
A unified theory of structural tractability for

constraint satisfaction problems

David Cohen ∗

Dept of Computer Science, Royal Holloway, University of London, Egham, Surrey,

UK

Peter Jeavons

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford,

UK

Marc Gyssens

Department WNI, Hasselt University and Transnational University of Limburg,

Agoralaan, Building D, B-3590 Diepenbeek, Belgium

Abstract

In this paper we derive a generic form of structural decomposition for the constraint
satisfaction problem, which we call a guarded decomposition. We show that many
existing decomposition methods can be characterised in terms of finding guarded
decompositions satisfying certain specified additional conditions.

Using the guarded decomposition framework we are also able to define a new
form of decomposition, which we call a spread-cut. We show that the discovery
of width-k spread-cut decompositions is tractable for each k, and that spread-cut
decompositions strongly generalise many existing decomposition methods. Finally
we exhibit a family of hypergraphs Hn, for n = 1, 2, 3 . . ., where the minimum
width of any hypertree decomposition of each Hn is 3n, but the width of the best
spread-cut decomposition is only 2n + 1.

Key words: Constraints, Complexity, Structural Decomposition, Hypertree

∗ Corresponding author.
Email addresses: d.cohen@rhul.ac.uk (David Cohen),

Peter.Jeavons@comlab.ox.ac.uk (Peter Jeavons), Marc.Gyssens@uhasselt.be
(Marc Gyssens).

Preprint submitted to Journal of Computer And System Sciences 14 August 2007



1 Introduction

A constraint satisfaction problem consists of a set of variables that must
be assigned values subject to certain constraints. These constraints restrict
the simultaneous assignments to certain specified subsets of the variables.
Many real-world problems can be represented very naturally in this frame-
work [6,17,18]

Similar problems arise in the field of relational databases, where they are
referred to as conjunctive query evaluation problems [15]. Many of the tech-
niques developed in this paper can also be applied directly to the conjunctive
query evaluation problem, but we shall not pursue this application here.

The decision problem for the general constraint satisfaction problem is NP-
hard [16]. This motivates the search for more restricted subproblems which
are tractable, that is, solvable in polynomial-time.

This paper considers subproblems of the constraint satisfaction problem which
can be shown to be tractable using so-called structural methods or decomposi-
tion methods. These methods rely exclusively on using the structural proper-
ties of instances, in other words the way in which the constraints overlap each
other.

A variety of such decomposition methods have been developed and applied
in both the constraint satisfaction community, and the database community.
Examples include methods based on the use of treewidth [9], cycle cutsets [7],
tree-clustering [8], hinges [14], cycle hypercutsets and hypertrees [10,11]. All
of these methods rely on reducing a given problem instance to an equivalent
instance with a simpler structure, which can then be solved efficiently. The
maximum number of edges of the original structure which are combined to
form a single element of this equivalent simpler structure is called the width
of the decomposition.

The main contribution of this paper is to present a generic, abstract form
of decomposition, which we call a guarded decomposition, together with a
generic algorithm to compute guarded decompositions. We show that many of
the earlier decomposition methods can be viewed as special cases of guarded
decomposition, each characterised by some simple additional conditions. In
this way we unify much of the existing theory of structural decompositions.
Furthermore, by presenting simple sufficient conditions which ensure that a
guarded decomposition is tractable, we create the possibility of a systematic
search for new tractable structural classes.

One existing decomposition method, based on the use of hypertrees [10–12],
is of particular importance as it is has been shown to be strictly more general

2



than many other decomposition methods. It has also been shown that it is
tractable to discover hypertree decompositions of width at most k, for each
fixed choice of k. Our work draws heavily on the ideas introduced by Gottlob,
Leone and Scarcello in their work on hypertrees [10–12], including the notion
of a guarded block, the recursive decomposition strategy, and the tools for
comparison of different methods.

Another contribution of this work is that we are able to use the general frame-
work and algorithm presented here to define a new decomposition method,
which we call spread-cut decomposition. We show that spread-cut decomposi-
tion generalises many of the methods previously shown to be generalised by
hypertree decomposition. We also show that it is tractable to discover spread-
cut decompositions of width at most k, for each fixed choice of k. Finally we
exhibit a family of hypergraphs Hn, for n = 1, 2, 3 . . ., where the width of
the best hypertree decomposition of each Hn is 3n, but the width of the best
spread-cut decomposition is only 2n + 1.

2 Constraint satisfaction problems and hypergraphs

A constraint satisfaction problem (CSP) consists of a collection of variables
that must be assigned values from some given domain. The values that the
variables can take are not independent; they are restricted by constraints. Each
constraint restricts the allowed simultaneous assignments to a certain subset
of the variables.

Definition 2.1 A CSP instance is a triple P = 〈V, D, C〉 where:

• V is a finite set of variables;
• D is a set called the domain of P ;
• C is a set of constraints. Each constraint c ∈ C is a pair c = 〈χ, ρ〉 where

χ ⊆ V is a set of variables, called the scope of c, and ρ ⊆ Dχ is a set of
functions from the scope of c to the domain of P , called the relation of c.

A solution to the CSP instance P = 〈V, D, C〉 is a function from V to D
whose restriction 1 to the scope of any constraint c ∈ C is one of the functions
in the relation of c.

Example 2.2 Consider the CSP instance PAG = 〈V, D, C〉 where V = {1, 2, . . . , 10},
D = {0, 1}, and C = {c1, c2, . . . , c8}.

1 To simplify the presentation we assume, throughout this paper, that every variable
of a CSP instance is constrained; that is, every variable occurs in the scope of some
constraint.

3



This instance has ten variables which must each be assigned the value 0 or 1,
subject to 8 constraints. The constraints in C are defined as follows:

c1 =
〈

{1, 2}, D{1,2}
〉

, c2 =
〈

{2, 3, 9}, D{2,3,9}
〉

,

c3 =
〈

{3, 4, 10}, D{3,4,10}
〉

, c4 =
〈

{4, 5}, D{4,5}
〉

,

c5 =
〈

{5, 6, 9}, D{5,6,9}
〉

, c6 =
〈

{6, 7, 10}, D{6,7,10}
〉

,

c7 =
〈

{7, 8, 9}, D{7,8,9}
〉

,

c8 =
〈

{1, 8, 10}, {f ∈ D{1,8,10} | f(1) = f(8) = 0 ⇒ f(10) = 1}
〉

.

Note that each constraint except c8 allows every assignment to the variables of
its scope. The constraint c8 does not allow the three variables of its scope all
to take the value 0 simultaneously, but does allow all other assignments.

A straightforward calculation shows that this instance has exactly 7 ∗ 27 = 896
solutions.

In this paper we study the complexity of solving certain classes of CSP in-
stances. For this reason we need to specify precisely what we mean by the
size of a CSP instance. We adopt the usual convention for theoretical work:
we define the size of an instance to be the sum of the sizes of the explicit
constraints.

Definition 2.3 Given an instance 〈V, D, C〉 we represent each constraint scope
as a list of variables from V , and each constraint relation as a list of tuples
over D. The size of the instance 〈V, D, C〉 is then

∑

〈χ,ρ〉∈C

|χ| (log |V | + |ρ| log |D|)

In Example 2.2 we used a shorthand notation to represent the constraint
relations. Here and elsewhere this does not imply that this is a legal way
to formally express a relation for an instance of the CSP in a succinct form
(and hence one cannot have exponentially large relations as part of a small
instance).

In order to study the structural properties of CSP instances, that is, the way
in which the constraint scopes overlap each other, we need the standard notion
of a hypergraph.

Definition 2.4 A hypergraph is a pair H = 〈V, E〉, where V is an arbi-
trary set, called the vertices of H, and E is a set of subsets of V , called the
hyperedges of H.

4



1

2

6

5

8

7

3

4

9 10

e
4

e
1

e
2

e
5

e
6

e
7

e
8

e
3

Fig. 1. The hypergraph HAG, which is the structure of the CSP instance PAG,
defined in Example 2.2.

Definition 2.5 For any CSP instance P = 〈V, D, C〉, the structure of P ,
denoted σ(P ), is the hypergraph 〈V, {χ | 〈χ, ρ〉 ∈ C}〉.

Example 2.6 Recall the CSP instance PAG defined in Example 2.2. The
structure of PAG is the hypergraph 2 HAG illustrated in Figure 1.

The set of vertices of HAG is the set {1, 2, . . . , 10}, and the eight hyperedges
of HAG are the following subsets of these vertices: e1 = {1, 2}, e2 = {2, 3, 9},
e3 = {3, 4, 10}, e4 = {4, 5}, e5 = {5, 6, 9}, e6 = {6, 7, 10}, e7 = {7, 8, 9},
e8 = {1, 8, 10}.

3 Guarded decompositions

Two CSP instances with the same set of variables are called solution-equivalent
if they have the same set of solutions. As we will argue in Section 5, all known
structural decomposition methods take CSP instances and transform them
into solution-equivalent instances with simpler structure. The constraints of
these transformed instances are obtained by calculating the relational joins of
certain constraint relations in the original instances, and then projecting these
onto new scopes. To describe this general transformation scheme we introduce
the following terminology.

Definition 3.1 A guarded block of a hypergraph H = 〈V, E〉 is a pair 〈λ, χ〉
where the guard, λ, is a subset of the hyperedges of H, and the block, χ, is

2 This hypergraph was originally described in Example 3 of Adler et al [2].

5



a subset of the vertices of the guard. That is, λ ⊆ E and χ ⊆
⋃

e∈λ e.

For any guarded block b, the guard of b will be denoted λ(b) and the block
of b will be denoted χ(b). For any set of hyperedges λ, we will write (∪λ) to
refer to the set of all vertices contained in edges of λ; that is, (∪λ) =

⋃

e∈λ e.

Definition 3.2 For any CSP instance P , and any guarded block b of σ(P ),
the constraint generated by P on b is the constraint 〈χ(b), ρ〉, where ρ is the
projection onto χ(b) of the relational join of all the constraints of P whose
scopes are elements of λ(b).

