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Abstract. We review the many different definitions of symmetry for
constraint satisfaction problems (CSPs) that have appeared in the liter-
ature, and show that a symmetry can be defined in two fundamentally
different ways: as an operation preserving the solutions of a CSP instance,
or else as an operation preserving the constraints. We refer to these as
solution symmetries and constraint symmetries. We define a constraint
symmetry more precisely as an automorphism of a hypergraph associ-
ated with a CSP instance, the microstructure complement. We show
that the solution symmetries of a CSP instance can also be obtained as
the automorphisms of a related hypergraph, the k-ary nogood hypergraph
and give examples to show that some instances have many more solution
symmetries than constraint symmetries. Finally, we discuss the practical
implications of these different notions of symmetry.

1 Introduction

The issue of symmetry is now widely recognised as of fundamental importance
in constraint satisfaction problems (CSPs). It seems self-evident that in order to
deal with symmetry we should first agree what we mean by symmetry. Surpris-
ingly, this appears not to be true: researchers in this area have defined symmetry
in fundamentally different ways, whilst often still identifying the same collection
of symmetries in a given problem and dealing with them in the same way.

In this paper, we first survey the various symmetry definitions that have ap-
peared in the literature. We show that the existing definitions reflect two distinct
views of symmetry: that symmetry is a property of the solutions, i.e. that any
mapping that preserves the solutions is a symmetry; or that symmetry preserves
the constraints, and therefore as a consequence also preserves the solutions. We
propose two new definitions of solution symmetry and constraint symmetry to
capture these two distinct views, and show that they are indeed different: al-
though any constraint symmetry is also a solution symmetry, there can be many



solution symmetries that are not constraint symmetries. We discuss the relation-
ship between the symmetry groups identified by these definitions and show that
each is the automorphism group of a hypergraph, derived from either the solu-
tions or the constraints of the CSP. We illustrate these ideas by discussing how
they apply to a well-studied example problem, the n-queens problem. Finally,
we discuss how these definitions of symmetry may be used in practice.

2 A Brief Survey of Symmetry Definitions

There have been many papers in recent years on symmetry in constraint satis-
faction and related problems, not all of which give a clear definition of symmetry.
In this section, we review the variety of definitions that have been used.

We first fix our terminology by defining a CSP instance as follows.

Definition 1. A CSP instance is a triple 〈V, D, C〉 where:

– V is a set of variables;
– D is a universal domain, specifying the possible values for those variables;
– C is a set of constraints. Each constraint c ∈ C is a pair c = 〈σ, ρ〉 where σ

is a list of variables from V , called the constraint scope, and ρ is a |σ|-ary
relation over D, called the constraint relation.

An assignment of values to variables is a set {〈v1, a1〉, 〈v2, a2〉, ..., 〈vk, ak〉}
where {v1, v2, ..., vk} ⊆ V and ai ∈ D, for all i such that 1 ≤ i ≤ k. Note that
the constraint relation of a constraint c is intended to specify the assignments
that are allowed by that constraint.

A solution to the CSP instance 〈V,D, C〉 is a mapping from V into D whose
restriction to each constraint scope is a member of the corresponding constraint
relation, i.e., is allowed by the constraint.

We will call a CSP k-ary if the maximum arity of any of its constraints is k.
There are two basic types of definition for symmetry in a CSP instance: those

that define symmetry as a property of the set of solutions, and those that define
symmetry as a property that can be identified in the statement of the problem,
without solving it. We shall refer to these informally in this section as solution
symmetry and problem symmetry or constraint symmetry. In Section 3 we will
define them formally and use these definitions to show how the two types of
symmetry are related.

An example of an early definition of solution symmetry is given by Brown,
Finkelstein & Purdom [5], who define a symmetry as a permutation of the prob-
lem variables that leaves invariant the set of solutions. Backofen and Will [2]
similarly define a symmetry as a bijective function on the set of solutions of
a CSP: they allow a symmetry to be specified by its effect on the individual
assignments of values to variables.

A number of papers have defined problem symmetry in propositional calcu-
lus. Aguirre [1] and Crawford, Ginsberg, Luks & Roy [6] each define symmetry
similarly: if S is a set of clauses in CNF, then a permutation π of the variables



in those clauses is a symmetry of S if π(S) = S. The expression π(S) denotes
the result of applying the permutation π to the clauses in S. If this permutation
simply re-orders the literals in individual clauses, and reorders the clauses, then
it leaves S effectively unchanged, and so in this case π(S) = S and π is a sym-
metry. Benhamou and Sais [4] use a slightly more general definition, in which a
symmetry is a permutation defined on the set of literals that preserves the set
of clauses. For example, given two variables x and y, x may be mapped to ¬y.

