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CLASSIFYING THE COMPLEXITY OF CONSTRAINTS
USING FINITE ALGEBRAS∗

ANDREI BULATOV† , PETER JEAVONS‡ , AND ANDREI KROKHIN§

Abstract. Many natural combinatorial problems can be expressed as constraint satisfaction
problems. This class of problems is known to be NP-complete in general, but certain restrictions
on the form of the constraints can ensure tractability. Here we show that any set of relations used
to specify the allowed forms of constraints can be associated with a finite universal algebra and we
explore how the computational complexity of the corresponding constraint satisfaction problem is
connected to the properties of this algebra. Hence, we completely translate the problem of classifying
the complexity of restricted constraint satisfaction problems into the language of universal algebra.

We introduce a notion of “tractable algebra,” and investigate how the tractability of an algebra
relates to the tractability of the smaller algebras which may be derived from it, including its subal-
gebras and homomorphic images. This allows us to reduce significantly the types of algebras which
need to be classified. Using our results we also show that if the decision problem associated with a
given collection of constraint types can be solved efficiently, then so can the corresponding search
problem. We then classify all finite strictly simple surjective algebras with respect to tractability, ob-
taining a dichotomy theorem which generalizes Schaefer’s dichotomy for the generalized satisfiability
problem. Finally, we suggest a possible general algebraic criterion for distinguishing the tractable
and intractable cases of the constraint satisfaction problem.
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1. Introduction. In a constraint satisfaction problem the aim is to find an as-
signment of values to a given set of variables, subject to constraints on the values
which can be assigned simultaneously to certain specified subsets of the variables
[39, 43]. One common example of such a problem is the standard propositional sat-
isfiability problem [21], where the variables must be assigned Boolean values and the
constraints are specified by clauses.

The mathematical framework used to describe constraint satisfaction problems
has strong links with many other areas of computer science and mathematics. For
example, links with relational database theory [22, 23, 34], with some notions of logic
and group theory [1, 18, 20], and with universal algebra [31] have been investigated.
There is an early survey of these results in [46].

Throughout the paper we assume that P �= NP, and we call a problem tractable
only if it belongs to P. The constraint satisfaction problem is known to be NP-hard
in general [39, 43]. However, certain restrictions on the form of the constraints have
been shown to ensure tractability [8, 10, 30, 32, 33, 56].

One fundamental open research problem in this area is to characterize exactly the
forms of constraint relations that give rise to tractable problem classes. This prob-
lem is important from a theoretical perspective, as it helps to clarify the boundary
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between tractability and intractability in a wide range of combinatorial search prob-
lems. It is also important from a practical perspective, as it allows the development
of constraint programming languages that exploit the existence of diverse families of
tractable constraints to provide more efficient solution techniques [38, 50].

The problem of characterizing the tractable cases was completely solved for the
important special case of Boolean constraint satisfaction problems by Schaefer in
1978 [52]. Schaefer established that for Boolean constraint satisfaction problems
(which he called “generalized satisfiability problems”), there are exactly six differ-
ent families of tractable constraints, and any problem involving constraints not con-
tained in one of these six families is NP-complete. This important result is known as
Schaefer’s dichotomy theorem. Similar dichotomy results have also been obtained for
other combinatorial problems over a Boolean domain that are related to the Boolean
constraint satisfaction problem [11].

Schaefer [52] raised the question of how the analysis of complexity could be ex-
tended to larger sets of possible values (that is, sets with more than two elements).
Some progress has been made with this question recently, and a number of tractable
families of constraints have been identified, over both finite and infinite sets. In partic-
ular, Feder and Vardi [20] used techniques from logic programming and group theory
to identify three broad families of tractable constraints, which include all of Schae-
fer’s six classes. A series of papers by Jeavons and coauthors has shown that any
individual tractable constraint class over a finite domain can be characterized using
algebraic properties of relations [28, 29, 30, 32]. This approach was used by Bulatov
to obtain a complete classification for the complexity of constraints on a three-element
set [3]. Finally, we note that for temporal and spatial reasoning problems involving
constraints over infinite sets of values, several tractable constraint classes have been
identified [17, 44, 51], and a dichotomy theorem has been obtained for qualitative tem-
poral reasoning problems over intervals expressed using Allen’s interval algebra [35].
It has also been shown recently that the complexity of certain forms of constraint over
infinite sets of values can be analyzed using algebraic properties [2].