Given a CSP instance P , with structure H , and a collection of guarded blocks
of H , we can generate constraints on each of these guarded blocks to obtain a
new collection of constraints, and hence a new CSP instance. In some cases,
if the guarded blocks are carefully chosen, this new instance will be solution-
equivalent to P , and so can be used to solve P . If this property holds for any
CSP instance with structure H , then the collection of guarded blocks will be
called a guarded decomposition of H , which is formally defined as follows:

Definition 3.3 A set of guarded blocks Ξ of a hypergraph H is called a guarded

decomposition of H if, for every CSP instance P = 〈V, D, C〉 with structure
H, the instance P ′ = 〈V, D, C ′〉, where C ′ is the set of constraints generated
by P on the members of Ξ, is solution-equivalent to P .

Example 3.4 For any hypergraph H = 〈V, E〉 there are two trivial guarded
decompositions.

The set {〈{e}, e〉 | e ∈ E} is a guarded decomposition. For every instance P
with structure H, the generated instance is P itself, where constraints over the
same scope are merged by taking the intersection of their relations. Thus, the
generated instance is clearly solution-equivalent to the original one.

The set {〈E, V 〉} is also a guarded decomposition. For every instance P with
structure H, the tuples of the single constraint in the generated instance are
exactly the solutions to the instance P .

Theorem 3.6 below gives a simple and efficient way to determine whether a
given collection of guarded blocks is in fact a guarded decomposition, based
on the following properties.

Definition 3.5 A guarded block 〈λ, χ〉 of a hypergraph H covers a hyperedge
e of H if e ⊆ χ.

A set of guarded blocks Ξ of a hypergraph H is called a guarded cover for
H if each hyperedge of H is covered by some guarded block of Ξ.

6



A set of guarded blocks Ξ of a hypergraph H is called a complete guarded

cover for H if each hyperedge e of H occurs in the guard of some guarded
block of Ξ which covers e.

Theorem 3.6 A set of guarded blocks Ξ of a hypergraph H is a guarded de-
composition of H if and only if it is a complete guarded cover for H.

PROOF. Let Ξ be a set of guarded blocks of a hypergraph H = 〈V, E〉.

Suppose that Ξ is not a complete guarded cover for H . Choose e ∈ E such
that there is no guarded block 〈λ, χ〉 ∈ Ξ for which e ∈ λ and e ⊆ χ. We will
construct an instance Pe with structure H which will witness the fact that Ξ
is not a guarded decomposition of H .

Let the domain of Pe be D = {0, 1}. For each edge f ∈ E, f 6= e, let the
constraint of Pe with scope f allow all mappings from f to D. Finally let the
constraint of Pe with scope e, ce, allow all mappings from e to D except for
the mapping that assigns the value 0 to all the vertices of e simultaneously.

Now let 〈λ, χ〉 be any guarded block in the set Ξ. If e 6∈ λ then the constraint
generated by Pe on 〈λ, χ〉 allows every assignment. On the other hand, if e ∈ λ,
then, by the choice of e, we know that e 6⊆ χ. However, any projection of ce

onto any proper subset of e allows all assignments, so again the constraint
generated by Pe on 〈λ, χ〉 allows every assignment.

Since all constraints generated by Pe on all elements of Ξ allow every assign-
ment, the resulting CSP instance is not solution-equivalent to Pe, and hence
Ξ is not a guarded decomposition of H .

For the converse, suppose that Ξ is a complete guarded cover for H . Let P
be an arbitrary CSP instance with structure H . We have to show that the
CSP instance PΞ obtained by taking the constraints generated by P on each
element of Ξ is solution-equivalent to P .

Clearly, any solution to P is a solution to PΞ. On the other hand, by the
completeness of Ξ, and the construction of PΞ, the projection of any solution
to PΞ onto any edge e ∈ E must be allowed by the constraint of P with scope
e. Hence any solution to PΞ is also a solution to P .

4 Tractability

The classes of CSP instances that we shall be identifying in this paper are
classes which are defined purely in terms of the structure of their instances,

7



without imposing any restrictions on the constraint relations.

Definition 4.1 A class I of CSP instances is called structural if there is
some class of hypergraphs H for which I = {P | σ(P ) ∈ H} .

We have shown in the previous section that a guarded decomposition for a
hypergraph H can be used to associate any CSP instance whose structure is
H with a solution-equivalent instance having a different structure, which may
be easier to solve.

We shall now consider structural classes of CSP instances which are defined
as the class of all instances whose structure has a guarded decomposition of
a certain kind. The most important structural classes of this kind are those
which are tractable, in the following sense.

Definition 4.2 A class I of CSP instances is called tractable if there exists

• a polynomial-time algorithm to decide membership in I; and
• a polynomial-time algorithm to solve all members of I.

To ensure that a structural class defined using a class of guarded decomposi-
tions is tractable, it is sufficient to ensure that the class of guarded decompo-
sitions used in the definition has the following properties.

Tractable discovery For any given hypergraph it must be possible to decide
in polynomial time whether it has a guarded decomposition of the type we
are considering, and to obtain such a decomposition in polynomial time if
it exists.

Tractable construction Given such a guarded decomposition, it must be
possible to generate each of the new constraints in the corresponding solution-
equivalent instance in polynomial time.

Tractable solution Given such a solution-equivalent instance, it must be
possible to solve the resulting instance in polynomial time.

We will now examine what conditions can be imposed on a class of guarded
decompositions to ensure that it has each of these properties, starting with
the most straightforward property.

4.1 Tractable construction

The time complexity of a relational join operation is O(rk), where k is the
number of relations being joined, and r is the maximum number of tuples in
any of these relations. Hence to ensure that we have the tractable-construction
property, it is sufficient to bound the number of constraint relations that

8



need to be combined using the relational join operation. This can be done by
bounding the number of hyperedges in the guard of any guarded block used
in the decomposition.

Definition 4.3 The width of a set of guarded blocks is the maximum number
of hyperedges in any of its guards.

For any fixed value of k, the class of guarded decompositions of width at most
k has the tractable-construction property.

4.2 Tractable solution

For a class of guarded decompositions to have the tractable-solution property
we require that the new instance obtained by using any guarded decomposition
in the class can be solved in polynomial time. One way to achieve this is to
ensure that the structure of these new instances is acyclic [3]. The property
of being acyclic can be defined as follows:

Definition 4.4 A join tree of a hypergraph H is a tree, T , whose nodes
are the hyperedges of H, such that, whenever the vertex x of H occurs in two
hyperedges e1 and e2 of H, then x occurs in each node of the unique path
connecting e1 and e2 in T . In other words, the set of nodes of T in which x
occurs induces a (connected) subtree of T .

A hypergraph is called acyclic if it has a join tree.

Theorem 4.5 ([14]) Any CSP instance whose structure is acyclic can be
solved in polynomial time.

Definition 4.6 A join tree of a set of guarded blocks Ξ of H is a tree,
T , whose nodes are the elements of Ξ, such that, whenever the vertex x of H
occurs in the blocks of two elements of Ξ, then x occurs in the block of each
node of the unique path connecting them in T . In other words, the set of nodes
of T for which x occurs in the block induces a (connected) subtree of T .

A set of guarded blocks is acyclic if it has a join tree.

By Theorem 4.5, any class of acyclic guarded decompositions has the tractable-
solution property.

A rooted join tree for an arbitrary acyclic guarded cover is often called a
generalised hypertree [13,1,2]. We have avoided this terminology here, and
instead used the term “acyclic guarded cover”, for two reasons: in order to
emphasise the set of guarded blocks itself (rather than a particular choice of

9



rooted join tree for it) and in order to indicate that a hypertree decomposition
(see Example 5.13) is just one of several possible specialisations of the general
concept of acyclic guarded cover.

Using Theorem 3.6 and Definition 4.6 we now show that an acyclic guarded
decomposition can be obtained from any acyclic guarded cover without in-
creasing the width, or significantly increasing the number of guarded blocks,
by simply adding appropriate additional guarded blocks to make a complete
guarded cover.

Theorem 4.7 If the set of guarded blocks Ξ is an acyclic guarded cover for
H then the set Ξ ∪ {〈{e}, e〉 | e ∈ E} is an acyclic guarded decomposition of
H.

PROOF. The set Ξ ∪ {〈{e}, e〉 | e ∈ E} is clearly a complete guarded cover
of H , by Definition 3.5, and hence a guarded decomposition of H , by Theo-
rem 3.6. It only remains to show that it is acyclic.

Since Ξ is a cover of H , for each hyperedge e of H there is some be ∈ Ξ which
covers e. Now consider any join tree for Ξ. For each guarded block 〈{e}, e〉
which is not in Ξ, add it to this tree as an additional node, and connect it to
the existing node be. The resulting graph is a join tree for Ξ∪{〈{e}, e〉 | e ∈ E}.

In view of this result, we shall focus in the rest of the paper on methods to
find acyclic guarded covers.

4.3 Tractable discovery

It follows from the results above that, for any fixed choice of k, any CSP
instance whose structure has an acyclic guarded cover with width at most
k can be solved in polynomial time by generating an associated solution-
equivalent instance whose structure is acyclic.

However, to define a tractable structural class we still need some way to de-
termine in polynomial time whether a given instance has such a guarded cover
or not. We now introduce a very general algorithmic approach to this problem
and identify conditions which are sufficient to ensure that this approach is
effective.

Before describing our algorithmic approach we need some further definitions.

Definition 4.8 ([12]) Let H = 〈V, E〉 be a hypergraph and χ ⊆ V be any
subset of vertices.

10



A pair of vertices x, y is χ-connected if there is a sequence of hyperedges
e0, . . . , em such that x ∈ e0 − χ, y ∈ em − χ and ei ∩ ei+1 6⊆ χ, for i =
0, . . . , m − 1.

A χ-component of H is a maximal non-empty set of vertices C such that
each pair of vertices in C is χ-connected.

Example 4.9 Consider again the hypergraph HAG defined in Example 2.6
and illustrated in Figure 1.