In CSPs, some authors have similarly defined a symmetry as a mapping that
leaves the constraints unchanged, but have often restricted the allowed mappings
to those that affect only the variables or only the values. Note that a constraint
may be specified extensionally by listing its allowed tuples, or intensionally by
giving an expression such as x < y from which the allowed tuples could be
determined. Permuting the variables in a constraint will in general change it:
for example, the constraint x + y = z is not the same as the constraint x +
z = y. Puget [15] defines the notion of a symmetrical constraint, that is, a
constraint which is unaffected by the order of the variables. For example, the
binary inequality constraint, 6=, is symmetrical. He defines a symmetry of a CSP
as a permutation of the variables which maps the set of constraints into an
equivalent set: any constraint is either unchanged by the permutation or is an
instance of a symmetrical constraint and is mapped onto a constraint on the
same set of variables.

A similar idea was introduced by Roy and Pachet [17]. They define the notion
of intensional permutability: two variables are intensionally permutable if: they
have the same domain; any constraint affecting either of them affects both; for
any constraint affecting these two variables, interchanging them in the expression
defining the constraint does not change it. (The constraint is assumed to be
defined intensionally, hence the name.) For example, in a linear constraint, any
two variables with the same coefficient are intensionally permutable (with respect
to that constraint, and assuming that they have the same domain).

Both Puget [15] and Roy and Pachet [17] restrict their definitions of sym-
metries to mappings that permute the variables of the problem only. Meseguer
and Torras [14] define symmetries that act on both the variables and the values
of a CSP. They define a symmetry on a CSP with n variables as a collection of
n+1 bijective mappings Θ = {θ, θ1, ..., θn}. The mapping θ is a bijection on the
set of variables {x1, x2, . . . , xn}; each θi is a bijection from D(xi) to D(θ(xi))
(where D(xi) is the domain D restricted to the acceptable values for xi by unary
constraints). These mappings will also transform each constraint. The set Θ is
called a symmetry if it does not change the set of constraints C, as a whole.

Meseguer and Torras’s definition allows both variable symmetries (that per-
mute only the variables) and value symmetries (that permute only the values)
as special cases, and hence is more general than many earlier definitions. How-
ever, it does not allow mappings in which variable-value pairs involving the same
variable (say 〈xi, a1〉 and 〈xi, a2〉) can be mapped to variable-value pairs involv-
ing different variables (say 〈xj , aj〉 and 〈xk, ak〉, where xj 6= xk). For example,
Meseguer and Torras consider the n-queens problem, in the commonly-used CSP



formulation in which the variables correspond to the rows of the chessboard and
the values to the columns. They show that the reflections in the horizontal and
vertical axes and the rotation of the chessboard through 180◦ are symmetries of
the corresponding CSP according to their definition, but the other four chess-
board symmetries (reflection in the diagonals, rotation through 90◦ and 270◦)
are not. This example will be considered in more detail in Section 4 below.

Finally, we consider the notion of interchangeability, as defined by Freuder
[9]. This is a form of solution symmetry: two values a, b for a variable v are fully
interchangeable if every solution to the CSP containing the assignment 〈v, a〉
remains a solution when b is substituted for a, and vice versa. As Freuder notes,
in general identifying fully interchangeable values requires finding all solutions
to the CSP. He therefore defines local forms of interchangeability that can be
identified by inspecting the problem. Neighbourhood interchangeability, for ex-
ample, is a form of constraint symmetry: two values a, b for a variable v are
said to be neighbourhood interchangeable if for every constraint c whose scope
includes v, the set of assignments that satisfy c which contain the pair 〈v, a〉 still
satisfy c when this is replaced by 〈v, b〉, and vice versa.