However, there is still no complete classification for the complexity of constraints
over finite sets with more than three elements, and no dichotomy has so far been
established for arbitrary finite sets.

In our opinion, the main difficulty in addressing this question is the lack of a
powerful and convenient language in which the properties of constraint satisfaction
problems responsible for complexity can be expressed. Schaefer’s dichotomy theorem
is stated in terms of the syntactic properties of propositional forms, which is certainly
not an appropriate language for non-Boolean constraints. A number of different at-
tempts have been made to find such an appropriate language [13, 14, 20, 28, 30]; we
believe that the most fruitful of these is the one that uses the algebraic properties of
constraints [28, 30].

The first step in the algebraic approach exploits the well-known idea that, given an
initial set of constraint relations, there will often be further relations that can be added
to the set without changing the complexity of the associated problem class. In fact,
it has been shown that it is possible to add all the relations that can be derived from
the initial relations using certain simple rules. The larger sets of relations obtained
using these rules are known as relational clones [16, 48]. Hence the first step in the
analysis is to note that it is sufficient to analyze the complexity only for those sets of
relations which are relational clones.

The next step in the algebraic approach is to note that relational clones can be
characterized by their polymorphisms, which are algebraic operations on the same
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Structural properties of a finite universal algebra

�
Properties of polymorphisms

�
Properties of the corresponding relational clone

�
Complexity of a restricted constraint satisfaction problem

Fig. 1.1. Translating questions about the complexity of different forms of constraints into
questions about the properties of algebras.

underlying set [27, 30]. As well as providing a convenient and concise method for
describing large families of relations, the polymorphisms also reflect certain aspects
of the structure of the relations that can be used for designing efficient algorithms.
This link between relational clones and polymorphisms has already played a key role
in identifying many tractable constraint classes and developing appropriate efficient
solution algorithms for them [3, 4, 6, 7, 12, 28].

However, as we shall see later on in this paper, working directly with the polymor-
phisms of a set of relations is sometimes not the most convenient and powerful way
to investigate the complexity of the corresponding constraint satisfaction problems.
In this paper we take the algebraic approach one step further by linking constraint
satisfaction problems with finite universal algebras (see Figure 1.1). We show that the
language of finite algebras provides a number of very powerful new tools for analyzing
the complexity of constraint problems. In particular, using this language allows us
to suggest a simple criterion for distinguishing tractable and intractable cases. This
criterion makes extensive use of notions related to universal algebras, and is difficult
to formulate concisely without using this language. Another advantage of this new
translation is that it allows us to make use of the deep structural results developed
for classifying the structure of finite algebras [25, 42, 53].

As the first fruit of using this machinery we exhibit a new dichotomy theorem for
a class of algebras which properly includes all the two-element algebras, and hence
provide a true generalization of Schaefer’s dichotomy theorem.

The paper is organized as follows. In section 2 we define the class of constraint
satisfaction problems we are considering, where the constraints are chosen from a
specified set of relations. Then we define the way in which these sets of relations can
be classified according to the complexity of the corresponding constraint satisfaction
problems. We show how this question can be translated into an equivalent question
about relational clones, and hence further translated into a question about classifying
sets of operations. In section 3 we make the new step from sets of operations to finite
algebras, which is the real focus of this paper. Using this final translation we introduce
the notion of a tractable algebra. We are then able to restate Schaefer’s dichotomy
theorem in a much shorter and possibly clearer form, as a classification of two-element
algebras with respect to tractability. In section 4 we prove that, in this context, it
suffices to consider certain restricted classes of algebras. As a by-product we show
that, if the decision problem for a set of constraint types can be solved efficiently, then
so can the corresponding search problem. In section 5 we study how the tractability of
a finite algebra relates to the tractability of its smaller derived algebras. In section 6
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we use the results obtained to classify all strictly simple surjective algebras. Finally,
in section 7, we use the new algebraic terminology to state a conjecture about the
general structure of tractable algebras, and provide examples to illustrate and support
this conjecture.

2. Definitions and earlier results.

2.1. Constraint satisfaction problems. The central notion in the study of
constraints and constraint satisfaction problems is the notion of a relation.