If we set χ = {3, 7, 10}, then there is just one χ-component: {1, 2, 4, 5, 6, 8, 9}.
If we set χ = {3, 6, 7, 9, 10}, then there are two χ-components: {4, 5} and
{1, 2, 8}. If we set χ = {2, 3, 6, 7, 9, 10}, then there are again two χ-components:
{4, 5} and {1, 8}.

Definition 4.10 Let H be a hypergraph and let T be a tree whose nodes N
are guarded blocks of H. For any pair of adjacent nodes n and n′ of T , we
define the n′-branch of T with respect to n, denoted brn(n′), to be the set
of nodes of T whose (unique) path to n includes n′.

We define the vertices of brn(n′), denoted χ(brn(n′)), to be the vertices in the
blocks of the elements of brn(n′) which are not in χ(n). That is,

χ(brn(n′))
def
=

⋃

b∈brn(n′)

χ(b) − χ(n) .

Proposition 4.11 Let H be a hypergraph, and let T be a join tree of a guarded
cover of H. Then T satisfies the following conditions:

JT1 For every arc 〈n, n′〉 of T , and every edge e of H, if e∩ χ(brn(n′)) 6= ∅,
then e is covered by some node of brn(n′);

JT2 For every arc 〈n, n′〉 of T , χ(brn(n′)) is a union of χ(n)-components of
H.

PROOF. To see that JT1 holds, choose an arbitrary v ∈ e∩ χ(brn(n′)) 6= ∅.
By Definition 4.10, v /∈ χ(n). Hence, by the join-tree property, v does not
belong to the block of any node in any other branch of T with respect to n.
Since T is a join tree of a guarded cover, there must be a node b of T such
that e ⊆ χ(b). In particular, v ∈ χ(b), whence b ∈ brn(n′).

To see that JT2 holds, let v ∈ χ(brn(n′)). It suffices to show that χ(brn(n′))
contains the entire χ(n)-component to which v belongs. Thereto, let w be
another vertex in this χ(n)-component. Hence, there exist edges e0, . . . , em for
which v ∈ e0−χ(n), w ∈ em−χ(n) and, for i = 1, . . . , m, ei−1∩ei 6⊆ χ(n). We
show that, for i = 0, . . . , m, (ei − χ(n)) ⊆ χ(brn(n′)). For i = 0, this follows
from JT1. Now let i > 0. As inductive hypothesis, assume that our claim holds

11



for j = 0, . . . , i − 1. Since (ei−1 − χ(n)) ⊆ χ(brn(n′)) and ei−1 ∩ ei 6⊆ χ(n),
(ei−χ(n))∩χ(brn(n′)) 6= ∅. Hence, by JT1, (ei−χ(n)) ⊆ χ(brn(n′)). We may
thus conclude that (em − χ(n)) ⊆ χ(brn(n′)), whence w ∈ χ(brn(n′)).

For our present purpose of ensuring the tractable discovery property, condition
JT2 is not strong enough. Therefore, we now define a rooted variation of a
join tree for a set of guarded blocks, which we call a decomposition tree. For
a decomposition tree, we require that χ(brn(n

′)) is a single χ(n)-component
whenever n′ is a child of n.

Definition 4.12 A decomposition tree, T , of a hypergraph H is a rooted
join tree of a set of guarded blocks of H satisfying the following conditions:

DT1 For every arc 〈n, n′〉 of T , and every edge e of H, if e∩χ(brn(n′)) 6= ∅,
then e is covered by some node of brn(n′);

DT2 For every arc 〈n, n′〉 of T , there exists a single χ(n)-component, C〈n,n′〉,
of H such that χ(brn(n′)) = C〈n,n′〉.

We are now ready to state and prove the main result of this section.

Theorem 4.13 Let H be a hypergraph, and let β be a binary predicate on
pairs of guarded blocks of H.

For any guarded block b of H, and any χ(b)-component C of H, the predicate
β-Decompose(H, b, C) defined in Figure 2 holds if and only if H has a de-
composition tree T with root b such that C = χ(brb(b

′)) for the unique child b′

of b in T and every arc 〈n, n′〉 of T satisfies β.

PROOF. (=⇒) First assume that β-Decompose(H, b, C) holds. We will
prove that there exists a corresponding decomposition tree Tb,C with root b
such that C = χ(brb(b

′)) for the unique child b′ of b in Tb,C and every arc
〈n, n′〉 of T satisfies β. The proof is by induction on the depth of recursion
required to establish that β-Decompose(H, b, C) holds.

If this depth is 0, then by the definition of β-Decompose, there exists a
guarded block b′ of H such that:

(1) β(b, b′) holds;
(2) χ(b′) ⊆ χ(b) ∪ C;
(3) For every edge e of H , if e ∩ C 6= ∅, then e ⊆ C ∪ χ(b′); and
(4) For every χ(b′)-component C ′ of H , C ′ ∩ C = ∅.

The tree Tb,C = 〈{b, b′}, {〈b, b′〉}〉 clearly is a join tree of {b, b′}. We next show
that Tb,C satisfies DT1, DT2, and χ(brb(b

′)) = C. We start with the last

12



Types:
H = 〈V, E〉 is a hypergraph;
b is a guarded block of H ;
C is a χ(b)-component of H ;
β is a predicate on pairs of guarded blocks of H .

β-Decompose(H, b, C) :=
There exists a guarded block b′, such that
(1) β(b, b′) holds;
(2) χ(b′) ⊆ χ(b) ∪ C;
(3) For every edge e of H , if e ∩ C 6= ∅, then e ⊆ C ∪ χ(b′)
(4) For every χ(b′)-component C ′, if C ′ ∩ C 6= ∅, then

(a) C ′ ∩ χ(b) = ∅; and
(b) β-Decompose(H, b′, C ′).

Fig. 2. Definition of the predicate β-Decompose

condition. First notice that χ(brb(b
′)) = χ(b′) − χ(b). By condition 2 above,

χ(brb(b
′)) ⊆ C. Now assume there exists v ∈ C − χ(b′), and let C ′ be the

χ(b′)-component containing v. Then C ∩ C ′ 6= ∅, contradicting condition 4
above. Thus, C − χ(b′) = ∅, whence χ(brb(b

′)) = C.This also settles DT2.
Finally, to show DT1, let e be an edge such that e ∩ χ(brb(b

′)) = e ∩ C 6= ∅.
By condition 3, e ⊆ C ∪ χ(b′) = χ(b′).

Now assume that the depth of recursion required to establish that β-Decompose(H, b, C)
holds is greater than 0, and that the result holds in all cases where this depth
is smaller. In this case we construct the rooted tree Tb,C by linking all the
trees Tb′,C′ corresponding to recursive calls at their common root b′, and then
adding the node b as a parent of b′. It remains to show that Tb,C is a join
tree satisfying DT1 and DT2, that every arc 〈n, n′〉 of T satisfies β, and that
C = χ(brb(b

′)).

To establish that Tb,C is a join tree, note that, by the inductive hypothesis,
each of the trees Tb′,C′ used in the construction is a decomposition tree. Hence
it only remains to show that

• Any vertex v occurring in the block of a node in two distinct subtrees Tb′,C′

1

and Tb′,C′

2
must also occur in χ(b′). To see this, assume that v occurs in some

node of Tb′,C′

1
but does not occur in χ(b′). Then, for some child b′′ of b′, it

must occur in χ(brb′(b
′′)), which equals C ′

1, by the inductive hypotheses. The
same applies to Tb′,C′

2
. However, C ′

1 and C ′
2 are distinct χ(b′)-components

chosen in the recursive step of the algorithm, so C ′
1 ∩C ′

2 = ∅, and the result
follows.

• Any vertex v occurring in the block of a node in some subtree Tb′,C′ and in
χ(b) must also occur in χ(b′). By the same argument as in the previous case,

13



if v occurs in some node of Tb′,C′ but does not occur in χ(b′), then v ∈ C ′.
However, by the definition of β-Decompose, we have that C ′ ∩ χ(b) = ∅,
and the result follows.

To establish conditions DT1 and DT2, note that, by the inductive hypothesis,
these conditions hold for every subtree used in the construction. Therefore, it
suffices to show that

(1) Every edge e of H with e ∩ C 6= ∅ is covered by some node of brb(b
′);

(2) χ(brb(b
′)) = C.

To show that every edge e of H with e ∩ C 6= ∅ is covered by some node of
brb(b

′) we note that if e∩C 6= ∅, then, by the definition of β-Decompose, we
have two cases: either e ⊆ χ(b′) or e ∩ C ∩ C ′ 6= ∅ for some χ(b′)-component
C ′. By the inductive hypothesis, if e ∩ C ′ 6= ∅ for some χ(b′)-component C ′

with C ′ ∩ C 6= ∅, then e is covered by some node of Tb′,C′ , and hence in some
node of brb(b

′), by the construction of Tb,C . Hence, in either case, we have the
result.

To show that χ(brb(b
′)) = C we note that χ(brb(b

′)) ∪ χ(b) is the set of all
vertices in the blocks of all trees Tb′,C′ used in the construction of Tb,C , together
with the vertices of χ(b). By the inductive hypothesis, this set consists of all
vertices in all χ(b′)-components C ′ for which C ′ ∩ C 6= ∅, together with the
vertices of χ(b) and χ(b′). However, every vertex of C must either lie in χ(b′),
or in some χ(b′)-component, because, together, these include all vertices of H .
Hence χ(brb(b

′)) ∪ χ(b) ⊇ C ∪ χ(b), so χ(brb(b
′)) ⊇ C.

For the reverse inclusion we first note that χ(b′) ⊆ C ∪ χ(b), by the definition
of β-Decompose. It only remains to show that, for any χ(b′)-components C ′

for which C ′ ∩ C 6= ∅, we have that C ′ ⊆ C. Assume for contradiction that
C ′ 6⊆ C for some χ(b′)-component C ′ with C ′ ∩ C 6= ∅. By the definition of
χ(b′)-connectedness, this implies that there exists some edge e of H such that
e ∩ C ′ ∩ C 6= ∅ but e 6⊆ C. In other words, there are vertices v, w ∈ e such
that v ∈ C ′ ∩ C and w 6∈ C. Since C is a χ(b)-component, this implies that
w ∈ χ(b), but then w ∈ χ(b′), because we have already established that Tb,C

is a join-tree. However, by the inductive hypothesis, any such e is covered by
some node of brb′(b

′′), so w 6∈ χ(b′), which yields the required contradiction.