Benhamou [3] extends the ideas of interchangeability slightly and distin-
guishes between semantic and syntactic symmetry in CSPs, corresponding to
our notions of solution symmetry and constraint symmetry, respectively. He de-
fines two kinds of semantic symmetry: two values ai and bi for a CSP variable
vi are symmetric for satisfiability if the following property holds: there is a so-
lution which assigns the value ai to vi if and only if there is a solution which
assigns the value bi to vi. The values are symmetric for all solutions if: each
solution containing the value ai can be mapped to a solution containing the
value bi. (The latter property implies the former.) Identifying semantic symme-
tries requires solving the CSP to find all solutions, and examining them. The
notion of syntactic symmetry in [3] is defined as follows. Let P = 〈V,D, C〉
be a binary CSP instance, whose constraint relations are all members of some
set R. A permutation π of D is a syntactic symmetry if ∀rij ∈ R, we have
(di, dj) ∈ rij =⇒ (π(di), π(dj)) ∈ rij . In other words, the permutation π does
not change any constraint relation of P , considered as a set of tuples.

From this brief survey of existing symmetry definitions, it can be seen that
they differ both in what aspect of the CSP they act on (only the values, only
the variables, or variable-value pairs) and in what they preserve (the constraints
or the set of solutions). It should be noted that it has become standard in the
symmetry breaking methods that act during search (e.g. [2, 7, 8, 11]), as opposed
to adding constraints to the CSP, to describe symmetries by their action on
variable-value pairs. Hence, almost all the definitions described in this section
are more restrictive than these systems allow.

Under all the definitions, symmetries map solutions to solutions and non-
solutions to non-solutions; the definitions disagree over whether this is a defining
property, so that any bijective mapping of the right kind that preserves the
solutions must be a symmetry, or whether it is simply a consequence of leaving



the constraints unchanged. In the next section we will show that this distinction
is critical: the choice we make can seriously affect the symmetries that we find.

3 Constraint Symmetries and Solution Symmetries

In this section we will introduce two definitions of symmetries for constraint
satisfaction problems that are sufficiently general to encompass all the types of
symmetry allowed by the definitions given in the last section.

Note that the essential feature that allows any bijective mapping on a set of
objects to be called a symmetry is that it leaves some property of those objects
unchanged. It follows from this that the identity mapping will always be a sym-
metry, and the inverse of any symmetry will also be a symmetry. Furthermore,
given two symmetries we can combine them (by composing the mappings) to
obtain another symmetry, and this combination operation is associative. Hence,
the set of symmetries forms a group.

The particular group of symmetries that we obtain depends on exactly what
property it is that we choose to be preserved. Our first definition uses the prop-
erty of being a solution, and is equivalent to the definition used in [2].

Definition 2. For any CSP instance P = 〈V, D,C〉, a solution symmetry of P
is a permutation of the set V ×D that preserves the set of solutions to P .

In other words, a solution symmetry is a bijective mapping defined on the set
of possible variable-value pairs of a CSP, that maps solutions to solutions. Note
that this general definition allows variable and value symmetries as special cases.

To state our definition of constraint symmetries we first describe a mathe-
matical structure associated with any CSP instance. For a binary CSP instance,
the details of the constraints can be captured in a graph, the microstructure [9,
12] of the instance.

Definition 3. For any binary CSP instance P = 〈V,D, C〉, the microstructure
of P is a graph with set of vertices V × D where each edge corresponds either
to an assignment allowed by a specific constraint, or to an assignment allowed
because there is no constraint between the associated variables.

For our purposes, it is more convenient to deal with the complement of this
graph. The microstructure complement has the same set of vertices as the mi-
crostructure, but with edges joining all pairs of vertices which are disallowed by
some constraint, or else are incompatible assignments for the same variable. In
other words, two vertices 〈v1, a1〉 and 〈v2, a2〉 in the microstructure complement
are connected by an edge if and only if:

– the vertices v1 and v2 are in the scope of some constraint, but the assignment
of a1 to v1 and a2 to v2 is disallowed by that constraint; or

– v1 = v2 and a1 6= a2.

Recall that any set of vertices of a graph which does not contain an edge is
called an independent set. An immediate consequence of the definition of the



microstructure complement is that a solution to a CSP instance P is precisely
an independent set of size |V | in its microstructure complement.

The definition extends naturally to the non-binary case. Here the microstruc-
ture complement is a hypergraph whose set of vertices is again the set of all
variable-value pairs. In this case, a set of vertices E is a hyperedge of the mi-
crostructure complement if it represents an assignment disallowed by a con-
straint, or else consists of a pair of incompatible assignments for the same vari-
able. In other words, a set of vertices {〈v1, a1〉, 〈v2, a2〉, . . . , 〈vk, ak〉} is a hyper-
edge if and only if:

– {v1, v2, . . . , vk} is the set of variables in the scope of some constraint, but
the constraint disallows the assignment {〈v1, a1〉, 〈v2, a2〉, . . . , 〈vk, ak〉}; or

– k = 2, v1 = v2 and a1 6= a2.