Definition 2.1. For any set A, and any natural number n, the set of all n-tuples
of elements of A is denoted by An. Any subset of An is called an n-ary relation over
A. The set of all finitary relations over A is denoted by RA. A constraint language
over A is a subset of RA.

The “constraint satisfaction problem” was introduced by Montanari [43] in 1974
and has been widely studied [15, 20, 36, 39, 40, 41]. In this paper we study a parame-
terized version of the standard constraint satisfaction problem, in which the parameter
is a constraint language specifying the possible forms of the constraints.

Definition 2.2. For any set A and any constraint language Γ over A, the
constraint satisfaction problem CSP(Γ) is the combinatorial decision problem with

Instance: A triple (V,A, C), where
• V is a set of variables;
• C is a set of constraints, {C1, . . . , Cq}.

Each constraint Ci ∈ C is a pair 〈si, ρi〉, where
– si is a tuple of variables of length mi, called the constraint scope;
– ρi ∈ Γ is an mi-ary relation over A, called the constraint relation.

Question: Does there exist a solution, that is, a function ϕ, from V to A,
such that, for each constraint 〈si, ρi〉 ∈ C, with si = (xi1 , . . . , xim), the tuple
(ϕ(xi1), . . . , ϕ(xim)) belongs to ρi?

In this paper we shall consider only cases where the set A, specifying the possible
values for the variables, is finite. In such cases the size of a problem instance can be
taken to be the length of a string containing all constraint scopes and all tuples of all
constraint relations from the instance.

Example 2.3. An instance of the standard propositional 3-Satisfiability prob-
lem [21, 45] is specified by giving a formula in propositional logic consisting of a con-
junction of clauses, each of which contains at most three literals, and asking whether
there are values for the variables that make the formula true.

Suppose that Φ = F1 ∧ · · · ∧ Fn is such a formula, where the Fi are clauses. The
satisfiability question for Φ can be expressed as the constraint satisfaction problem
instance (V, {0, 1}, C), where V is the set of all variables appearing in the clauses Fi,
the values 0 and 1 represent the logical values False and True, and C is the set
of constraints {〈s1, ρ1〉, . . . , 〈sn, ρn〉}, where each constraint 〈sk, ρk〉 is constructed as
follows:

• sk = (xk
1 , x

k
2 , x

k
3), where xk

1 , x
k
2 , x

k
3 are the variables appearing in clause Fk;

• ρk = {0, 1}3 \ {(a1, a2, a3)}, where ai = 1 if xk
i is negated in Fk and ai = 0

otherwise (i.e., ρk contains exactly those 3-tuples that make Fk true).

The solutions of this instance are exactly the assignments which make the formula Φ
true.

If we define Γ
3-Sat

to be the constraint language over {0, 1} consisting of all rela-
tions expressible by 3-clauses, then any instance of 3-Satisfiability can be expressed
as an instance of CSP(Γ

3-Sat
) in this way, and vice versa.
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Example 2.4. An instance of Graph Unreachability consists of a graph G =
(V,E) and a pair of vertices, v, w ∈ V . The question is whether there is no path in G
from v to w.

This can be expressed as the constraint satisfaction problem instance defined by
(V, {0, 1}, C), where

C = {〈e, {={0,1}}〉 | e ∈ E} ∪ {〈(v), {(0)}〉, 〈(w), {(1)}〉},

where ={0,1} denotes the equality relation over the set {0, 1}.
If we define Γgu to be the constraint language over {0, 1} containing just the

relations ={0,1}, {(0)} and {(1)}, then any instance of Graph Unreachability can
be expressed as an instance of CSP(Γgu) in this way.

Example 2.5. An instance of Graph q-Colorability consists of a graph G. The
question is whether the vertices of G can be labelled with q colors so that adjacent
vertices are assigned different colors [21, 45].

This problem corresponds to the problem CSP({�=A}), where A is a q-element
set (of colors) and �=A is the disequality relation over A, defined by

�=A = {(a, b) ∈ A2 | a �= b}.

Example 2.6. Given a fixed graph H, an instance of H-Colorability consists
of a graph G. The question is whether there is a mapping from the vertices of G to
the vertices of H, such that adjacent vertices in G are mapped to adjacent vertices in
H [24]. (In the special case when H is the complete graph on q vertices, Kq, the H-

Colorability problem reduces to the Graph q-Colorability problem described
in Example 2.5.)