Finally, to establish that every arc 〈n, n′〉 of T satisfies β, note that by the
inductive hypothesis β(n, n′) holds for every arc 〈n, n′〉 in every subtree Tb′,C

used in the construction. Hence it only remains to show that β(b, b′) holds,
and this follows immediately from the definition of β-Decompose.

(⇐=) For the converse result, assume that H has a decomposition tree Tb,C

with root b such that C = χ(brb(b
′)) for the unique child b′ of b in Tb,C and

every arc of T satisfies β. We will prove by induction on the depth of Tb,C that

14



β-Decompose(H, b, C) holds.

Since the root of Tb,C has exactly one child, b′, the depth of Tb,C is at least 1.

If this depth is exactly 1, then Tb,C = 〈{b, b′}, {〈b, b′〉}〉. By our assumptions
about Tb,C , we know that β(b, b′) holds. From C = χ(brb(b

′)) = χ(b′)−χ(b), it
follows that χ(b′) = χ(b)∪C. By condition DT1, every edge of e which meets
C = χ(brb(b

′)) is contained in χ(b′) = C∪χ(b′). Finally, since C ⊆ χ(b′), there
are no χ(b′)-components of H which meet C. Hence β-Decompose(H, b, C)
holds.

Now assume that the depth of Tb,C is greater than 1, and that the result holds
in all cases where this depth is smaller. In this case, we consider the sub-trees
of Tb,C rooted at b′ and containing a unique child of b′ together with all its
descendants (if any).

By the definition of a decomposition tree, each of these sub-trees is itself
a decomposition tree Tb′,C′ with root b′ such that χ(brb′(b

′′)) for the unique
child b′′ of b′ is a distinct χ(b′)-component, C ′, of H . Also, every arc of each
Tb′C′ satisfies β. Moreover, by condition DT2 applied to the branch brb(b

′)
of Tb,C , we have that the union of all these χ(b′)-components, together with
χ(b′) contains C. Hence, by the inductive hypothesis, β-Decompose(H, b′, C ′)
holds for each χ(b′)-component C ′ such that C ′ ∩ C 6= ∅.

Now consider any χ(b′)-component C ′ such that C ′∩C 6= ∅. We will show that
C ′ ⊆ C, and so C ′ ∩ χ(b) = ∅, because C is a χ(b)-component. Assume for
contradiction that C ′ 6⊆ C for some χ(b′)-components C ′ with C ′ ∩C 6= ∅. By
the definition of χ(b′)-connectedness, this implies that there exists some edge
e of H such that e∩C ′ ∩C 6= ∅ but e 6⊆ C. In other words, there are vertices
v, w ∈ e such that v ∈ C ′ ∩ C and w 6∈ C. Since C is a χ(b)-component,
this implies that w ∈ χ(b), but then w ∈ χ(b′), because Tb,C is a join-tree.
However, by condition DT1 any such e is covered by some node of a branch
out of b′, so w 6∈ χ(b′), which gives the required contradiction.

By condition DT1, every edge e of H which meets C is covered in some node
of brb(b

′), so either e ⊆ χ(b′), or else e is covered by some node of brb′(b
′′) for

some child b′′ of b′. In the latter case, by condition DT2, e ⊆ χ(b′) ∪ C ′ for
some χ(b′)-component C ′ = C〈b′,b′′〉.

By condition DT2 applied to the branch brb(b
′) of Tb,C , we have that χ(b′) −

χ(b) ⊆ C, so χ(b′) ⊆ χ(b) ∪ C.

Finally, by our assumptions about Tb,C , we know that β(b, b′) holds.

Putting all these observations together, we have established that β-Decompose(H, b, C)
holds.

15



In Theorem 4.13, we considered trees where the root b has a unique child,
corresponding to a particular χ(b)-component. The final construction step
consists of considering all χ(b)-components, and merging the corresponding
trees into a single tree at their common root. This then yields the following
corollary.

Corollary 4.14 A hypergraph H has an acyclic guarded cover Ξ which has a
decomposition tree in which every arc satisfies β if and only if there is some
guarded block b ∈ Ξ such that β-Decompose(H, b, C) holds for each χ(b)-
component C.

PROOF. (=⇒) First assume that a hypergraph H has an acyclic guarded
cover Ξ which has a decomposition tree T in which every arc satisfies β. Let
b be the root of T , and let C be a χ(b)-component. Then, by DT2, C =
χ(brb(b

′)) for some child b′ of b. Clearly, the tree Tb,C obtained by deleting all
other children of b from T satisfies the conditions of Theorem 4.13. Hence,
β-Decompose(H, b, C) holds.

(⇐=) Now assume that there is some guarded block b ∈ Ξ such that β-

Decompose(H, b, C) holds for each χ(b)-component C. If there are no such
components, then the single block b is already an acyclic guarded cover for H .
Otherwise, by Theorem 4.13, there exists a decomposition tree Tb,C with root b
such that C = χ(brb(b

′)) for the unique child b′ of b in Tb,C and every arc of Tb,C

satisfies β. We construct T by linking all trees Tb,C at their common root b. By
DT1, the nodes of T form a guarded cover. As in the proof of Theorem 4.13,
it is straightforward to show that T is a join tree, whence acyclicity. It follows
that T is a decomposition tree in which every arc satisfies β.

The time required to establish that β-Decompose(H, b, C) holds, and hence
compute a decomposition tree if one exists, depends on the time required to
enumerate the elements of β, which will be denoted |β|.

Theorem 4.15 Let H = 〈V, E〉 be a hypergraph, and let β be a binary pred-
icate on pairs of guarded blocks of H. In O(|β||E||V |2) time it is possible to
decide whether H has an acyclic guarded cover Ξ which has a decomposition
tree where every arc satisfies β, and to construct such a cover if it exists.

PROOF. By Corollary 4.14, to decide whether H has an acyclic guarded
cover with a decomposition tree where every arc satisfies β it is sufficient to de-
termine whether the predicate β-Decompose(H, b, C) holds for some guarded
block b of H , and every χ(b)-component C of H . Moreover, by the proofs of
Theorem 4.13 and Corollary 4.14, if all such β-Decompose(H, b, C) hold,

16



then we can construct such a guarded cover by considering all the guarded
blocks b′ chosen in all the trees of recursive calls.

By storing the results, we can ensure that β-Decompose(H, b, C) only needs
to be evaluated once for each choice of b and C. Furthermore, we only need to
consider guarded blocks b for which β(b, b′) holds for some b′, and in the evalu-
ation of β-Decompose(H, b, C) we only need to consider b′ for which β(b, b′)
holds. For each such pair b, b′, we can pre-compute all the χ(b)-components
and χ(b′)-components in O(|E||V | log |V |) time, and there are at most O(|V |)
such components. Taking into account that set operators and comparisons
take O(|V |) time, all of the necessary evaluations of β-Decompose can be
carried out in O(|β||E||V |2) time.

In view of this result, we shall focus in the rest of the paper on methods to
find acyclic guarded covers with a decomposition tree where every arc satisfies
β, for some binary predicate β such that the time required to enumerate
the elements of β is polynomial in the size of H . We have shown that these
conditions are sufficient to ensure that the decompositions we consider have
the tractable-discovery property.

5 Existing decomposition methods

We will now show that many existing decomposition methods for the CSP
can be defined in terms of finding acyclic guarded covers using specified sets
of guarded blocks.

In the examples below we explicitly show, by finding a suitable predicate β in
each case, how we can use the algorithm of the previous section to tractably
discover (sometimes slight generalisations of) many of these known decompo-
sitions.

We first note that, for historical reasons, some existing decomposition meth-
ods for the CSP make use of extended guards that contain both vertices and
hyperedges. To be able to present all of these methods in a uniform way we
introduce the idea of transforming a CSP instance by adding a unary con-
straint cv, for each variable v, where cv =

〈

{v}, {v}D
〉

. This corresponds to
extending the structure of the instance to ensure that it includes a hyperedge
for each variable.

Definition 5.1 Let H = 〈V, E〉 be any hypergraph. A guarded cover for the
hypergraph 〈V, E ∪ {{v} | v ∈ V }〉 is called an extended cover for H.

17



The following result shows that the existence of an extended cover of width
k is equivalent to the existence of a standard guarded cover of width k. This
means that extended covers are simply a notational convenience and do not
allow better decompositions.

Proposition 5.2 If a hypergraph H has an acyclic extended cover of width
k, then H also has an acyclic guarded cover of width at most k with at most
the same number of guarded blocks.

PROOF. Let Ξ be an acyclic extended cover for a hypergraph H . Now replace
every hyperedge in every guard with some hyperedge of H that includes it.

Since this process preserves all of the existing blocks, it is clear that the new
set of guarded blocks obtained in this way is an acyclic guarded cover of the
same or lower width, with the same number of guarded blocks (or possibly
fewer).

Also for historical reasons, the width of some decompositions has been defined
to be the maximum number of vertices occurring in any block of any guarded
block. However, this measure hides the fact that, in order to compute the
generated constraints, we have to compute the relational join of the edges in
the guard. In fact, whenever we have an acyclic guarded cover with vertex-
width k we can easily construct an acyclic guarded cover with (hyperedge)
width bounded by k, as the next result makes clear.

Proposition 5.3 If a hypergraph H has an acyclic guarded cover with at most
k vertices in any block, then H also has an acyclic guarded cover of width at
most k with at most the same number of guarded blocks.

PROOF. Let Ξ be an acyclic guarded cover of H with at most k vertices
in any block. For each guarded block 〈λ, χ〉 of Ξ, and for each vertex v in χ,
choose some hyperedge ev ∈ H such that v ∈ ev. Now replace each guarded
block 〈λ, χ〉 with the guarded block 〈{ev | v ∈ χ}, χ〉. It is clear that the width
of this new guarded block is bounded by |χ|.