Example 1. The system of linear equations x + y + z = 0; w + y = 1; w + z = 0
over the integers modulo 2 (that is, where 1 + 1 = 0) can be modelled as a CSP
instance P = 〈V, D, C〉, with V = {w, x, y, z}, D = {0, 1} and C = {c1, c2, c3},
where c1, c2, c3 correspond to the three equations.

The microstructure complement of P is shown in Figure 1. It has eight ver-
tices: 〈w, 0〉, 〈w, 1〉, 〈x, 0〉, 〈x, 1〉, 〈y, 0〉, 〈y, 1〉, 〈z, 0〉, 〈z, 1〉, and twelve hyperedges.
The equation x + y + z = 0 disallows the assignment {〈x, 0〉, 〈y, 0〉, 〈z, 1〉} and
three other assignments. Hence, the microstructure complement has four ternary
hyperedges arising from this constraint, including {〈x, 0〉, 〈y, 0〉, 〈z, 1〉}. Each bi-
nary constraint also gives two binary hyperedges. Finally, there are four binary
hyperedges (one per variable) corresponding to pairs of different values for the
same variable; for example, the hyperedge {〈y, 0〉, 〈y, 1〉}.

〈〈〈〈y,〉〉〉〉

〈〈〈〈yyyy,〉〉〉〉 〈〈〈〈xxxx,〉〉〉〉 〈〈〈〈zzzz,〉〉〉〉

〈〈〈〈xxxx,〉〉〉〉 〈〈〈〈zzzz,〉〉〉〉

〈〈〈〈wwww,〉〉〉〉

〈〈〈〈wwww,〉〉〉〉

Fig. 1. The microstructure complement of the CSP instance P defined in Example 1

We are now in a position to define a constraint symmetry. Recall that an auto-
morphism of a graph or hypergraph is a bijective mapping of the vertices that
preserves the edges (and hence also preserves the non-edges).



Definition 4. For any CSP instance P = 〈V, D, C〉, a constraint symmetry is
an automorphism of the microstructure complement of P (or, equivalently, of
the microstructure).

The microstructure complement is related to the direct encoding of a CSP
as a SAT instance [18]. The direct encoding has a variable for each variable-
value pair in the original CSP; a clause for each pair of values for each variable,
forbidding both values being assigned at the same time; and a clause for each
tuple of variable-value pairs not allowed by a constraint (as well as other clauses
ensuring that a value is chosen for every variable). A constraint symmetry as
defined here is therefore equivalent to a permutation of the variables in the
SAT encoding that does not change the set of clauses, and so is related to the
definition of symmetry in SAT given by Crawford et al. [6].

Example 2. We consider the constraint symmetries of the CSP defined in Ex-
ample 1, whose microstructure complement is shown in Figure 1. The automor-
phisms of this graph are the identity permutation together with the following
permutations:

– (〈w, 0〉〈w, 1〉) (〈y, 0〉〈y, 1〉) (〈z, 0〉〈z, 1〉);
– (〈w, 0〉〈w, 1〉) (〈y, 0〉〈z, 0〉) (〈y, 1〉〈z, 1〉);
– (〈y, 0〉〈z, 1〉) (〈y, 1〉〈z, 0〉);

(These permutations of the vertices are written in cycle form: for example, the
first swaps the vertices 〈w, 0〉 and 〈w, 1〉 while simultaneously swapping 〈y, 0〉
and 〈y, 1〉 and swapping 〈z, 0〉 and 〈z, 1〉, but leaves 〈x, 0〉 and 〈x, 1〉 unchanged.)
Hence, these four mappings are the constraint symmetry group of this CSP.

This example also shows that there can be more solution symmetries than
constraint symmetries. The CSP has only two solutions: {〈w, 0〉, 〈x, 1〉, 〈y, 1〉, 〈z, 0〉}
and {〈w, 1〉, 〈x, 1〉, 〈y, 0〉, 〈z, 1〉}. The permutation (〈w, 0〉〈z, 0〉〈y, 1〉), which maps
〈w, 0〉 to 〈z, 0〉, 〈z, 0〉 to 〈y, 1〉, 〈y, 1〉 to 〈w, 0〉 and leaves all other variable-value
pairs unchanged, is a solution symmetry. This mapping preserves both solutions,
but clearly is not a constraint symmetry.