This problem corresponds to the problem CSP({EH}), where EH is the edge
relation of H, that is, the binary relation consisting of all adjacent pairs of vertices
from H.

Many other examples of standard combinatorial problems expressed as constraint
satisfaction problems can be found in [31]. For alternative formulations of the con-
straint satisfaction problem, such as the problem of deciding whether there is a ho-
momorphism from one relational structure to another, see [20, 31, 34].

2.2. Tractable constraint languages. Throughout this paper we shall say
that a problem is tractable if there exists a deterministic polynomial-time algorithm
solving all instances of that problem. We can use Definition 2.2 to classify constraint
languages according to the complexity of the corresponding constraint satisfaction
problem.

In order to be able to classify infinite, as well as finite, constraint languages, we
define the notion of a tractable constraint language in a way that depends on finite
subsets only.

Definition 2.7. For any set A, a finite constraint language Γ ⊆ RA is said to
be tractable if CSP(Γ) is tractable.

An infinite constraint language Γ ⊆ RA is said to be tractable if every finite
subset of Γ is tractable.

A constraint language Γ ⊆ RA is said to be NP-complete if CSP(Δ) is NP-
complete for some finite Δ ⊆ Γ.

Example 2.8. It is well known (see [21, 45]) that the Graph q-Colorability

problem described in Example 2.5 is tractable when q ≤ 2 and is NP-complete
otherwise. Hence, it follows from Example 2.5 that the finite constraint language
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containing just the single relation �=A is tractable when |A| ≤ 2 and is NP-complete
otherwise.

Example 2.9. The complexity of the H-Colorability problem for undirected
graphs H was completely characterized in [24], where it was shown that if an undi-
rected graph H is bipartite or has a loop, then the corresponding H-Colorability

problem is tractable; otherwise it is NP-complete.

Using this result, it follows from Example 2.6 that a constraint language Γ = {E},
consisting of a single symmetric binary relation E, is tractable if E is the edge relation
of a bipartite graph, or a graph with a loop. Otherwise Γ is NP-complete.

A finite or infinite constraint language Γ with the property that CSP(Γ) is
tractable will be called globally tractable. Clearly any constraint language that is
globally tractable is tractable in the sense of Definition 2.7, but it is not immediately
clear whether or not the converse holds for all infinite languages. This is because for
a certain infinite constraint language Γ, it may be the case that for each finite subset
Δ ⊆ Γ there exists a polynomial-time algorithm Alg(Δ) solving CSP(Δ), and yet
there is no uniform polynomial-time algorithm solving CSP(Γ). However, we know
of no examples where this is the case and we conjecture that any tractable constraint
language is also globally tractable.

Example 2.10. Let A be a finite field, and let Γ
Lin

be the constraint language
consisting of all relations over A which consist of all solutions to some system of linear
equations over A. Any relation from Γ

Lin
, and therefore any instance of CSP(Γ

Lin
),

can be represented by a system of linear equations over A. Indeed, if ρ ∈ Γ
Lin

, then
it is the solution space of the system of linear equations obtained by the following
procedure:

Step 1 Pick an arbitrary element a0 = (a01, . . . , a0n) ∈ ρ, and set

ρ0 = {b− a0 | b ∈ ρ}.
Step 2 For every member (a1, . . . , an) of ρ0, form the equation

a1x1 + · · · + anxn = 0, and find a basis, ρ⊥, of the solution space of
the resulting system of equations.

Step 3 For each (b1, . . . , bn) ∈ ρ⊥, output the equation
b1x1 + · · · + bnxn = b0, where b0 = b1a01 + · · · + bna0n.

Since any instance of CSP(Γ
Lin

) may be solved in polynomial time (e.g., by Gaussian
elimination), it follows that Γ

Lin
is a (globally) tractable constraint language.

A constraint language over the set A = {0, 1} is known as a Boolean constraint
language. The complexity of CSP(Γ) has been investigated [52] for all Boolean con-
straint languages Γ, and the following complete classification has been obtained.

