
An Algebraic Characterisation of Complexity
for Valued Constraints

David A. Cohen1, Martin C. Cooper2, and Peter G. Jeavons3

1 Department of Computer Science, Royal Holloway, University of London, UK
d.cohen@rhul.ac.uk

2 IRIT, University of Toulouse III, France
cooper@irit.fr

3 Computing Laboratory, University of Oxford, UK
peter.jeavons@comlab.ox.ac.uk

Abstract. Classical constraint satisfaction is concerned with the fea-
sibility of satisfying a collection of constraints. The extension of this
framework to include optimisation is now also being investigated and a
theory of so-called soft constraints is being developed. In this extended
framework, tuples of values allowed by constraints are given desirability
weightings, or costs, and the goal is to find the most desirable (or least
cost) assignment.

The complexity of any optimisation problem depends critically on the
type of function which has to be minimized. For soft constraint problems
this function is a sum of cost functions chosen from some fixed set of
available cost functions, known as a valued constraint language. We show
in this paper that when the costs are rational numbers or infinite the
complexity of a soft constraint problem is determined by certain algebraic
properties of the valued constraint language, which we call feasibility
polymorphisms and fractional polymorphisms.

As an immediate application of these results, we show that the existence
of a non-trivial fractional polymorphism is a necessary condition for the
tractability of a valued constraint language with rational or infinite costs
over any finite domain (assuming P 6= NP).

1 Introduction

Classical constraint satisfaction is concerned with the feasibility of satisfying a
collection of constraints. The extension of this framework to include optimisation
is now also being investigated and a theory of so-called soft constraints is being
developed.

Several alternative mathematical frameworks for soft constraints have been
proposed in the literature, including the very general frameworks of ‘semi-ring
based constraints’ and ‘valued constraints’ [2]. For simplicity, we shall adopt the
valued constraint framework here. In this framework, every tuple of values al-
lowed by a constraint has an associated cost, and the goal is to find an assignment
with minimal total cost.

The general constraint satisfaction problem (CSP) is NP-hard, and so is un-
likely to have a polynomial-time algorithm. However, there has been much suc-
cess in finding tractable fragments of the CSP by restricting the types of relation
allowed in the constraints. A set of allowed relations has been called a constraint
language. For some constraint languages the associated constraint satisfaction
problems with constraints chosen from that language are solvable in polynomial-
time, whilst for other constraint languages this class of problems is NP-hard [21];
these are referred to as tractable languages and NP-hard languages, respectively.
Dichotomy theorems, which classify each possible constraint language as either
tractable or NP-hard, have been established for constraint languages over 2-
element domains [29], and 3-element domains [3]. Considerable progress has also
been made in the search for a complete characterisation of the complexity of
constraint languages over finite domains of arbitrary size [4, 14, 19, 21].

The general valued constraint problem (VCSP) is also NP-hard, but again
we can try to identify tractable fragments by restricting the types of allowed
cost functions that can be used to define the valued constraints. A set of al-
lowed cost functions has been called a valued constraint language. Much less is
known about the complexity of the optimisation problems associated with dif-
ferent valued constraint languages, although some results have been obtained
for certain special cases. In particular, a complete characterisation of complexity
has been obtained for valued constraint languages over a 2-element domain with
real-valued or infinite costs [6]. This result generalizes a number of earlier results
for particular optimisation problems such as Max-Sat [11, 12].

One class of cost functions has been extensively studied: the so-called sub-
modular functions. The problem of minimizing a real-valued submodular ob-
jective function occurs in many diverse application areas, including statistical
physics [1], the design of electrical networks [25], and operations research [5, 33,
27]. One of the first problems to be recognized as a case of submodular func-
tion minimisation was the Max-Flow/Min-Cut problem [13]. Another class
of examples arises in pure mathematics: the rank function of a matroid is always
a submodular function [15]. Recently, several polynomial-time algorithms have
been proposed for submodular function minimisation [17, 18, 30], although the
complexity of the best of these general algorithms is O(n5 min{log nM,n2 log n})
where M is an upper bound on the values taken by the function to be mini-
mized [18]. More practical cubic time algorithms have been developed for many
special cases [9, 24, 26], including the Max-Flow/Min-Cut problem [13], the
minimization of a symmetric submodular function [28], the minimization of a
{0, 1}-valued submodular function over a 2-element domain [12] and the min-
imization of any sum of binary submodular functions over an arbitrary finite
domain [8].

The results of [12] show that submodularity is essentially the only property
giving rise to tractable {0, 1}-valued constraint languages over a 2-element do-
main (see [6]). Jonsson et al. [23] recently generalized this result to 3-element
domains. However, for languages allowing more general costs, or defined over
larger finite domains, very little is known about the possible tractable cases.

In the classical CSP framework it has been shown that the complexity of any
constraint language over any finite domain is determined by certain algebraic
properties known as polymorphisms [19, 21]. This result has reduced the problem
of the identification of tractable constraint languages to that of the identification
of suitable sets of polymorphisms. In other words, it has been shown to be enough
to study just those constraint languages which are characterised by having a
given set of polymorphisms. This both reduces the number of different languages
to be studied and allows the application of results from universal algebra to the
study of the complexity of constraint languages.