Although Definition 2 and Definition 4 appear to be very different, we now
show that there are some simple relationships between solution symmetries and
constraint symmetries.

Theorem 1. The group of constraint symmetries of a CSP instance P is a
subgroup of the group of solution symmetries of P .

Proof. Let P be a CSP instance and let π be any automorphism of the mi-
crostructure complement of P . We will show that π maps solutions to solutions,
and hence is a solution symmetry of P .

Let s be any solution of P , and let W be the corresponding set of vertices in
the microstructure complement of P . By the construction of the microstructure
complement, W is an independent set of size |V |. Since π is an automorphism,
we know that π(W ) is also an independent set of size |V |, and so is a solution.

ut



Next we show that the group of all solution symmetries of an instance P is
also the automorphism group of a certain hypergraph. We first define a nogood.

Definition 5. For any CSP instance P , a k-ary nogood is an assignment to k
variables of P that cannot be extended to a solution of P .

The k-nogood hypergraph of P is a hypergraph whose set of vertices is V ×D
and whose set of edges is the set of all m-ary nogoods for all m ≤ k.

The k-nogood hypergraph of a CSP instance has the same vertices as the
microstructure complement. For a k-ary CSP (one whose constraints have max-
imum arity k), the k-ary nogood hypergraph contains every hyperedge of the
microstructure complement, and possibly some others. The additional hyper-
edges represent partial assignments of up to k variables that are allowed by the
constraints, but do not appear in any solution because they cannot be extended
to a full assignment satisfying all the constraints.

Example 3. Consider again the CSP instance P defined in Example 1, with
solutions, {〈w, 0〉, 〈x, 1〉, 〈y, 1〉, 〈z, 0〉} and {〈w, 1〉, 〈x, 1〉, 〈y, 0〉, 〈z, 1〉}.

This instance has a large number of 3-ary nogoods, and the 3-nogood hy-
pergraph of P has a large number of hyperedges, in addition to those in the
microstructure complement. These include the hyperedge {〈x, 0〉, 〈y, 0〉, 〈z, 0〉},
for example. This assignment is allowed by the 3-ary constraint on the variables
x, y, z, but cannot be extended to a complete solution of P . Many of the addi-
tional hyperedges do not correspond to the scope of any constraint: for example,
the hyperedge {〈w, 0〉, 〈x, 1〉, 〈y, 0〉}.

Theorem 2. For any k-ary CSP instance P , the group of all solution symme-
tries of P is equal to the automorphism group of the k-nogood hypergraph of
P .

Proof. Let F be the k-nogood hypergraph of P and let π be any automorphism
of F . We will show that π preserves solutions, and hence is a solution symmetry.

Let s be any solution of P , and let W be the corresponding set of vertices in
F . By the construction of this hypergraph, W is an independent set of size |V |.
Since π is an automorphism of F , we know that π(W ) is also an independent
set of size |V |. Hence π(W ) is not disallowed by any of the constraints of P , and
is a solution.

Conversely, let π be a solution symmetry of P . We will show that π maps
every set of k or fewer vertices of F which is not a hyperedge to another non-
hyperedge, and hence π is an automorphism of this hypergraph.

Let E be any set of k or fewer vertices in F which is not a hyperedge. Since
every nogood of P of size k or less is a hyperedge of the k-nogood hypergraph,
it follows that E can be extended to at least one solution of P .

Hence we may suppose that E is part of some solution s. Now, s is mapped
to the solution π(s) by the solution symmetry π. Every k-ary projection of this
solution, including the image π(E) of E, is a non-hyperedge in F , and so we are
done. ut



Theorem 2 shows that to obtain the solution symmetries of a CSP instance it is
sufficient to consider the automorphisms of the hypergraph obtained by adding
all the nogoods of arity k or less to the microstructure complement. We will show
in the next section that in some cases there are hypergraphs obtained by adding
a smaller number of edges to the microstructure complement which already have
all solution symmetries as automorphisms. However, the next result shows that
there are cases where it is in fact necessary to add all nogoods of arity k or
less to the microstructure complement in order to obtain a hypergraph with all
solution symmetries as automorphisms.