Theorem 2.11 (see Schaefer [52]). A Boolean constraint language, Γ, is (glob-
ally) tractable if (at least) one of the following six conditions holds:

1. Every relation in Γ contains a tuple in which all entries are 0;
2. Every relation in Γ contains a tuple in which all entries are 1;
3. Every relation in Γ is definable by a formula in conjunctive normal form in

which each conjunct has at most one negated variable;
4. Every relation in Γ is definable by a formula in conjunctive normal form in

which each conjunct has at most one unnegated variable;
5. Every relation in Γ is definable by a formula in conjunctive normal form in

which each conjunct contains at most two literals;
6. Every relation in Γ is the set of solutions of a system of linear equations over

the finite field GF(2).

Otherwise it is NP-complete.
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In particular, Theorem 2.11 establishes that any Boolean constraint language can
be classified as either tractable or NP-complete, and hence this result is known as
Schaefer’s dichotomy theorem.

A similar dichotomy theorem has been obtained for constraint languages over any
set with three elements [3], using some of the algebraic methods described below. The
classification problem for languages over larger finite sets is still open [20], and is the
central topic of this paper.

Problem 2.12 (“tractable relations problem”). Characterize all tractable con-
straint languages over finite sets.

Example 2.13. One of the first non-Boolean tractable constraint languages to
be characterized was the set Γ

ZOA
of “0/1/all” relations described in [10]. The set

Γ
ZOA

contains all relations over some fixed set A of the following forms:

(i) all unary relations;
(ii) all binary relations of the form A1 ×A2 for subsets A1, A2 of A;
(iii) all binary relations of the form {(a, π(a)) | a ∈ A1} for some subset A1 of A

and some permutation π of A;
(iv) All binary relations of the form {(a, b) ∈ A1 ×A2 | a = a1 ∨ b = a2} for some

subsets A1, A2 of A and some elements a1 ∈ A1, a2 ∈ A2.

It was shown in [10] that CSP(Γ
ZOA

) is tractable, and that for any binary relation
ρ over A which is not in Γ

ZOA
, CSP(Γ

ZOA
∪ {ρ}) is NP-complete.

2.3. From arbitrary constraint languages to relational clones. To de-
scribe the tractable Boolean constraint languages, Schaefer used syntactic properties
of propositional formulas representing Boolean relations. In the non-Boolean case this
method can no longer be used. We therefore need an adequate language in which it
is possible to express the properties of constraint languages which are responsible for
the complexity of the corresponding constraint satisfaction problems.

A useful first step in tackling this problem is to consider what additional rela-
tions can be added to a constraint language without changing the complexity of the
corresponding problem class. This technique has been widely used in the analysis of
Boolean constraint satisfaction problems [11, 52], and in the analysis of temporal and
spatial constraints [17, 44, 51]; it was introduced for the study of constraints over
arbitrary finite sets in [27].

To use this technique we first define a method for deriving new relations from
given ones. The method we use involves defining the new relations using certain
kinds of logical formulas involving the given relations. To define such formulas we
use the standard correspondence between relations and predicates: a relation consists
of all tuples of values for which the corresponding predicate holds. (We will use the
same symbol for a predicate and its corresponding relation, since the meaning will
always be clear from the context.)

Definition 2.14 (see [48]). A constraint language Γ ⊆ RA is called a relational
clone if it contains every relation (predicate) expressible by a first-order formula in-
volving

(i) relations (predicates) from Γ ∪ {=A} (where =A is the equality relation on
the set A);

(ii) conjunction; and
(iii) existential quantification.

First-order formulas involving only conjunction and existential quantification are
often called primitive positive (pp) formulas.
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For any constraint language Γ, there is a unique smallest relational clone contain-
ing Γ, which is denoted 〈Γ〉 and is called the relational clone generated by Γ. The set
〈Γ〉 consists of all relations definable by pp-formulas over the relations in Γ together
with the equality relation.

Example 2.15. Consider the Boolean constraint language Γ = {R1, R2}, where
R1 = {(0, 1), (1, 0), (1, 1)} and R2 = {(0, 0), (0, 1), (1, 0)}.

It is straightforward to check that every binary Boolean relation can be ex-
pressed by a pp-formula involving R1 and R2. For example, the relation R3 =
{(0, 0), (1, 0), (1, 1)} can be expressed by the formula R3 = ∃yR1(x, y) ∧ R2(y, z).
Hence the relational clone generated by Γ, 〈Γ〉, includes all 16 binary Boolean rela-
tions.

In fact it can be shown that 〈Γ〉 consists of precisely those Boolean relations (of
any arity) that can be expressed as a conjunction of unary or binary Boolean relations
[49, 53].