Since we are keeping all of the existing blocks it is clear that the new set of
guarded blocks is still an acyclic guarded cover.

We also note that many existing decomposition methods are based on guarded
covers in which every block is exactly the union of the edges of its guard.

18



Definition 5.4 A guarded block b is edge-defined if its block is exactly the
set of vertices contained in the hyperedges of its guard, i.e., if χ(b) = (∪λ(b)).
A set of guarded blocks is edge-defined if all of its guarded blocks are edge-
defined.

Unfortunately, it has been shown that the class of edge-defined acyclic guarded
covers 3 does not have tractable discovery.

Theorem 5.5 ([12]) For any k > 3 it is NP-hard to discover whether a
hypertree has an edge-defined acyclic guarded cover of width at most k.

However we can easily show that those edge-defined acyclic guarded covers
with tree decompositions do give us a tractable decomposition method.

Proposition 5.6 For any fixed k, the class of CSP instances whose structure
has an edge-defined acyclic guarded cover of width k with a decomposition tree
is a tractable structural class.

PROOF. The number of edge-defined guarded blocks of width k for a hyper-
graph H = 〈V, E〉 is simply the number of distinct subsets of k edges, C

|E|
k ,

which for any fixed k is polynomial in the size of H , and this collection of
subsets can be enumerated in polynomial time.

Hence, if we define β to be the predicate that holds for all pairs of edge-
defined guarded blocks of H of width at most k, then the result follows from
Theorem 4.15.

We now characterise many known structural decomposition methods in terms
of a corresponding class of acyclic guarded covers where the elements are
chosen from a specified set (see [10] for traditional definitions of the known
decomposition methods).

For each of the examples except hypertrees we show that if H has a de-
composition of width k, then this it has a decomposition of width k with a
decomposition tree. In order to do this we use the following simple proposition.

Proposition 5.7 Let Ξ be any acyclic guarded cover of H. If, for any p, p′ ∈
Ξ, the set of vertices (χ(p)−χ(p′)) is χ(p′)-connected, then Ξ has a decompo-
sition tree.

PROOF. Let T be any rooted join tree of Ξ. Suppose that T has a node p

3 In the literature edge-defined acyclic guarded covers have been called pure query

decompositions [12].

19



with child s where χ(brp(s)) is more than one χ(p) component, say C1, . . . , Cr.
We modify T by replacing this branch with a collection of branches.

For i = 1, . . . , r, the ith new branch Ti has nodes {t ∈ brp(s) | χ(t)∩Ci 6= ∅}.

The last new branch T0 has nodes {t ∈ brp(s) | χ(t) ⊆ χ(p)}.

The parent of t in any Ti is the first node of Ti on the path from t to p in T ,
or p if this path includes no nodes of Ti.

Clearly we still have an acyclic cover as we have not changed the set of guarded
blocks.

Since any block of Ξ is χ(p)-connected, each guarded block of brp(s) occurs in
exactly one of the Ti. It follows that the blocks of any two nodes from distinct
Ti must intersect inside χ(p) and so the new tree is a join tree.

We perform this process once for each non-leaf node of T and we obtain a
decomposition tree for Ξ.

Example 5.8 A biconnected-component [9] decomposition of a hypergraph
is an edge-defined acyclic complete guarded cover, Ξ, satisfying the following
articulation condition:

∀b1, b2 ∈ Ξ, (b1 6= b2) =⇒ |χ(b1) ∩ χ(b2)| ≤ 1.

A guarded block b has an articulation point if there exists a vertex x for which
χ(b) − {x} is not connected. The biconnected-component decomposition Ξ is
minimal if none of its guarded blocks has an articulation point. It is easy to
show that if H has any biconnected-component decomposition of width k then
it has a minimal such decomposition.

It is trivial that any minimal biconnected-component decomposition of H sat-
isfies the conditions for Proposition 5.7, and so has a decomposition tree.

It follows from this that minimal biconnected-component decompositions can
be tractably discovered using the algorithm described in Section 4 by choosing
the predicate β that allows all pairs b1, b2 of edge-defined guarded blocks of
width at most k without articulation points such that |χ(b1) ∩ χ(b2)| ≤ 1.

Example 5.9 A cycle-hypercutset [10] decomposition of a hypergraph H =
〈V, E〉 is an edge-defined acyclic complete guarded cover, Ξ, satisfying the
following simplicity condition:

∃C ⊆ E, ∀ 〈λ, χ〉 ∈ Ξ, (C ⊆ λ) ∧ (|λ − C| ≤ 1).

20



We first show that the existence of a cycle-hypercutset decomposition of this
kind is equivalent to the existence of a cycle-hypercutset, where a cycle-hypercutset
of a hypergraph H = 〈V, E〉 is defined to be a set C ⊆ E such that HC =
〈V − (∪C), {e − (∪C) | e ∈ E}〉 is acyclic.

To see this equivalence, assume that C is a cycle-hypercutset of H and let T be
a join tree of HC. Label each node e− (∪C) of T with the edge-defined guarded
block whose guard is {e}∪C. This defines a rooted tree of guarded blocks which
satisfies the join-tree condition and is a complete guarded cover of H.

Conversely, suppose that there is some C such that the set of edge-defined
guarded blocks with guards {{e} ∪ C | e ∈ E} is an acyclic cover of H. Let T
be a join tree for this set. It is clear that replacing the guarded block defined
for e by the set of vertices e− (∪C) defines a join tree of HC, so HC is acyclic
and C is a cycle-hypercutset.

It is trivial that any cycle-hypercutset decomposition satisfies the conditions
for Proposition 5.7, and so has a decomposition tree.

However, it is not completely straightforward to discover cycle-hypercutset de-
compositions using the algorithm in Section 4, because the simplicity condition
defined above becomes local only once we fix C. One possible approach is to
run this algorithm for each C ⊆ E with |C| < k (which is at most polynomi-
ally often) and, in each run, define a predicate βC which holds for all pairs
of edge-defined guarded blocks, b, of width at most k such that C ⊆ λ(b) and
|λ(b) − C| ≤ 1.

Another approach is to note that cycle-hypercutset decompositions can be ex-
tended to a more general tractable class of decompositions, by defining a single
predicate β which holds for all pairs of edge-defined guarded blocks, b1, b2, of
width at most k, such that |λ(b1) − λ(b2)| ≤ 1.

Example 5.10 A cycle-cutset [7] decomposition of a hypergraph H is an
edge-defined acyclic extended guarded cover, Ξ, satisfying the following sim-

plicity condition:

∃C ⊆ V, ∀ 〈λ, χ〉 ∈ Ξ, ({{x} | x ∈ C} ⊆ λ) ∧ (|λ − {{x} | x ∈ C}| ≤ 1).

An analogous proof to that for cycle-hypercutsets (Example 5.9) shows that
the existence of a cycle-cutset decomposition of this kind is equivalent to the
existence of a cycle-cutset, where a cycle-cutset of a hypergraph H = 〈V, E〉 is
defined to be a set C ⊆ V such that HC = 〈V − C, {e − C | e ∈ E}〉 is acyclic.

It is trivial that any cycle-cutset decomposition satisfies the conditions for
Proposition 5.7, and so has a decomposition tree.

21



As with cycle-hypercutsets (Example 5.9), we can obtain a cycle-cutset decom-
position in polynomial time using the algorithm defined in Section 4 by running
the algorithm for each C ⊆ V with |C| < k, and in each run, defining a pred-
icate βC which holds for all pairs of edge-defined guarded blocks, b, of width at
most k such that {{x} | x ∈ C} ⊆ λ(b) and |λ(b) − {{x} | x ∈ C}| ≤ 1.

We note that cycle-cutset decompositions can also be extended to a more gen-
eral tractable class of decompositions, by defining a single predicate β which
holds for all pairs of extended edge-defined guarded blocks, b1, b2, of width at
most k, such that all but at most one of the elements of λ(b1) and of λ(b2)
consist of single vertices and |λ(b1) − λ(b2)| ≤ 1.

Example 5.11 A hinge-tree [14] decomposition of a hypergraph H is an
edge-defined acyclic complete guarded cover, Ξ, satisfying the following sepa-

ration condition:

∀b1, b2 ∈ Ξ, (b1 6= b2) ⇒ (∃e ∈ λ(b1), χ(b1) ∩ χ(b2) ⊆ e).

The standard definition of a hinge-tree [14] is an acyclic cover of edge-defined
guarded blocks with a join tree T which satisfies, for each arc 〈b1, b2〉 of T ,

∃e ∈ λ(b1) ∩ λ(b2), χ(b1) ∩ χ(b2) ⊆ e. (5.1)

We will first establish that the existence of a hinge-tree T implies the existence
of a hinge-tree decomposition as defined here. Since T is a join tree, it follows
that, for every pair b1 and b2 of distinct nodes, we have that there exists e ∈
λ(b1) such that χ(b1)∩χ(b2) ⊆ e, so the set of nodes of T satisfies the separation
condition above and so forms a hinge-tree decomposition.

On the other hand, if we have a hinge-tree decomposition Ξ with join tree T ,
not all arcs need satisfy Equation 5.1. However, we will now show that by
adding certain additional guarded blocks to T , we can transform it to a new
join tree T ′ with the same width 1 that does satisfy Equation 5.1.

For any arc 〈b1, b2〉 of T which does not have Property 5.1 we use the separation
condition twice to obtain edges e1 ∈ λ(b1) and e2 ∈ λ(b2) such that χ(b1) ∩
χ(b2) ⊆ e1 and χ(b1)∩χ(b2) ⊆ e2. Then we simply add the edge-defined guarded
block with guard {e1, e2} and insert it into the join tree T between b1 and b2.

Hence we have shown that for any k ≥ 2 the existence of a hinge-tree decom-
position of width k as defined here is equivalent to the existence of a standard
hinge-tree whose largest guard contains k edges.

1 Provided the width of the original decomposition is at least 2.

22



We now show that we can transform any hinge-tree decomposition of width k
to a hinge-tree decomposition of width at most k with a tree decomposition.