Proposition 1. For some k-ary CSP instances P , the k-nogood hypergraph is
the only hypergraph containing the microstructure complement of P whose auto-
morphisms are exactly the solution symmetries.

Proof. Consider a CSP instance P , with constraints of every arity less than or
equal to k, which has no solutions. Let H be the microstructure complement of
P .

Since P has no solutions, every permutation of the vertices of H is a solu-
tion symmetry. For each positive integer m ≤ k, there is at least one m-tuple
disallowed by a constraint, so H has at least one m-ary hyperedge. Since every
permutation of the vertices of H is a solution symmetry, applying the solution
symmetry group to H will give all m-sets of vertices as hyperedges. Hence the
only hypergraph containing H whose automorphisms include all solution sym-
metries is the hypergraph with all m-sets of vertices as edges, for all m ≤ k,
which is equal to the k-nogood hypergraph. ut

Hence to obtain all solution symmetries of a k-ary CSP instance it is sometimes
necessary to consider all m-ary nogoods, for all m ≤ k. On the other hand,
Theorem 2 shows that we do not need to consider nogoods of any size larger
than k. (In fact the same proof shows that adding all nogoods of size l, for any
l larger than k, to the k-nogood hypergraph does not change its automorphism
group.) In particular, this means that to obtain all the solution symmetries of a
binary CSP instance we need only consider the binary and unary nogoods.

Theorem 1 and Theorem 2 help to clarify the relationship between solution
symmetries and constraint symmetries. One reason that it is important to dis-
tinguish these two kinds of symmetries carefully is that, in general, there can
be many more solution symmetries than constraint symmetries for a given CSP
instance, as we will show in the next section.

4 Case Study: Symmetry in n-Queens

In this section we will illustrate the relationship between solution symmetries
and constraint symmetries by examining the n-queens problem. This problem is
useful for discussing symmetry because the common CSP formulation has several
different types of symmetry, some of which are beyond the scope of some earlier
definitions in the literature.



The standard formulation of the n-queens problem as a CSP has n variables
corresponding to the rows of the chessboard, say r1, r2, ..., rn. The domain of
values corresponds to the columns of the chessboard, say D = {1, 2, ..., n}. The
constraints can be expressed as follows:

– the values of r1, r2, ..., rn are all different;
– for all i, j, 1 ≤ i < j ≤ n, |ri − rj | 6= |i− j|.

A chessboard has eight geometric symmetries: reflections in the horizontal
and vertical axes and the two diagonals, rotations through 90◦, 180◦ and 270◦,
and the identity.

Recall, however, that Meseguer & Torras [14] did not allow the full set of
geometric symmetries of the chessboard as symmetries of the usual CSP for-
mulation of n-queens. This is because the formulation introduces an asymme-
try between rows and columns, so that some of the geometric symmetries do
not leave the constraints syntactically unchanged. In particular, the rotational
symmetries through 90◦ and 270◦ map assignments forbidden by some of the
constraints to assignments that are mutually incompatible because they assign
two values to the same variable. For example, the forbidden pair consisting of
〈r1, 1〉 and 〈r2, 1〉 is mapped by the rotation through 90◦ to the incompatible
pair consisting of 〈r1, n〉 and 〈r1, n− 1〉.

The microstructure complement restores the symmetry between rows and
columns, by treating in the same way both of these reasons for a pair of assign-
ments to be disallowed. Hence each geometric symmetry of the chessboard gives
rise to a constraint symmetry of the n-queens problem for any n, according to
our definition of constraint symmetry (Definition 4).

Clearly, the set of solutions to an instance of the n-queens problem is invariant
under each of the eight geometric symmetries of the chessboard. Hence each of
these geometric symmetries is a solution symmetry of the n-queens problem for
any n, according to our definition of solution symmetry (Definition 2). However,
there can be many other solution symmetries for instances of this problem, as
we will now show.

The 3-queens problem has no solutions; like any other CSP with no solution,
any permutation of the possible variable-value pairs is a solution symmetry. This
is confirmed by Theorem 2: the binary nogood hypergraph is the complete graph
with nine vertices, and any permutation of the vertices is an automorphism.