To analyse the complexity of valued constraint languages in the VCSP frame-
work we recently introduced a more general algebraic property known as a mul-
timorphism [6, 7, 10]. Using this algebraic property we have shown that there are
precisely eight maximal tractable valued constraint languages over a 2-element
domain with real-valued or infinite costs, and each of these is characterised by
having a particular form of multimorphism [6]. Furthermore, we have shown
that many known maximal tractable valued constraint languages over larger fi-
nite domains are precisely characterised by a single multimorphism and that key
NP-hard examples have (essentially) no multimorphisms [7].

In this paper we slightly generalise the notion of a multimorphism to that of
a fractional polymorphism. We are then able to show that fractional polymor-
phisms, together with the polymorphisms of the underlying feasibility relations
(which we call feasibility polymorphims), characterise the complexity of any val-
ued constraint language, Γ , with non-negative rational or infinite costs over any
finite domain. Specifically we show that:

– the class of all cost functions having the same fractional polymorphisms and
feasibility polymorphisms as Γ corresponds precisely to the closure of Γ by
three natural extension operators (one of which is expressibility);

– the extended class containing Γ together with all cost functions obtained
using these three extension operators has the same complexity as Γ (up to
polynomial-time reduction).

This very general result has the immediate corollary that a finite-valued rational
cost function is expressible over a valued constraint language if and only if it has
all the fractional polymorphisms of that language.

The applications of these results to the search for tractable valued constraint
languages are very similar to the applications of polymorphisms to the search
for tractable constraint languages in the classical CSP. First, we need only con-
sider valued constraint languages defined by these algebraic properties. This will
greatly simplify the search for a characterisation of all tractable valued constraint
languages. Secondly, by showing that there exists an NP-hard valued constraint
language with only finite rational costs we show that any tractable valued con-
straint language with finite rational or infinite costs must have a non-trivial
fractional polymorphism.

Hence the results of this paper provide a powerful new set of tools in the
search for a polynomial-time/NP-hard dichotomy for finite-domain optimisation
problems defined by valued constraints.

2 Valued Constraint Problems

In the valued constraint framework each constraint has an associated function
which assigns a cost to each possible assignment of values and these costs are
chosen from some valuation structure, satisfying the following definition.

Definition 1. A valuation structure, Ω, is a totally ordered set, with a min-
imum and a maximum element (denoted 0 and ∞), together with a commuta-
tive, associative binary aggregation operator (denoted ⊕), such that for all
α, β, γ ∈ Ω, α⊕ 0 = α and α⊕ γ ≥ β ⊕ γ whenever α ≥ β.

Definition 2. An instance of the valued constraint satisfaction problem,
VCSP, is a 4-tuple P = 〈V, D,C, Ω〉 where:

– V is a finite set of variables;
– D is a finite set of possible values;
– Ω is a valuation structure representing possible costs;
– C is a set of constraints. Each element of C is a pair c = 〈σ, φ〉 where σ

is a tuple of variables called the scope of c, and φ is a mapping from D|σ|

to Ω, called the cost function of c.

Definition 3. For any VCSP instance P = 〈V,D, C,Ω〉, an assignment for
P is a mapping s : V → D. The cost of an assignment s, denoted CostP (s), is
given by the aggregation of the costs for the restrictions of s onto each constraint
scope, that is,

CostP (s) def=
⊕

〈〈v1,v2,...,vm〉,φ〉∈C

φ(s(v1), s(v2), . . . , s(vm)).

A solution to P is an assignment with minimal cost, and the question is to find
a solution.

Definition 4. A valued constraint language is any set Γ of cost functions
from some fixed finite domain D to some fixed valuation structure Ω.

We define VCSP(Γ) to be the set of all VCSP instances in which all cost
functions belong to Γ .

The complexity of a valued constraint language Γ will be identified with the
complexity of the associated VCSP(Γ).

Definition 5. A valued constraint language Γ is called tractable if, for ev-
ery finite subset Γf ⊆ Γ , there exists an algorithm solving any instance P ∈
VCSP(Γf) in time at most p(|P|), for some polynomial p.

Conversely, Γ is called NP-hard if there is some finite subset Γf ⊆ Γ for
which VCSP(Γf) is NP-hard.

For the remainder of this paper we will focus for concreteness on the valuation
structure containing the non-negative rational numbers (Q+) together with infin-
ity (∞), with the standard addition operation, + (extended so that a+∞ = ∞,
for all a). This valuation structure will be denoted Q+. It is sufficiently general
to encode many standard optimisation problems (for examples, see [7, 10]).

3 Extending a Valued Constraint Language

We now define three ways to extend a valued constraint language. In Section 5
we will show that applying these three extensions does not alter the complexity
of a valued constraint language.

What is more, in Section 6 we will give a simple algebraic characterisation
of the languages obtained by applying all three extensions.

The first extension makes use of a natural equivalence relation on cost func-
tions.