There are a number of different but equivalent definitions of relational clones
[16, 48], and a different definition was used in [27] to establish the following theorem.
We give a proof here that uses Definition 2.14.

Theorem 2.16 (see [27]). For any set of relations Γ and any finite set Δ ⊆ 〈Γ〉,
there is a polynomial time reduction from CSP(Δ) to CSP(Γ).

Proof. Let Δ = {�1, . . . , �k} be a finite set of relations over the finite set A, where
each �i is expressible by a pp-formula involving relations from Γ and the equality
relation, =A. Note that we may fix these representations.

Any instance (V ;A; C) ∈ CSP(Δ) can be transformed as follows. For every
constraint 〈s, ρ〉 ∈ C, where s = (v1, . . . , vl) and ρ is representable by the pp-formula

ρ(v1, . . . , vl) = ∃u1, . . . , um (ρ1(w
1
1, . . . , w

1
l1) ∧ · · · ∧ ρn(wn

1 , . . . , w
n
ln)),

where w1
1, . . . , w

1
l1
, . . . , wn

1 , . . . , w
n
ln

∈ {v1, . . . , vl, u1, . . . , um},
(i) add the auxiliary variables u1, . . . , um to V (renaming if necessary so that

none of them occurs before);
(ii) add the constraints 〈(w1

1, . . . , w
1
l1

), ρ1〉, . . . , 〈(wn
1 , . . . , w

n
ln

), ρn〉 to C;
(iii) remove 〈s, ρ〉 from C.

It can easily be checked that the problem instance obtained by this procedure is
equivalent to (V ;A; C) and belongs to CSP(Γ ∪ {=A}). Moreover, since all the rep-
resentations of relations from Δ are fixed, this transformation can be carried out in
linear time in the size of the instance. Finally, all constraints of the form 〈(v1, v2),=A〉
can be eliminated by replacing all occurrences of the variable v1 with v2. This trans-
formation can also be carried out in polynomial time.

Corollary 2.17. A set of relations Γ is tractable if and only if the relational
clone 〈Γ〉 is tractable.

Similarly, Γ is NP-complete if and only if 〈Γ〉 is NP-complete.

This result reduces the problem of characterizing tractable constraint languages
to the problem of characterizing tractable relational clones.

Example 2.18. Reconsider the tractable constraint language of 0/1/all relations,
Γ
ZOA

, defined in Example 2.13.

Note that for any fixed finite set A, the set of 0/1/all relations over A contains
only unary and binary relations and is therefore finite. However, it follows from
Corollary 2.17 that the relational clone 〈Γ

ZOA
〉 is also tractable. This is an infinite

set of relations containing relations of every possible arity.
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In fact, the set 〈Γ
ZOA

〉 corresponds precisely to the implicational relations de-
fined in [33]. Moreover, the set of 0/1/all relations, Γ

ZOA
, is precisely the set of

unary and binary relations in the relational clone 〈Γ
ZOA

〉.
2.4. From relational clones to sets of operations. We have shown in the

previous section that to analyze the complexity of arbitrary constraint languages it
is sufficient to consider only relational clones. This considerably reduces the variety
of languages to be studied. However, it immediately raises the question of how to
represent and describe relational clones. For many relational clones the only known
generating sets are rather sophisticated, and in some cases no generating sets are
known [48].

Very conveniently, it turns out that there is a well-known alternative way to
represent and describe any relational clone, using operations. In our definitions we
follow [42] and [53].

Definition 2.19. For any set A, and any natural number n, a mapping f :
An → A is called an n-ary operation on A. The set of all finitary operations on A is
denoted by OA.

We first describe a fundamental algebraic relationship between operations and
relations. Note that any operation on a set A can be extended in a standard way
to an operation on tuples of elements from A, as follows. For any (m-ary) operation
f and any collection of tuples a1, . . . , am ∈ An, where ai = (a1i, . . . , ani), define
f(a1, . . . , am) to be (f(a11, . . . , a1m), . . . , f(an1, . . . , anm)).

Definition 2.20 (see [16, 48, 53]). An m-ary operation f ∈ OA preserves an
n-ary relation ρ ∈ RA (or f is a polymorphism of ρ, or ρ is invariant under f) if
f(a1, . . . , am) ∈ ρ for all choices of a1, . . . , am ∈ ρ.