The 4-queens problem has two solutions, shown in Figure 2. (These two
solutions are each mapped to the other by a reflection of the chessboard.) In
this case, it is easier to consider the complement of the binary nogood hyper-
graph, in which each edge represents a pair of variable-value assignments that
is allowed by the solutions. Figure 2 also shows this graph, drawn so that each
vertex, representing a variable-value pair, and hence a square of the chessboard,
corresponds to the position on a chessboard of that square. Each solution is
represented as a 4-clique in this graph, rather than as an independent set of size
4 in the binary nogood hypergraph. The automorphisms of this graph are that:
the vertices within either clique can be permuted; the vertices in one clique can
be swapped with those in the other; and the eight isolated vertices (representing



unary nogoods) can be permuted; and we can also compose these permutations.
This gives a total of 4! × 4! × 2 × 8! automorphisms, or 46, 448, 640. Since the
automorphisms of a graph are the same as the automorphisms of its comple-
ment, these 46, 448, 640 automorphisms are the solution symmetries of 4-queens,
by Theorem 2.

Q
Q

Q
Q

Q
Q

Q
Q

Fig. 2. The solutions of the 4-queens problem (left) and the complement of the binary
nogood graph (right).
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Fig. 3. The ten solutions of the 5-queens problem

The 5-queens problem has ten solutions, shown in Figure 3. These solutions
are divided into two equivalence classes by the geometric symmetries of the
chessboard; they transform any solution into another solution from the same
equivalence class. (The first eight solutions shown form one class, the last two
the second class.)

Every square of the chessboard has a queen on it in at least one of these
ten solutions, so that there are no unary nogoods. However, there are some
pairs of squares, where two queens can be placed consistently with the original
constraints, but which are not allowed in any solution. The 40 additional binary
nogoods can in fact be derived by using path consistency: for example, a pair of



queens in row 1, column 1 and row 3, column 4 together attack every square in
row 2, and so this pair of assignments cannot be part of any solution.

If these additional binary nogoods are added to the microstructure comple-
ment, then we obtain the 2-ary nogood graph for the 5-queens problem. By
using the software tool NAUTY [13], we can find the automorphism group of
this graph: it has 28,800 elements, so the 5-queens problem has a total of 28,800
solution symmetries, by Theorem 2. (We have also used NAUTY to confirm that
the microstructure complement has just the eight geometric symmetries.)

In this case, unlike the 4-queens problem, it is difficult to develop an intuitive
understanding of the additional solution symmetries. Some are easy to see: for
instance, the rows of the board can be cyclically permuted, as can the columns.
The subgroup consisting of these permutations together with the geometric sym-
metries and all combinations makes all 10 solutions symmetrically equivalent,
i.e. there is just one equivalence class, rather than two. However, this subgroup
is still much smaller than the full solution symmetry group.5

In the 6-queens problem, additional binary nogoods can again be derived by
path consistency. For example, queens in row 1, column 2 and row 3, column 5
together attack all the squares in row 2. There are also unary nogoods, since the
problem has only four solutions. Adding all these nogoods to the microstructure
complement yields a very large symmetry group, as shown in Table 1.

For n ≥ 7, path consistency does not give any new nogoods, since two queens
can together attack at most six squares on any row. Even so, there are binary no-
goods in addition to those in the original constraints for n = 7, 8, 9; beyond that,
we have tested up to n = 16 and found no further additional binary nogoods.

Table 1 shows that for n ≥ 7, the solution symmetries appear to be just the
geometric symmetries: in spite of the additional binary nogoods for n = 7, 8, 9,
the binary nogood graph for these instances has the same automorphism group
as the microstructure complement. This demonstrates that in spite of Proposi-
tion 1, the minimal hypergraph containing the microstructure complement whose
automorphisms are the solution symmetries can sometimes be smaller than the
k-ary nogood hypergraph. Note that the number of solutions to the n-queens
problem increases rapidly with n: intuitively, it becomes more difficult for a so-
lution symmetry to preserve them all, so that eventually the solution symmetries
are just the constraint symmetries.

A principal reason for identifying symmetry in CSPs is to reduce search effort
by not exploring assignments that are symmetrically equivalent to assignments
considered elsewhere in the search. Clearly, if the solution symmetry group is
larger than the constraint symmetry group, there will potentially be a greater
search reduction from using the solution symmetries, if they can somehow be

5 In an attempt to understand the solution symmetries of 5-queens in terms of simple
transformations of the chessboard, we used NAUTY to find a small number of gen-
erators of the group, including one or more of the geometric symmetries. We found
that the entire group can be generated by just two permutations of the variable-value
pairs, together with the rotation through 90◦. However, these two permutations have
no obvious geometric interpretation in terms of the chessboard.