Definition 6. Two cost functions φ and φ′ are said to be cost-equivalent if
one is obtained from the other by adding a constant cost and scaling by some
constant factor. In other words, φ and φ′ are cost-equivalent if they have the
same arity r and there exist positive integers, a, b, and a finite constant c, such
that

∀x ∈ Dr, a φ′(x) = b φ(x) + c.

For any valued constraint language Γ the language consisting of all cost functions
which are cost-equivalent to some member of Γ will be denoted Γ≡.

The next extension adds in those cost functions which are expressible over Γ .

Definition 7. For any VCSP instance P = 〈V,D, C,Ω〉, and any list L =
〈v1, . . . , vr〉 of variables of P, the projection of P onto L, denoted πL(P), is
the r-ary cost function defined as follows:

πL(P)(x1, . . . , xr)
def= min

{s:V→D | 〈s(v1),...,s(vr)〉=〈x1,...,xr〉}
CostP (s)

We say that a cost function φ is expressible over a constraint language Γ if
there exists a VCSP instance P ∈ VCSP(Γ) and a list L of variables of P such
that πL(P) = φ. We call the pair 〈P, L〉 a gadget for expressing φ over Γ .

For any valued constraint language Γ the language consisting of all cost func-
tions expressible over Γ will be denoted exp(Γ).

Example 1. In this example we show that Γ is always a subset of exp(Γ).
Let Γ be a valued constraint language over a domain D with costs in Ω.

Choose any γ ∈ Γ . Let the arity of γ be r and define V = {x1, . . . , xr}. The pair
〈〈V, D, {〈〈x1, . . . , xr〉, γ〉}, Ω〉, 〈x1, . . . , xr〉〉 is a gadget for expressing γ over Γ .

The final extension adds cost functions obtained using a feasibility operator.

Definition 8. For any cost function φ, with arity r, we denote by Feas(φ) the
r-ary cost function defined by

Feas(φ)(x1, x2, . . . , xr)
def=

{∞ if φ(x1, x2, . . . , xr) = ∞
0 if φ(x1, x2, . . . , xr) < ∞.

For any valued constraint language Γ the language {Feas(φ) | φ ∈ Γ} will be
denoted Feas(Γ).

4 Polymorphisms and Fractional Polymorphisms

For classical constraint satisfaction problems it has been shown that the com-
plexity of a constraint language is characterised by certain algebraic properties
of the relations in that language, known as polymorphisms [4, 19, 21]. This result
was obtained by showing that the expressive power of a constraint language is
determined by the polymorphisms of that language.

Polymorphisms are defined for relations rather than cost functions, but we
will now define an analogous notion which can be applied to arbitrary valued
constraint languages.

Definition 9. For any r-ary cost function φ, we say that f : Dk → D is a k-ary
feasibility polymorphism of φ if, for all x1, . . . , xr ∈ Dk,

Feas(φ)(f(x1), . . . , f(xr)) ≤
k∑

i=1

Feas(φ)(x1[i], . . . , xr[i]).

For any valued constraint language Γ , we will say that f is a feasibility polymor-
phism of Γ if f is a feasibility polymorphism of every cost function in Γ . The
set of all feasibility polymorphisms of Γ will be denoted Pol(Γ), and the finite
subset containing all k-ary feasibility polymorphisms will be denoted Polk(Γ).

Theorem 1. For any valued constraint language Γ , and any cost function φ,
Feas(φ) ∈ exp(Feas(Γ)) if and only if Pol(Γ) ⊆ Pol({φ})

Proof. Follows immediately from the corresponding result for classical constraint
languages (see, for example, Corollary 1 of [22]).

To obtain a more precise result about the expressive power of arbitrary valued
constraint languages we need to generalize the definition of a polymorphism.

Definition 10. A k-ary weighted function F on a set D is a set of the form
{〈w1, f1〉, . . . , 〈wn, fn〉} where each wi is a positive integer, and each fi is a
distinct function from Dk to D.

For any r-ary cost function φ, we say that a k-ary weighted function F is a
k-ary fractional polymorphism of φ if, for all x1, . . . , xr ∈ Dk,

k

n∑

i=1

wiφ(fi(x1), . . . , fi(xr)) ≤
(

n∑

i=1

wi

)
·
(

k∑

i=1

φ(x1[i], . . . , xr[i])

)
.

For any valued constraint language Γ , we will say that f is a fractional polymor-
phism of Γ if f is a fractional polymorphism of every cost function in Γ . The
set of all fractional polymorphisms of Γ will be denoted fPol(Γ).

In earlier papers we introduced the notion of a multimorphism [6, 7, 10]. A mul-
timorphism is precisely a k-ary fractional polymorphism where the sum of the
weights wi is exactly k.

Example 2. Consider the unary fractional polymorphism given by {〈1, c〉} for
some constant c ∈ D (seen as a unary function). An r-ary cost function φ has
this unary fractional polymorphism when, for all x1, . . . , xr ∈ D,

φ(c, . . . , c) ≤ φ(x1, . . . , xr)

Hence, if all cost functions φ ∈ Γ have this fractional polymorphism then we
can solve any instance of VCSP(Γ) trivially, by assigning the value c to each
variable. In fact, it was shown in [7, 10] that the class of all cost functions with
this simple fractional polymorphism is a maximal tractable class.