It was shown [14] that we can transform the decomposition so that each hinge
is minimal without increasing the width. This means that each hinge p of the
transformed decomposition has no separating edge. We reformulate this as the
fact that for every hyperedge e ∈ λ(p), the set χ(p) − e is e-connected. Let p
and p′ be two hinges of the decomposition. From the separation condition we
know that there exists a hyperedge e ∈ λ(p) such that χ(p) ∩ χ(p′) ⊆ e. So
χ(p) − χ(p′) is indeed connected with respect to χ(p′).

So, if we have a hinge-tree decomposition of width k we also have a hinge-tree
decomposition of width at most k which has a decomposition tree.

It follows from this that hinge-tree decompositions can be discovered using the
algorithm described in Section 4 by choosing the predicate β on pairs of edge-
defined guarded blocks which is defined as follows:

β(b1, b2)
def
= ∃e1 ∈ λ(b1), e2 ∈ λ(b2), χ(b1) ∩ χ(b2) ⊆ e1 ∩ e2.

We remark that the width of a hinge-tree composed of minimal hinges (with
respect to inclusion) is an invariant of a hypergraph called the degree of

cyclicity [14].

Example 5.12 A query decomposition [4] of a hypergraph H = 〈V, E〉
is a pair 〈Ξ, T 〉 where Ξ is a complete edge-defined acyclic extended cover
of H, and T is a join tree of Ξ that satisfies the following connectedness

condition on the guards:

∀e ∈ E, {〈λ, χ〉 ∈ Ξ | e ∈ λ} is connected in T.

Unlike the decomposition methods discussed earlier, this is not a local condi-
tion that can be captured by choosing a suitable binary predicate β. Indeed,
determining whether H has a query decomposition of width 4 is known to be
NP-hard [12].

Example 5.13 A hypertree decomposition [11,12] of a hypergraph H is
a pair 〈Ξ, T 〉, where Ξ is an acyclic guarded cover and T = 〈N, A〉 is a rooted
join tree of Ξ, which satisfies the following descendant condition:

∀ 〈b, b′〉 ∈ A, ((∪λ(b)) ∩ χ(brb(b
′))) = ∅.

Note that any edge-defined acyclic guarded cover satisfies this condition, but
the guarded blocks of a hypertree decomposition are not required to be edge-
defined.

It was shown in [12] that hypertree decompositions can be tractably discovered

23



using a recursive algorithm similar to the one defined in Section 4 above. The
minimum width of any hypertree decomposition of a hypergraph H is called
the hypertree width of H.

6 Comparing decompositions

The relative strengths of different decomposition techniques derived from
acyclic guarded covers can be compared using the measures developed by
Gottlob et al [10].

The class of hypergraphs having a guarded cover with width at most k in some
fixed class ∆, will be denoted C(∆, k).

Definition 6.1 Let ∆1 and ∆2 be any two classes of guarded covers. We say
that ∆1 generalises ∆2 if there exists a constant c ≥ 0 such that, for every
k, C(∆2, k) ⊆ C(∆1, k + c).

We say that ∆1 strongly generalises ∆2 if ∆1 generalises ∆2, and there
exists k for which there does not exist l with C(∆1, k) ⊆ C(∆2, l).

Example 6.2 In Section 5 we defined edge-defined acyclic guarded covers.

It is clear that the class of all edged-defined acyclic covers generalises any
restricted edge-defined decomposition, defined with extra conditions.

Furthermore, from Proposition 5.2 it follows immediately that the class of
all edge-defined acyclic covers generalises any restricted extended edge-defined
decompositions.

In particular the class of all edge-defined decompositions generalises the cycle-
hypercutset decomposition described in Example 5.9, the cycle-cutset decom-
position described in Example 5.10, the hinge-tree decomposition described in
Example 5.11, the biconnected component decomposition described in Exam-
ple 5.8 and the query decomposition described in Example 5.12.

Since any edge-defined acyclic guarded cover has an associated hypertree, this
yields a direct proof of the fact (see Theorem 23 of Gottlob et al. [10]) that
hypertrees generalise each of these earlier decompositions.

It is perhaps surprising that hypertrees generalise query decompositions since
hypertree decompositions are tractable to discover for any bound k on the width,
whereas it is NP-complete to determine whether a hypergraph has a query
decomposition of width at most 3, as has been shown by Gottlob et al. [12].

24



To the best of our knowledge, however, it is still an open problem whether
hypertrees strongly generalise the entire class of edge-defined acyclic guarded
covers.

In Section 7, we will introduce a new class of decompositions which we call
spread-cut decompositions. As with hypertree decompositions, spread-cut de-
compositions are not edge-defined and they rely on the existence of a particular
rooted tree. Spread-cut decompositions strongly generalise the biconnected-
component, cycle-cutset, cycle-hypercutset and hinge-tree decompositions de-
scribed in Section 5. They also generalise the class of edge-defined acyclic
guarded covers which have tree decompositions.

It has recently been shown that the hypertree width of any hypergraph is at
most three times the minimal possible width of any acyclic guarded cover [2].
It follows that hypertrees cannot be strongly generalised by any class of acyclic
guarded covers. Notwithstanding this result, we will show in Section 7 that, for
some families of hypergraphs, the minimal width of a spread-cut decomposi-
tion is smaller than the hypertree width by some constant factor. Recall that
solution runtime is exponential in the decomposition width; it follows that
there are families of hypergraphs for which we have reduced the exponent in
the runtime by a constant factor. Such an improvement allows the correspond-
ing instances to be solved significantly faster using spread-cut decompositions
than by using hypertree decompositions.

7 Spread cuts

Definition 7.1 A guarded block b of a hypergraph H has unbroken compo-

nents if each χ(b)-component of H meets (has non-empty intersection with)
at most one (∪λ(b))-component of H.

Example 7.2 Consider again the hypergraph HAG defined in Example 2.6
and illustrated in Figure 1.

Now consider the guarded block b = 〈λ, χ〉 with λ = {e2, e6} and χ = {3, 6, 7, 9, 10}.
It was shown in Example 4.9 that H has two χ-components, {4, 5} and {1, 2, 8},
and two (∪λ)-components, {4, 5} and {1, 8}. Since each χ-component meets
(has non-empty intersection with) exactly one (∪λ)-component, it follows that
b has unbroken components.

This special property of b relies on χ being “large enough”. If we instead set
χ = {3, 7, 10}, then it was shown in Example 4.9 that H has just one χ-
component, {1, 2, 4, 5, 6, 8, 9}, and this meets both (∪λ)-components, so in this
case the guarded block would not have unbroken components.

25



In general, the number of guarded blocks of a given hypergraph which have
unbroken components is not polynomially bounded. For example, any guarded
block 〈λ, χ〉, where λ contains all of the edges of the hypergraph 〈V, E〉, has no
(∪λ)-components, and so has unbroken components, whatever choice is made
for χ (and in this case there are 2|V | choices for χ).

Hence, if we are to use the algorithm β-decompose, defined in Section 4, to
discover decompositions into guarded blocks with unbroken components, then
it will necessary to impose further conditions on the guarded blocks that we
allow in these decompositions in order to ensure tractability. To describe these
additional conditions we will now define the notion of a label for the vertices
in a set of edges.

Definition 7.3 Let λ be any set of hyperedges of a hypergraph H = 〈V, E〉.

We define the label, Lλ(v), of any vertex v ∈ (∪λ) to be a pair, where the
first component is the set of (∪λ)-components which meet (have non-empty
intersection with) a hyperedge containing v, and the second component is the
the set of hyperedges of λ which meet v.

That is,

Lλ(v)[1] = {C | C is a (∪λ)-component, ∃e ∈ E, e ∩ C 6= ∅, v ∈ e},

Lλ(v)[2] = {e ∈ λ | v ∈ e}.

Example 7.4 Consider again the hypergraph HAG defined in Example 2.6 and
illustrated in Figure 1. If we set λ = {e2, e6}, then (∪λ) = {2, 3, 6, 7, 9, 10},
and we have:

Lλ(2)= 〈{{1, 8}}, {e2}〉 ;

Lλ(3)= 〈{{4, 5}}, {e2}〉 ;

Lλ(6)= 〈{{4, 5}}, {e6}〉 ;

Lλ(7)= 〈{{1, 8}}, {e6}〉 ;

Lλ(9)= 〈{{1, 8}, {4, 5}}, {e2}〉 ;

Lλ(10)= 〈{{1, 8}, {4, 5}}, {e6}〉 .

Definition 7.5 We say that a guarded block 〈λ, χ〉 respects labels if

∀v, w ∈ (∪λ), (v ∈ χ and Lλ(w) = Lλ(v)) =⇒ w ∈ χ.

Proposition 7.6 For any fixed k and any hypergraph H = 〈V, E〉, the set of
guarded blocks of H with width k which have unbroken components and respect
labels can be enumerated in polynomial time in the size of H.

PROOF. For any guarded block 〈λ, χ〉, define L(λ, χ) = {Lλ(v) | v ∈ (∪λ)−

26



χ}.

If 〈λ, χ〉 respects labels, then no vertex in χ has the same label as a vertex in
(∪λ) − χ. Hence, for any v ∈ (∪λ), v ∈ χ if and only if Lλ(v) 6∈ L(λ, χ).

Moreover, if 〈λ, χ〉 also has unbroken components, then L(λ, χ) only contains
labels whose first component contains at most one element. In fact, for each
edge e ∈ λ we can choose a (∪λ)-component, Ce, such that

L(λ, χ) ⊆ {〈∅, l2〉 | l2 ⊆ λ} ∪ {〈Ce, l2〉 | l2 ⊆ λ, e ∈ l2}

There are at most |V | choices for each Ce, so all possible choices for L(λ, ) can
be enumerated in O(|V |k2(2k+k2k)) time. Furthermore, each possible L(λ, ) has
size at most 2k+1.

Hence to enumerate all such guarded blocks of width k we can simply run
through all the subsets λ of E with at most k edges, and all possible choices
for L = L(λ, ), set χ = {v ∈ (∪λ) | Lλ(v) 6∈ L}, and output all those pairs
〈λ, χ〉 which have unbroken components. An algorithm to do this is shown in
Figure 3.

