-12-00, Computing Laboratory, University of
Oxford, Oxford, UK, 2000.

4. A.A. Bulatov and P.G. Jeavons. An algebraic approach to multi-sorted constraints.
Technical Report PRG-RR-01-18, Computing Laboratory, University of Oxford,
Oxford, UK, 2001.

5. A.A. Bulatov, P.G. Jeavons, and A.A. Krokhin. The complexity of maximal con-
straint languages. In Proceedings of the 33rd Annual ACM Simposium on Theory
of Computing, pages 667–674, Hersonissos, Crete, Greece, July 2001. ACM Press.

6. A.A. Bulatov, A.A. Krokhin, and P.G. Jeavons. Constraint satisfaction problems
and finite algebras. In Proceedings of 27th International Colloquium on Automata,
Languages and Programming—ICALP’00, volume 1853 of Lecture Notes in Com-
puter Science, pages 272–282. Springer-Verlag, 2000.

7. D.A. Cohen, P.G. Jeavons, P. Jonsson, and M. Koubarakis. Building tractable
disjunctive constraints. Journal of the ACM, 47:826–853, 2000.

8. M.C. Cooper. An optimal k-consistency algorithm. Art. Intell., 41:89–95, 1989.
9. M.C. Cooper, D.A. Cohen, and P.G. Jeavons. Characterising tractable constraints.

Artificial Intelligence, 65:347–361, 1994.
10. V. Dalmau. A new tractable class of constraint satisfaction problems. In Proc. 6th

International Symposium on Artificial Intelligence and Mathematics, 2000.
11. V. Dalmau and J. Pearson. Set functions and width 1 problems. In Proceedings

5th International Conference on Constraint Programming, CP’99, volume 1713 of
Lecture Notes in Computer Science, pages 159–173. Springer-Verlag, 1999.

12. T. Feder. Classification of homomorphisms to oriented cycles and of k-partite
satisfiability. SIAM J. of Discrete Math., 14(4):471–480, 2001.

13. T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM
Journal of Computing, 28:57–104, 1998.

14. M. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA., 1979.

15. R. Gault. Polyanna Technical Manual (version 1.00). Technical Report PRG-RR-
01-20, Computing Laboratory, University of Oxford, Oxford, UK, 2001.

16. D. Hobby and R.N. McKenzie. The Structure of Finite Algebras, volume 76 of
Contemporary Mathematics. American Mathematical Society, 1988.

17. P.G. Jeavons. On the algebraic structure of combinatorial problems. Theoretical
Computer Science, 200:185–204, 1998.

18. P.G. Jeavons, D.A. Cohen, and M.C. Cooper. Constraints, consistency and closure.
Artificial Intelligence, 101(1-2):251–265, 1998.

19. P.G. Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of constraints.
Journal of the ACM, 44:527–548, 1997.

20. L. Kirousis. Fast parallel constraint satisfaction. Artificial Intelligence, 64:147–160,
1993.

21. Ph.G. Kolaitis and M.Y. Vardi. Conjunctive-query containment and constraint
satisfaction. J. Comput. Syst. Sci., 61:302–332, 2000.

22. A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

23. R.N. McKenzie, G.F. McNulty, and W.F. Taylor. Algebras, Lattices and Varieties,
volume I. Wadsworth and Brooks, California, 1987.

24. U. Montanari. Networks of constraints: Fundamental properties and applications
to picture processing. Information Sciences, 7:95–132, 1974.

25. R. Pöschel and L.A. Kalužnin. Funktionen- und Relationenalgebren. DVW, Berlin,
1979.

26. T.J. Schaefer. The complexity of satisfiability problems. In Proceedings 10th ACM
Symposium on Theory of Computing (STOC’78), pages 216–226, 1978.

27. P. van Beek and R. Dechter. On the minimality and decomposability of row-convex
constraint networks. Journal of the ACM, 42:543–561, 1995.

28. P. van Hentenryck, Y. Deville, and C-M. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, 57:291–321, 1992.

29. M.Y. Vardi. Constraint satisfaction and database theory: a tutorial. In Proceedings
of 19th ACM Symposium on Priciples of Database Systems (PODS’00), 2000.