Example 3. An r-ary cost function φ on an ordered set D has the binary frac-
tional polymorphism {〈1,min〉, 〈1,max〉} when, for all x1, . . . , xr ∈ D2,

φ(min(x1[1], x1[2]), . . . , min(xr[1], xr[2]))
+ φ(max(x1[1], x1[2]), . . . , max(xr[1], xr[2]))

≤ φ(x1[1], . . . , xr[1]) + φ(x1[2], . . . , xr[2]) .

Hence, the fractional polymorphism {〈1, min〉, 〈1, max〉} exactly captures the
notion of submodularity [15] which we can thus define as follows.

Definition 11. A cost function (over an ordered domain) is submodular if
and only if it has the fractional polymorphism {〈1, min〉, 〈1, max〉}.
Recall from the Introduction that submodular function minimization is a central
problem in discrete optimization. The notion of a fractional polymorphism allows
us to capture the property of submodularity by using a particular weighted
function. It also allows us to generalize to many other properties by considering
different weighted functions.

5 Extensions Preserve Tractability

In this section we will show that the three extensions defined in Section 3 all
preserve the tractability or NP-hardness of a valued constraint language.

Theorem 2. For any valued constraint language Γ , we have:

1. Γ≡ is tractable if and only if Γ is tractable, and Γ≡ is NP-hard if and only
if Γ is NP-hard.

2. exp(Γ) is tractable if and only if Γ is tractable, and exp(Γ) is NP-hard if
and only if Γ is NP-hard.

3. Γ ∪ Feas(Γ) is tractable if and only if Γ is tractable, and Γ ∪ Feas(Γ) is
NP-hard if and only if Γ is NP-hard.

Proof. For part (1), by Definition 5, it is sufficient to show that for any finite
subset Γ ′ of Γ≡ there exists a polynomial-time reduction from VCSP(Γ ′) to
VCSP(Γ ′′), where Γ ′′ is a finite subset of Γ .

Let Γ ′ be a finite subset of Γ≡ and let P ′ be any instance of VCSP(Γ ′). By
Definition 6, any cost function φ′ ∈ Γ≡ is cost-equivalent to some cost function
φ ∈ Γ . Hence we can replace each of the constraints 〈σ, φ′〉 in P ′ with a new
constraint 〈σ, φ〉, where φ ∈ Γ and aφ′ = bφ + c for some positive integers a, b
and some (positive or negative) constant c, to obtain an instance P of VCSP(Γ).
The constant c is added to the cost of all assignments and so does not affect the
choice of solution. The effect of the scale factors a and b can be simulated by
taking b copies of the new constraint in P and a copies of all other constraints
in P. The values of a, b are constants determined by the finite set Γ ′, so this
construction can be carried out in polynomial time in the size of P ′.

For part (2), by Definition 5, it is sufficient to show that for any finite sub-
set Γ ′ of exp(Γ) there exists a polynomial-time reduction from VCSP(Γ ′) to
VCSP(Γ ′′), where Γ ′′ is a finite subset of Γ .

Let Γ ′ be a finite subset of exp(Γ) and let P ′ be any instance of VCSP(Γ ′).
By Definition 7, any cost function φ′ ∈ exp(Γ) can be constructed by using some
gadget 〈Pφ′ , L〉 where Pφ′ is an instance of VCSP(Γ). Hence we can simply re-
place each constraint in P ′ which has a cost function φ′ not already in Γ with the
corresponding gadget to obtain an instance P of VCSP(Γ) which is equivalent
to P ′. The maximum size of any of the gadgets used is a constant determined
by the finite set Γ ′, so this construction can be carried out in polynomial time
in the size of P ′.

For part (3), by Definition 5, it is sufficient to show that for any finite subset
Γ ′ of Γ ∪ Feas(Γ) there exists a polynomial-time reduction from VCSP(Γ ′) to
VCSP(Γ ′′), where Γ ′′ is a finite subset of Γ .

Let Γ ′ be a finite subset of Γ ∪ Feas(Γ) and let P ′ be any instance of
VCSP(Γ ′). By Definition 8, any cost function φ′ ∈ Feas(Γ) is obtained from
some cost function φ ∈ Γ by setting all finite values to 0. Now assume that
P ′ has k constraints with cost functions in Feas(Γ). If we replace each of these
constraints 〈σ, φ′〉 with a new constraint 〈σ, φ〉, where φ ∈ Γ and Feas(φ) = φ′,
then we obtain an instance P of VCSP(Γ).

Let M be the maximum finite value taken by any cost function in the finite
set Γ ′, and let m be the minimum difference between any two distinct finite
values taken on by cost functions in Γ ′. The cost of any assignment for P differs
by at most kM from the cost of the same assignment for P ′. Hence if we also
replace all the remaining constraints 〈σ, φ〉 of P ′ with dMk

m + 1e copies of 〈σ, φ〉,
then we obtain an instance of VCSP(Γ) with the same solutions as P ′. Since M
and m are constants determined by the finite set Γ ′, this construction can be
carried out in polynomial time in the size of P ′.
We can now combine all three extensions to obtain the following result.
Definition 12. For any valued constraint language, Γ , we define the closure
of Γ , denoted Γ̂ , as follows:

Γ̂
def= (exp(Γ ∪ Feas(Γ)))≡.