To analyse the time complexity of this algorithm we make the following ob-
servations:

• There are (|E| + 1)k choices for λ in the outer loop.
• Step 2 (calculating (∪λ)-components) can be completed in O(|V |3) time.
• Step 3 (labelling the vertices) can be completed in O(|E||V |2) time.
• There are O(|V |k2(2k+k2k)) choices for L in the inner loop.
• Step 5 (choosing vertices of χ) can be completed in O(2k|V |2) time.
• Step 6 (checking for unbroken components) can be completed in O(|V |3)

time.

Hence this algorithm can be completed in O((|E|+1)k|V |k+22(2k+k2k)(2k+|V |))
time, which is polynomial in the size of H (for fixed k).

Definition 7.7 A spread-cut decomposition of H is an acyclic guarded cover
Ξ with a decomposition tree, where every guarded block in Ξ has unbroken
components and respects labels 4 .

In the proof of Theorem 4.15, for any guarded block b we needed to consider
those guarded blocks b′ satisfying β(b, b′). In the case of spread-cuts the pred-
icate β is the direct product of a unary predicate with itself. Hence, in this
case, we can simply test each b′ against this unary predicate, which reduces

4 Note that this definition is different from the definition originally given in [5]. In
fact, the definition given in [5] may be too weak to ensure the tractable discovery
property.

27



Types:
H = 〈V, E〉 is a hypergraph; k is a positive integer.

GBenumerate(H, k)

1. For each λ ⊆ E with |λ| ≤ k:
2. Calculate the set of (∪λ)-components of H ;
3. Label each vertex v ∈ (∪λ);
4. For each suitable set of labels L:
5. Set χ := {v ∈ (∪λ) | Lλ(v) 6∈ L};
6. If 〈λ, χ〉 has unbroken components, then output 〈λ, χ〉.

Fig. 3. Definition of the procedure GBenumerate

the time complexity to O
(
√

|β||E||V |2
)

. Using this fact, and combining with
Proposition 7.6, we obtain the following corollaries.

Corollary 7.8 A naive bound on the time complexity of discovering a spread-
cut decomposition of width at most k is given by O

(

(2k + |V |)|E|k+1|V |k+42(2k+k2k)
)

.

Corollary 7.9 For any fixed k, the class of CSP instances whose structure
has a spread-cut decomposition of width at most k is a tractable structural
class.

Example 7.10 Consider again the hypergraph HAG defined in Example 2.6
and illustrated in Figure 1.

It is straightforward to verify that the following set of guarded blocks is a
spread-cut decomposition of HAG of width two, as illustrated in Figure 4:

{ 〈{e3, e5}, {3, 4, 5, 6, 9, 10}〉 ,

〈{e2, e6}, {3, 6, 7, 9, 10}〉 ,

〈{e3, e7}, {3, 7, 8, 9, 10}〉 ,

〈{e2, e8}, {1, 2, 3, 8, 9, 10}〉 }.

However, the minimal width of any hypertree decomposition of HAG is three 5 .

Proposition 7.11 Any edge-defined guarded block has unbroken components
and respects labels.

PROOF. Let p be an edge-defined guarded block of some hypergraph H .
Since χ = (∪λ), the set of χ-components is equal to the set of (∪λ)-components,

5 This is most easily shown by using the “Robbers and Marshals” characterisation
of hypertree width [13].

28



Fig. 4. The spread-cut defined in Example 7.10 for the hypergraph HAG defined in
Example 2.6

and each of these components is disjoint, so each χ-component meets exactly
one (∪λ)-component, and p has unbroken components.

Furthermore, there is no vertex in (∪λ) − χ, so p respects labels.

Corollary 7.12 Spread-cut decompositions generalise the biconnected compo-
nent, cycle-cutset, cycle-hypercutset and hinge-tree decompositions described
in Section 5. They also generalise the class of all edge-defined acyclic guarded
covers which have tree decompositions.

In fact, we have the stronger result that spread-cut decompositions strongly
generalise the biconnected component, cycle-cutset, cycle-hypercutset and hinge
decompositions described in Section 5. To establish this we simply refer to the
proofs of strong generalisation given by Gottlob et al [10] and observe that
every hypertree decomposition used to establish strong generalisation in that
paper is also a spread-cut decomposition.

Using the idea of a “switch graph” [1], we now give an example of a family of
hypergraphs Hn for n = 1, 2, . . . where each Hn has a spread-cut decomposition
of width 2n + 1, but hypertree width 3n.

Example 7.13 For each positive integer n we define a hypergraph Hn as fol-
lows.

29



The set of vertices of Hn is the union of five disjoint sets:

K = {ki | i = 1, . . . , 2n}

K ′ = {k′
i | i = 1, . . . , 2n}

S = {si | i = 1, . . . , n}

S ′ = {s′i | i = 1, . . . , n}

B = {bi,j | i, j = 1, . . . , 2n}

The set of hyperedges of Hn includes every binary edge from a vertex in K to
a vertex in K ∪ S and every binary edge from a vertex in K ′ to a vertex in
K ′ ∪ S ′:

{{ki, kj} | i 6= j, i, j = 1, . . . , 2n}

{{ki, sj} | i = 1, . . . , 2n, j = 1, . . . , n}

{{k′
i, k

′
j} | i 6= j, i, j = 1, . . . , 2n}

{{k′
i, s

′
j} | i = 1, . . . , 2n, j = 1, . . . , n}

It also includes every binary edge 6 linking a vertex in B to a vertex in K ∪
K ′ ∪ S ∪ S ′:

{{bi,j, kl} | i, j = 1, . . . , 2n l = 1, . . . , 2n}

{{bi,j, k
′
l} | i, j = 1, . . . , 2n l = 1, . . . , 2n}

{{bi,j, sl} | i, j = 1, . . . , 2n l = 1, . . . , n}

{{bi,j, s
′
l} | i, j = 1, . . . , 2n l = 1, . . . , n}

6 Note that all of the edges of Hn defined so far are binary, which means that we
have so far defined a graph Gn, which can be described in graph-theoretic termi-
nology as follows. Let K2n denote the complete graph on 2n vertices, Sn denote
the empty graph on n vertices, B4n2 denote the empty graph on 4n2 vertices, and
let G ⊲⊳ G′ denote the graph join of graphs G and G′, (that is, the graph con-
structed by joining each vertex in G to each vertex in G′). Then we have that
Gn = ((K2n ⊲⊳ Sn) ⊎ (K2n ⊲⊳ Sn)) ⊲⊳ B4n2 .

30



BS

K

S′

K′
e
1

f
1

Fig. 5. The hypergraph H1 defined in Example 7.13. (Edges totally contained in
other edges are not shown.)

The hypergraph Hn also contains the following (non-binary) hyperedges:

{ej = {bi,j, kj, kn+j | i = 1, 2, . . . , 2n} | j = 1, 2, . . . , n}

{e′i = {bi,j , k
′
i, k

′
n+i | j = 1, 2, . . . , 2n} | i = 1, 2, . . . , n}

{fi = {bi+n,j, si | j = 1, 2, . . . , 2n} | i = 1, 2, . . . , n}

{f ′
j = {bi,j+n, s

′
j | i = 1, 2, . . . , 2n} | j = 1, 2, . . . , n}

The hypergraph H1 is illustrated in Figure 5.

Now consider the following set of guarded blocks of Hn, which we will denote
Ξn:

{〈{e1, . . . , en, f
′
1, . . . , f

′
n, {ki, sj}}, B ∪ K ∪ {sj}〉 | i = 1, . . . , 2n, j = 1, . . . , n}

∪

{
〈

{e′1, . . . , e
′
n, f1, . . . , fn, {k

′
i, s

′
j}}, B ∪ K ′ ∪ {s′j}

〉

| i = 1, . . . , 2n, j = 1, . . . , n}

The set Ξ1 is illustrated in Figure 6

The width of Ξn is clearly 2n+1, since each guard contains 2n+1 hyperedges.
Furthermore, it is straightforward to verify that Ξn is an acyclic guarded cover
for Hn which has a decomposition tree.

Now consider the χ-components and (∪λ)-components of the guarded blocks
〈λ, χ〉 ∈ Ξ. By symmetry, we only need to do this for one guarded block, for

31



Fig. 6. The spread-cut decomposition Ξ1 defined in Example 7.13 for the hypergraph
H1

example (with the choice i = 1 and j = 1):

〈λ, χ〉 = 〈{e1, . . . , en, f
′
1, . . . , f

′
n, {k1, s1}}, B ∪ K ∪ {s1}〉 .

With this choice of λ and χ, the (∪λ)-components of Hn are {sj}, j = 2, . . . , n
and K ′. The χ-components are {sj}, j = 2, . . . , n and K ′ ∪ S ′. Hence each
χ-component meets exactly one (∪λ)-component, so this guarded block has
unbroken components.

Now consider the labels of the elements of (∪λ):

Lλ(s1)= 〈∅, {ei, {k1, s1}}〉 ;

Lλ(k1)= 〈{{sj} | j = 2, . . . , n}, {ei, {k1, s1}}〉 ;

∀v ∈ ei ∩ K − {k1}, Lλ(v)= 〈{{sj} | j = 2, . . . , n}, {ei}〉

∀v ∈ ei ∩ B, Lλ(v)= 〈{{sj} | j = 2, . . . , n} ∪ {K ′}, {ei}〉 ;

∀v ∈ f ′
i ∩ B, Lλ(v)= 〈{{sj} | j = 2, . . . , n} ∪ {K ′}, {f ′

i}〉 ;

∀v ∈ f ′
i ∩ S ′, Lλ(v)= 〈{K ′}, {f ′

i}〉 .

For this example guarded block the vertices of (∪λ)−χ are precisely the vertices
of S ′. We have shown that this guarded block respects labels.

32



Hence (by symmetry amongst the guarded blocks) we have shown that Ξn is
a spread-cut decomposition of Hn of width 2n + 1. However, we will show in
Proposition 7.14 that the hypertree width of Hn is at least 3n.