Table 1. The number of additional binary nogoods derived from the sets of solutions
to the n-queens problem, and the number of solution symmetries

Additional Solution
n binary nogoods symmetries

3 8 9! = 362,880
4 32 4! × 4! × 2 × 8! = 46,448,640
5 40 28,800
6 280 3,089,428,805,320,704,000,000
7 72 8
8 236 8
9 40 8

10 0 8

identified in advance. In some cases, as in the 5-queens problem, establishing
some level of consistency in the problem to find new nogoods (of arity ≤ k),
and adding these to the microstructure complement, will give an automorphism
group that is nearer to the solution symmetry group, if not equal to it.

When finding all solutions, the aim in symmetry breaking is to find just one
solution from each symmetry equivalence class; in the 5-queens problem, the
solutions fall into two equivalence classes when using the constraint symmetries
and only one when using the solution symmetries. Hence, if the aim is to find
a set of nonisomorphic solutions, the appropriate symmetry group should be
chosen in advance, since the choice can affect the number of solutions found.

This raises the question of how to identify the symmetries of a CSP, either
the constraint symmetries or the solution symmetries; we discuss this next.

5 Identifying Symmetry in Practice

Symmetry in CSPs is usually identified, in practice, by applying human insight:
the programmer sees that some transformation would transform a hypothetical
solution into another hypothetical solution. The definition of constraint sym-
metry given earlier can be used to confirm that candidate transformations are
genuine symmetries. It is not necessary to generate the entire microstructure
complement for this purpose, but only to demonstrate that each candidate map-
ping will map edges to edges and non-edges to non-edges in this hypergraph.

Identifying symmetry in a CSP by inspection is prone to missing some of the
symmetry. Using Definition 4 we can, in principle, be sure to identify all the con-
straint symmetries in a problem by generating the microstructure complement
and finding its automorphism group. However, it will often be impracticable
to generate the microstructure, especially for large CSPs with non-binary con-
straints. It may in that case be possible to represent the constraints more com-
pactly while preserving the important details; for instance, Ramani and Markov
[16] propose to represent constraints by parse trees and find the automorphisms
of the resulting graph.

Many authors have defined symmetry in CSPs in a similar way to our defini-
tion of solution symmetry, but have effectively only identified constraint symme-



tries; we have shown that the solution symmetry group can be much larger than
the constraint symmetry group. This suggests a novel, incremental approach to
using symmetry during search, in which we maintain a set of currently known
symmetries throughout the solution process. This set is initialised to the group
of constraint symmetries. Each time a nogood of arity k or less is found dur-
ing preprocessing, or during the search for solutions, it is added to our current
view of the k-nogood hypergraph, together with all of its images under currently
known symmetries. Adding these edges might increase the number of automor-
phisms of this graph, and hence increase the set of currently known symmetries.
The bigger this group of symmetries gets, the more information we get from each
additional nogood.

Methods such as those proposed here may find a potentially very large group
of symmetries, but with possibly only a small number of generators. For instance,
as shown earlier, the solution symmetry group of 5-queens has 28,800 elements
but just three generators. Symmetry-breaking methods that combine dynamic
symmetry breaking during search with computational group theory, e.g. [10],
can exploit such symmetry groups effectively.

6 Conclusion

We have reviewed definitions of symmetry in CSPs and have proposed defini-
tions of constraint symmetry and solution symmetry to encompass two types of
definition that have been used. We have shown that there can be many more so-
lution symmetries, i.e. permutations of the variable-value pairs that preserve the
solutions, than constraint symmetries, i.e. permutations that preserve the con-
straints. In practice, researchers have identified constraint symmetries in CSPs
rather than solution symmetries, regardless of their definition of symmetry, be-
cause of the difficulty of identifying solution symmetries that are not also con-
straint symmetries without examining the set of solutions. However, we have
shown that for a k-ary CSP, the solution symmetries are the automorphisms of
the k-ary nogood hypergraph; hence, finding new nogoods of arity up to k and
adding them to the CSP can allow the constraint symmetry group to expand
towards the solution symmetry group. Symmetry-breaking methods avoid ex-
ploring assignments that are symmetrically equivalent to assignments explored
elswhere; hence, working with a larger symmetry group allows more assignments
to be pruned and can further reduce the search effort to solve the problem.
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