Corollary 1. A valued constraint language Γ is tractable if and only if Γ̂ is
tractable; similarly, Γ is NP-hard if and only if Γ̂ is NP-hard.

6 Characterising Γ̂

The main result of this paper is the following theorem, which characterises the
extended language Γ̂ in terms of the feasibility polymorphisms and fractional
polymorphisms of Γ .

Theorem 3. For any valued constraint language Γ with costs in Q+, and any
cost function φ taking values in Q+, φ ∈ Γ̂ if and only if Pol(Γ) ⊆ Pol({φ}) and
fPol(Γ) ⊆ fPol({φ}).
The following result is an immediate consequence of Corollary 1 and Theorem 3.

Corollary 2. The tractability or NP-hardness of a valued constraint language
Γ with costs in Q+ is determined by its feasibility polymorphisms and fractional
polymorphisms.

We also observe that when the cost functions in Γ take finite rational values
only, the tractability or NP-hardness is determined by the fractional polymor-
phisms alone. Conversely, when Γ = Feas(Γ) the tractability or NP-hardness is
determined by the feasibility polymorphisms alone.

We will prove Theorem 3 in two halves. First we show, in Proposition 1, that
the feasibility polymorphisms and fractional polymorphisms of Γ are preserved
by all members of Γ̂ . Then we show, in Theorem 4, that every cost function with
all the feasibility polymorphisms and fractional polymorphisms of Γ is in fact a
member of Γ̂ .

Proposition 1. If Γ is any valued constraint language then Pol(Γ) = Pol(Γ̂)
and fPol(Γ) = fPol(Γ̂).

Proof. This follows immediately from the fact that feasibility polymorphisms
and fractional polymorphisms are preserved by aggregating cost functions, pro-
jecting onto subsets of variables, adding constants, scaling by a natural number,
and applying the feasibility operator.

To see this note that if φ1 and φ2 both satisfy the inequality in Definition 9,
then so does any extension of φ1 and φ2 obtained by adding dummy arguments.
So also does φ1 ⊕ φ2 (by the monotonicity of the ⊕ operation). So also does the
projection of each φi onto any list of arguments. Hence if Γ has the feasibility
polymorphism f , then so does any cost function expressible over Γ . Furthermore
adding a constant to φ preserves this inequality, and scaling by a natural number
also preserves the inequality. Finally replacing φi with Feas(φi) also preserves
this inequality.

Similar remarks apply to the inequality in Definition 10.

To establish Theorem 4 below we will use the following result, which is a
variant of the well-known Farkas’ Lemma used in linear programming [27, 31].

Lemma 1 (Farkas 1894). Let S and T be finite sets of indices, where T is the
disjoint union of two subsets, T≥ and T=. For all i ∈ S, and all j ∈ T , let ai,j

and bj be rational numbers. Exactly one of the following holds:

– Either there exists a set of non-negative rational numbers {xi | i ∈ S} and a
rational number C such that

for each j ∈ T≥,
∑

i∈S

ai,j xi ≥ bj + C, and,

for each j ∈ T=,
∑

i∈S

ai,j xi = bj + C.

– Or else there exists a set of integers {yj | j ∈ T} such that
∑

j∈T yj = 0 and:

for each j ∈ T≥, yj ≥ 0,

for each i ∈ S,
∑

j∈T

yj ai,j ≤ 0, and

∑

j∈T

yj bj > 0.

Such a set is called a certificate of unsolvability.

The proof of Theorem 4 also uses a number of constructions related to the notion
of an indicator problem, as introduced in [20, 22].

Definition 13. A k-matching of a valued constraint language Γ is defined to
be a pair 〈M, γ〉 where

– γ is a cost function in Γ with arity r, and
– M is a k × r matrix of elements of D such that γ has a finite value when

applied to any of the k rows.

Definition 14. A k-weighting, X, of a valued constraint language Γ is defined
to be a mapping from the set of all k-matchings of Γ to the non-negative integers.

Note that a k-weighting of Γ can be seen as associating a multiplicity (possibly
zero) with each k-matching.

Definition 15. Given a finite valued constraint language Γ over a finite set D
and a k-weighting, X, of Γ , we define the X-weighted indicator problem
over Γ , denoted IP(Γ, X), as follows:

– The set of variables of IP(Γ, X) is the set Dk consisting of all k-tuples of
elements from D.

– The domain of IP(Γ, X) is the domain D of Γ .
– The constraints of IP(Γ, X) are defined as follows. Note that any list of r

variables, v1, . . . , vr, can be seen as (the columns of) a k × r matrix. For
every list S of variables, if 〈S, γ〉 is a k-matching of Γ , then IP(Γ, X) has
the constraint 〈S, Feas(γ)〉 and X(〈S, γ〉) copies of the constraint 〈S, γ〉.