Proposition 7.14 The hypertree width of the hypergraph Hn defined in Ex-
ample 7.13 is exactly 3n.

PROOF. We first define the following subsets of the edges of Hn:

F
def
= {e1, . . . , en, f

′
1, . . . , f

′
n}

F ′ def
= {e′1, . . . , e

′
n, f1, . . . , fn}.

The two edge-defined guarded blocks whose edge sets are F ∪ {{k1, sj} | j =
1, . . . , n} and F ′∪{{k′

1, s
′
j} | j = 1, . . . , n} form an acyclic guarded cover of Hn

of width 3n. Since any edge-defined acyclic guarded cover has an associated
hypertree, we have shown that the hypertree-width of Hn is at most 3n.

We will now show that there are no width 3n− 1 hypertree decompositions of
Hn.

It has been shown (Proposition 18, Page 262 of Gottlob et al. [10]) that a
hypergraph H has a hypertree decomposition of width k if and only if it has a
normal-form hypertree decomposition of width k. The definition of a normal-
form hypertree decomposition, given in Definition 17, Page 262 of Gottlob et
al. [10], may be reformulated as follows: a hypertree decomposition 〈Ξ, T 〉 is
in normal form if T is a decomposition tree whose root is edge-defined, and
whenever p is the parent of s in T , χ(s) = (∪λ(s)) ∩ (χ(p) ∪ χ(brp(s))).

Let T be a decomposition tree of any width 3n−1 acyclic cover Ξ of Hn. It will
be enough to prove that 〈Ξ, T 〉 is not a normal-form hypertree decomposition
of Hn. Hence in the rest of this proof we shall assume, for contradiction, that
〈Ξ, T 〉 is a normal-form hypertree decomposition of Hn.

We first make two straightforward observations about the guarded blocks in
Ξ:

• If p ∈ Ξ and B 6⊆ χ(p) then p is a leaf of T .
This is because every vertex of Hn is directly connected to every vertex

in B − χ(p), so Hn has at most one χ(p)-component, and hence T has at
most one branch out of p.

• If p ∈ Ξ and B ⊆ χ(p), then either F ⊆ λ(p) or F ′ ⊆ λ(p).
This is because if F 6⊆ λ(p), then there are at least 2n vertices of B not

covered by edges of F . Each hyperedge of Hn not in F meets at most one
of these vertices, so we must have at least 2n hyperedges in λ(p) − F , so

33



|λ(p) ∩ F | ≤ n − 1. By symmetry, we also have that if F ′ 6⊆ λ(p), then
|λ(p) ∩ F ′| ≤ n − 1. It follows that there are at least (n + 1)2 vertices of B
not covered by λ(p) ∩ (F ∪ F ′). Since (n + 1)2 ≥ 3n for any n ≥ 1, these
vertices cannot be covered by the remaining edges of λ(p), so B 6⊆ χ(p).

Assume first that there is no guarded block of Ξ whose block includes B. In
this case, each guarded block of Ξ is a leaf of T , by the observation above,
so |Ξ| ≤ 2. If we choose any p ∈ Ξ, then, by assumption, there is some
x ∈ B − χ(p). All of the binary edges of Hn containing x must be covered
in the only remaining guarded block, p′, of Ξ, so χ(p′) ⊇ K ∪ K ′ ∪ S ∪ S ′.
However, |K ∪K ′ ∪S ∪S ′| = 6n, no hyperedge of Hn contains more than two
vertices of K ∪ K ′ ∪ S ∪ S ′, and |λ(p)| ≤ 3n − 1, so it is impossible for any
such Ξ to cover all edges.

Hence we may assume that some guarded block of Ξ includes all the vertices
of B in its block. The nodes of Ξ with this property form a connected subtree
of T , so we can choose a unique p ∈ Ξ such that B ⊆ χ(p) and p has no
ancestor with this property. By the observation above, and by symmetry, we
can also assume without loss of generality that F ⊆ λ(p).

We will now show that p is edge-defined. If p is the root of T then it is edge-
defined by the definition of normal form. Otherwise the parent s of p is a leaf
(by the choice of p and the fact that all non-leaves must include B in their
block). So s must be the root of T , and p must be its unique descendant.
In this case χ(p) = (∪λ(p)) ∩ (χ(s) ∪ χ(brs(p))) because 〈Ξ, T 〉 is in normal
form. Since χ(s)∪ χ(brs(p)) includes all vertices of Hn, we again see that p is
edge-defined.

The set λ(p)−F contains at most n−1 hyperedges, and so cannot cover all of
K ′. Let y ∈ K ′ − χ(p). None of the edges of Hn in the set {y}× (B ∪K ′ ∪S ′)
are covered by p. Furthermore, these edges are χ(p)-connected in Hn, and T
is a join tree of an acyclic cover, so all of these edges are covered by guarded
blocks in a single branch out of p. Let s be the neighbour of p in this branch.

If B 6⊆ χ(s) then, as before, s is a leaf and this branch cannot cover all these
edges, so T is not a cover. Hence we may assume that B ⊆ χ(s), which implies
that either F ⊆ λ(s) or F ′ ⊆ λ(s), by the observation above.

Furthermore, since T is a join tree, there cannot be an edge from χ(brp(s))−
χ(s) to χ(p) − χ(s), so we know that K ′ ⊆ χ(s), and hence F ′ ⊆ χ(s).

The set λ(s)− F ′ contains at most n − 1 hyperedges, and so cannot cover all
of S ′. Hence χ(s) cannot cover all hyperedges in {y} × S ′. Any such edge not
covered joins χ(brp(s))−χ(s) to χ(p)−χ(s), and so cannot be covered below
s because T is a join-tree.

34



Hence the guarded blocks of Ξ cannot cover all edges of Hn, which gives the
required contradiction.

8 Conclusion and discussion

We have introduced the general notion of a guarded decomposition and shown
how it can be used to describe many known tractable structural subproblems
of the CSP. We have described a generic algorithm to calculate guarded de-
compositions and have given simple sufficient conditions on a class of guarded
decompositions for the algorithm to be effective.

Using these results we were then able to define a new form of decomposi-
tion, the spread-cut decomposition, which sits in much the same place in the
generalisation hierarchy as hypertrees. We have shown that spread-cut decom-
positions can be used to define tractable structural classes of the CSP and that
for some classes of hypergraphs they allow us to obtain decompositions with
a smaller width than any hypertree decomposition.

A number of open questions remain:

• Is there a family of hypergraphs for which the hypertree width is smaller
than the width of the best spread-cut decomposition by some constant fac-
tor?

• Do hypertree decompositions strongly generalise the class of all edge-defined
acyclic covers?

• Do spread-cut decompositions generalise the class of all edge-defined de-
compositions?

• Can the conditions on spread-cut decompositions be relaxed? In particular,
does the existence of any acyclic guarded cover where every guarded block
has unbroken components guarantee the existence of a spread-cut decom-
position with the same width?

It is somewhat surprising that we can achieve nearly the same generalisation
results as hypertrees with a decomposition that only allows polynomially many
distinct guarded blocks for any hypergraph. More surprising still is that we
have shown that these spread-cut decompositions can have arbitrarily smaller
width than the best edge-defined decomposition. We believe that this is still
an open question for hypertree decompositions.

35



References

[1] I. Adler, Marshals, monotone marshals, and hypertree-width, Journal of Graph
Theory 47 (4) (2004) 275–296.

[2] I. Adler, G. Gottlob, M. Grohe, Hypertree-width and related hypergraph
invariants, in: Proceedings of the 3rd European Conference on Combinatorics,
Graph Theory and Applications (EUROCOMB’05), vol. AE of DMTCS
Proceedings Series, 2005.

[3] C. Beeri, R. Fagin, D. Maier, M. Yannakakis, On the desirability of acyclic
database schemes, Journal of the ACM 30 (1983) 479–513.

[4] C. Chekuri, A. Rajaraman, Conjunctive query containment revisited,
Theoretical Computer Science 239 (2) (2000) 211–229.

[5] D. Cohen, M. Gyssens, P. Jeavons, A unified theory of structural tractability
for constraint satisfaction and spread cut decomposition, in: Proceeedings of
IJCAI’05, 2005.

[6] R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.

[7] R. Dechter, J. Pearl, Network-based heuristics for constraint satisfaction
problems, Artificial Intelligence 34 (1) (1988) 1–38.

[8] R. Dechter, J. Pearl, Tree clustering for constraint networks, Artificial
Intelligence 38 (1989) 353–366.

[9] E. Freuder, A sufficient condition for backtrack-bounded search, Journal of the
ACM 32 (1985) 755–761.

[10] G. Gottlob, N. Leone, F. Scarcello, A comparison of structural CSP
decomposition methods, Artificial Intelligence 124 (2000) 243–282.

[11] G. Gottlob, N. Leone, F. Scarcello, Hypertree decompositions: A survey, in:
Proceedings 26th International Symposium on Mathematical Foundations of
Computer Science, MFCS’01, vol. 2136 of Lecture Notes in Computer Science,
Springer-Verlag, 2001.

[12] G. Gottlob, N. Leone, F. Scarcello, Hypertree decomposition and tractable
queries, Journal of Computer and System Sciences 64 (3) (2002) 579–627.

[13] G. Gottlob, N. Leone, F. Scarcello, Robbers, marshals, and guards: game
theoretic and logical characterizations of hypertree width, Journal of Computer
and System Sciences 66 (2003) 775–808.

[14] M. Gyssens, P. Jeavons, D. Cohen, Decomposing constraint satisfaction
problems using database techniques, Artificial Intelligence 66 (1) (1994) 57–
89.

[15] P. Kolaitis, M. Vardi, Conjunctive-query containment and constraint
satisfaction, Journal of Computer and System Sciences 61 (2000) 302–332.

36



[16] A. Mackworth, Consistency in networks of relations, Artificial Intelligence 8
(1977) 99–118.

[17] K. Marriott, P. Stuckey, Programming with Constraints, MIT Press,
Cambridge, Massachusetts, 1998.

[18] F. Rossi, P. van Beek, T. Walsh (eds.), The Handbook of Constraint
Programming, Elsevier, 2006.

37