Theorem 4. Let Γ be a finite valued constraint language over a finite set D
with costs in Q+, and let φ : Dr → Q+ be any cost function such that Pol(Γ) ⊆
Pol({φ}).

Either φ ∈ Γ̂ , or else there is some fractional polymorphism of Γ which is
not a fractional polymorphism of φ.

Proof. The idea of the proof is as follows. We will attempt to construct a
weighted indicator problem to express a cost function φ′ which is cost-equivalent
to φ. If this succeeds, then we have shown that φ ∈ Γ̂ , since every weighted in-
dicator problem for Γ is an instance of VCSP(exp(Γ ∪ Feas(Γ))).

On the other hand, if this fails then we will show that we must have an unsat-
isfiable collection of equations and inequations. We will then use Lemma 1, to get
a certificate of insolvability. This certificate will give us the required fractional
polymorphism of Γ that is not a fractional polymorphism of φ.

We now give the details of the proof. Let k be the number of r-tuples for
which the value of φ is finite and fix an arbitrary order, 〈x1, . . . , xk〉, for these
tuples. This list of tuples can be viewed as (the rows of) a matrix with k rows
and r columns, which we will call Sφ.

Note that (the columns of) Sφ can be viewed as a list 〈s1, . . . , sr〉 of k-tuples,
and hence as a list of variables of an indicator problem. We will now try to find
some k-weighting X of Γ so that the X-weighted indicator problem IP(Γ, X)
can be used to express a cost function φ′ which is cost-equivalent to φ. More
precisely, we will seek to find a k-weighting X such that 〈IP(Γ, X), Sφ〉 is a
gadget for expressing such a φ′.

The variables of IP(Γ, X) are the possible k-tuples over D, so each assign-
ment to these variables can be viewed as a function f : Dk → D. Whatever
k-weighting X we choose, the set of assignments for IP(Γ, X) which have infi-
nite cost is the same as for the classical indicator problem for Feas(Γ) of order k,
as defined in [20, 22]. Hence, by Theorem 1 of [22], every assignment for IP(Γ, X)
which has a finite cost corresponds to a feasibility polymorphism of Γ . Since we
are assuming that φ has all of the feasibility polymorphisms of Γ , it follows that
〈IP(Γ, X), Sφ〉 is a gadget for some r-ary cost function which is finite-valued
exactly when φ is finite-valued.

Now consider any f : Dk → D ∈ Polk(Γ). By Definition 9, we know that,
for any k-matching 〈S, γ〉 of Γ , we must have γ(f(S)) < ∞, where f(S) denotes
the tuple of values obtained by applying f to each column of S. Since φ has all
the feasibility polymorphisms of Γ , we also have that φ(f(Sφ)) < ∞.

We now define a finite system of inequalities and equations, with finite coef-
ficients, which together specify the required properties for an unknown constant
C and k-weighting X, to ensure that 〈IP(Γ, X), Sφ〉 is a gadget for φ + C.

For each f ∈ Polk(Γ),
∑

γ∈Γ

∑

{all k-matchings 〈S, γ〉}
X(〈S, γ〉) γ(f(S)) ≥ φ(f(Sφ)) + C. (1)

For each projection e ∈ Polk(Γ),
∑

γ∈Γ

∑

{all k-matchings 〈S, γ〉}
X(〈S, γ〉) γ(e(S)) = φ(e(Sφ)) + C. (2)

We claim that if a non-negative rational solution X to this system of inequalities
and equations exists, then 〈IP(Γ, X), Sφ〉 is a gadget for the cost function φ+C.

To see this, note that the set of inequalities imply that the value of the projection
of IP(Γ, X) onto the list of variables Sφ must be at least as great as the value
of φ + C, for all possible assignments. Furthermore, from the set of equations,
and the choice of Sφ, it follows that whenever φ + C is finite, the value of the
projection of IP(Γ,X) onto the list of variables Sφ must be the same as φ + C.

By applying a suitable scale factor to the solution obtained, we can choose
an integer-valued X such that 〈IP(Γ,X), Sφ〉 is a gadget for some cost function
which is cost-equivalent to φ.

On the other hand, if this system of equations and inequalities has no solu-
tion, then we appeal to Lemma 1, to get a certificate of insolvability. That is,
in this case we know that there exists a set of integers {yf | f ∈ Polk(Γ)}, such
that

∑
f∈Polk(Γ) yf = 0, yf ≥ 0 when f is not a projection, and:

for each k-matching 〈S, γ〉 of Γ ,
∑

f∈Polk(Γ)

yf γ(f(S)) ≤ 0, and (3)

∑

f∈Polk(Γ)

yf φ(f(Sφ)) > 0 (4)

Let m = min{yf | f is a projection }. Since
∑

f∈Polk(Γ) yf = 0, we know that
m < 0.

Define a set of integers {zf | f ∈ Polk(Γ)} as follows:

zf =
{

yf −m if f is a projection
yf otherwise

Now we have that each zf ≥ 0, and that
∑

f∈Polk(Γ) zf = k|m|.
Let E be the set of all k-ary projections. It follows (rewriting Equation 3)

that for any k-matching 〈S, γ〉 of Γ

|m|
∑

e∈E

γ(e(S)) ≥
∑

f∈Polk(Γ)

zf γ(f(S))

Moreover, if S is any k × r matrix for which 〈S, γ〉 is not a k-matching of Γ ,
then

∑
e∈E γ(e(S)) = ∞. Hence, for any set of k-tuples x1, . . . , xr we get that


 ∑

f∈Polk(Γ)

zf


 ·

(
k∑

i=1

γ(x1[i], . . . , xr[i])

)
≥ k

∑

f∈Polk(Γ)

zf γ(f(x1), . . . , f(xr))

which precisely states that the k-ary weighted function {〈zf , f〉 | f ∈ Polk(Γ)}
is a fractional polymorphism of Γ .

On the other hand, rewriting Equation 4 in the same way gives:

 ∑

f∈Polk(Γ)

zf


 ·

(
k∑

i=1

φ(s1[i], . . . , sr[i])

)
< k

∑

f∈Polk(Γ)

zf φ(f(s1), . . . , f(sr))

where s1, . . . , sr are the columns of Sφ. This provides a witness that the weighted
function {〈zf , f〉 | f ∈ Polk(Γ)} is not a fractional polymorphism of φ.

7 A Necessary Condition For Tractability

In this section, we exhibit a well-known (finite-valued) intractable cost function
φ6= and use it to establish a necessary condition for a valued constraint language
to be tractable.

Definition 16. Define the binary cost function φ6= : D2 → Q+ as follows:

φ6=(x, y) def=
{

1 if x = y
0 otherwise

The cost function φ 6=(x, y) penalizes the assignment of the same value to its
two arguments.

Lemma 2. For any set D with |D| ≥ 2, VCSP({φ 6=}) is NP-hard.

Proof. For |D| = 2, this follows immediately from the fact that the version of
Max-Sat consisting of only XOR constraints is NP-hard [11].

For |D| ≥ 3, a polynomial-time algorithm to solve VCSP({φ6=}) would im-
mediately provide a polynomial-time algorithm to determine whether a graph
has a |D|-colouring, which is a well-known NP-complete problem [16].

Definition 17. A k-ary fractional projection is a k-ary weighted function
{〈n, π1〉, . . . , 〈n, πk〉} where n is a constant and each πi is the projection that
returns its ith argument.

Lemma 3. For any cost function φ, fPol({φ}) contains all fractional projec-
tions.

Proof. Consider the inequality in Definition 10 defining a fractional polymor-
phism. All fractional projections satisfy this inequality (with equality), so they
are all fractional polymorphisms of any cost function φ.

Theorem 5. If all fractional polymorphisms of a valued constraint language Γ
are fractional projections, then Γ is NP-hard.

Proof. Suppose that every fractional polymorphism of Γ is a fractional projec-
tion. By Lemma 3, we have that fPol(Γ) ⊆ fPol({φ6=}).

Since Feas(φ6=) is the cost function whose costs are all zero, it follows that
φ6= has all possible feasibility polymorphisms. Hence Pol(Γ) ⊆ Pol({φ 6=}).

By Theorem 3, we have φ6= ∈ Γ̂ , so by Lemma 2, Γ̂ is NP-hard. Hence, by
Corollary 1, it follows that Γ is also NP-hard.

Hence, assuming that P 6= NP, we have that any tractable valued constraint
language must have some fractional polymorphism which is not a fractional
projection.

8 Conclusion

We have shown that the complexity of any valued constraint language with
rational-valued or infinite costs is determined by certain algebraic properties of
the cost functions, which we have identified as feasibility polymorphisms and
fractional polymorphisms.

When the cost functions can only take on the values zero or infinity, the opti-
misation problem VCSP collapses to the classical constraint satisfaction problem,
CSP. In previous papers we have shown that the existence of a non-trivial poly-
morphism is a necessary condition for tractability in this case [19, 21]. This result
sparked considerable activity in the search for and characterization of tractable
constraint languages [3, 4, 21]. We hope that the results in this paper will pro-
vide a similar impetus for the characterization of tractable valued constraint
languages using algebraic methods.

Of course there are still many open questions concerning the complexity of
valued constraint satisfaction problems. In particular, it will be interesting to
see how far these results can be extended to other valuation structures, and to
more general frameworks, such as the semiring-based framework.

References

1. Anglès d’Auriac, J-Ch., Igloi, F., Preismann, M. & Sebö, A. “Optimal cooperation
and submodularity for computing Potts’ partition functions with a large number
of statistics”, J. Physics A: Math. Gen. 35, (2002), pp. 6973–6983.

2. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T. & Verfaillie, G.
“Semiring-based CSPs and valued CSPs: Frameworks, properties and compari-
son”, Constraints 4, (1999), pp. 199–240.

3. Bulatov, A.A. “A dichotomy theorem for constraints on a three-element set”,
Proc. 43rd IEEE Symposium on Foundations of Computer Science (FOCS’02),
(2002), pp. 649–658.

4. Bulatov, A.A., Jeavons, P. & Krokhin, A. “Classifying the complexity of con-
straints using finite algebras”, SIAM Journal on Computing 34, (2005), pp. 720–
742.

5. Burkard, R., Klinz, B. & Rudolf, R. “Perspectives of Monge properties in opti-
mization”, Discrete Applied Mathematics 70, (1996), pp. 95–161.

6. Cohen, D., Cooper, M.C. & Jeavons, P. “A complete characterisation of com-
plexity for Boolean constraint optimization problems”, Proc. 10th Int. Conf. on
Principles and Practice of Constraint Programming (CP’04), LNCS 3258, (2004),
pp. 212–226.

7. Cohen, D., Cooper, M.C., Jeavons, P. & Krokhin, A. “ Soft constraints: complex-
ity and multimorphisms” Proceedings of CP’03, LNCS 2833, (2003), pp. 244–258.

8. Cohen, D., Cooper, M.C., Jeavons, P. & Krokhin, A. “A maximal tractable class
of soft constraints” Journal of Artificial Intelligence Research 22, (2004), pp. 1-22.

9. Cohen, D., Cooper, M.C., Jeavons, P. & Krokhin, A. “Supermodular functions
and the complexity of Max CSP”, Discrete Applied Mathematics, 149 (1-3),(2005),
pp. 53–72.

10. Cohen, D., Cooper, M.C., Jeavons, P. & Krokhin, A. “The Complexity of Soft
Constraint Satisfaction”, Artificial Intelligence, to appear.

11. Creignou, N. “A dichotomy theorem for maximum generalised satisfiability prob-
lems”, Journal of Computer and Systems Sciences 51(3), (1995), pp. 511–522.

12. Creignou, N., Khanna, S. & Sudan, M. Complexity classification of Boolean con-
straint satisfaction problems, volume 7 of SIAM Monographs on Discrete Mathe-
matics and Applications, (2001).

13. Cunningham, W.H. “Minimum cuts, modular functions, and matroid polyhedra”,
Networks 15(2), (1985), pp. 205–215.

14. Feder, T. & Vardi, M.Y. “The computational structure of monotone monadic SNP
and constraint satisfaction: a study through datalog and group theory”, SIAM
Journal on Computing 28(1), (1998), pp. 57–104.

15. Fujishige, S. Submodular Functions and Optimization, 2nd edn., Annals of Dis-
crete Mathematics, Vol. 58, Elsevier, (2005).

16. Garey, M.R. & Johnson, D.S., Computers and Intractability: A guide to the theory
of NP-completeness, W.H. Freeman, (1979).

17. Iwata, S. “A fully combinatorial algorithm for submodular function minimiza-
tion”, Journal of Combinatorial Theory, Series B 84(2), (2002), pp. 203–212.

18. Iwata, S., Fleischer, L. & Fujishige, S. “A combinatorial, strongly polynomial-
time algorithm for minimizing submodular functions”, Journal of the ACM 48(4),
(2001), pp. 761–777.

19. Jeavons, P.G. “On the algebraic structure of combinatorial problems”, Theoretical
Computer Science 200 (1998), pp. 185–204.

20. Jeavons, P.G. “Constructing constraints”, Proceedings of CP’98), Lecture Notes
in Computer Science 1520, (1998), pp. 2–17.

21. Jeavons, P.G., Cohen D.A. & Gyssens, M. “Closure properties of constraints”,
Journal of the ACM 44, (1997), pp. 527–548.

22. Jeavons, P.G., Cohen D.A. & Gyssens, M. “How to determine the expressive
power of constraints”, Constraints, 4, (1999), pp. 113–131.

23. Jonsson, P., Klasson, M. & Krokhin, A. “The approximability of three-valued
Max CSP”, SIAM Journal of Computing, 35, (2006), pp. 1329–1349.

24. Nagamochi, H. & Ibaraki, I. “A note on minimizing submodular functions”, In-
formation Processing Letters 67, (1998), pp. 239–244.

25. Narayanan, H., Submodular Functions and Electrical Networks, Annals of Discrete
Mathematics 54, North Holland (London, New York, Amsterdam), (1997).

26. Narayanan, H. “A note on the minimisation of symmetric and general submodular
functions” Discrete Applied Mathematics 131(2), (2003), pp. 513–522.

27. Nemhauser, G.L. & Wolsey, L.A. Integer and Combinatorial Optimisation, Wiley,
(1999).

28. Queyranne, M. “Minimising symmetric submodular functions”, Mathematical
Programming 82(1-2), (1998), pp. 3–12.

29. Schaefer, T.J. “The complexity of satisfiability problems”, Proc. 10th ACM Sym-
posium on Theory of Computing (STOC’78), (1978), pp. 216–226.

30. Schrijver, A. “A combinatorial algorithm minimizing submodular functions in
strongly polynomial time”, J. Combinatorial Theory, Series B, 80, (2000),
pp. 346–355.

31. Schrijver, A. Theory of Linear and Integer Programming, Wiley, (1986).
32. Szendrei, A., Clones in Universal Algebra, Seminaires de Mathematiques Su-

perieures, University of Montreal, 99, (1986).
33. Topkis, D. Supermodularity and Complementarity, Princeton University Press,

(1998).