For any given sets Γ ⊆ RA and F ⊆ OA, let

Pol(Γ) = {f ∈ OA | f preserves each relation from Γ},
Inv(F ) = {ρ ∈ RA | ρ is invariant under each operation from F}.

We remark that the operators Pol and Inv form a Galois correspondence between RA

and OA (see Proposition 1.1.14 of [48]). Introductions to this correspondence can be
found in [16, 47], and a comprehensive study in [48]. We note, in particular, that
Inv(F ) = Inv(Pol(Inv(F ))), for any set of operations F . Sets of the form Inv(F ) are
precisely the relational clones, as the next result indicates.

Proposition 2.21 (see [48]). For any set A, and any F ⊆ OA, the set Inv(F )
is a relational clone. Conversely, any relational clone can be represented in the form
Inv(F ) for some set F ⊆ OA. In particular, for any Γ ⊆ RA, 〈Γ〉 = Inv(Pol(Γ)).

Using Proposition 2.21 together with Corollary 2.17, we can now translate our
original problem of characterizing tractable sets of relations (Problem 2.12) into an
equivalent problem for sets of operations. First, we define what it means for a set of
operations to be tractable or NP-complete.

Definition 2.22. A set F ⊆ OA is said to be tractable if Inv(F ) is tractable. A
set F ⊆ OA is said to be NP-complete if Inv(F ) is NP-complete.

Using this definition, we obtain the following translation of Problem 2.12.
Problem 2.23 (“tractable operations problem”). Characterize all tractable sets

of operations on finite sets.
In many cases the description of a set of operations provides a compact, concise

way to describe the associated relational clone, as the next example indicates.
Example 2.24. Recall the constraint language Γ

ZOA
of 0/1/all relations which

was defined in Example 2.13 and extended to 〈Γ
ZOA

〉 in Example 2.18.
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It was shown in [30] that 〈Γ
ZOA

〉 is precisely the constraint language consisting
of all relations which are invariant under the ternary “dual discriminator” operation
d, defined as follows:

d(x, y, z) =

{
y if y = z,
x otherwise.

Hence this infinite tractable constraint language, which is rather complicated to de-
scribe in detail, may be represented very simply as the set of relations invariant under
the tractable set of operations {d}.

In many cases, it has been shown that the presence of a single operation satisfying
certain simple conditions is sufficient to ensure the tractability of a set of operations.

Example 2.25. A binary operation f(x, y) satisfying the following three condi-
tions is said to be a semilattice operation:1

(i) f(x, f(y, z)) = f(f(x, y), z) (associativity),
(ii) f(x, y) = f(y, x) (commutativity),
(iii) f(x, x) = x (idempotency).

Theorem 16 of [29] says that for any finite set A, any set of operations F ⊆ OA

containing a semilattice operation is tractable.

In contrast, we will now consider the properties of operations that are associated
with NP-complete constraint languages.

Definition 2.26. An operation f : An → A is called essentially unary if there
exists a (nonconstant) unary operation g : A → A and an index i ∈ {1, 2, . . . , n}
such that f(a1, a2, . . . , an) = g(ai) for all choices of a1, a2, . . . , an. If g is the identity
operation, then f is called a projection.

Any operation which is not essentially unary (including all constant operations)
will be called essentially nonunary.

Proposition 2.27 (see Jeavons [27]). For any finite set A and any Γ ⊆ RA, if
Pol(Γ) contains essentially unary operations only, then CSP(Γ) is NP-complete.

Example 2.28. Consider the relation N over the set {0, 1}, defined by

N = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.

It can be shown that Pol({N}) contains essentially unary operations only [49], and
hence CSP({N}) is NP-complete, by Proposition 2.27.

We remark that the problem CSP({N}) was first shown to be NP-complete by
Schaefer [52]; it corresponds to a restricted form of the Not-All-Equal Satisfia-

bility problem [21, 45].

Boolean operations, that is, operations on A = {0, 1}, have been very well stud-
ied [49, 53]. In particular, it is known that if a Boolean constraint language is not
contained in one of Schaefer’s six tractable classes, then all of its polymorphisms are
essentially unary operations [53]. Hence we may reformulate Schaefer’s dichotomy
theorem to obtain the following complete classification for Boolean operations.

Corollary 2.29 (Schaefer’s dichotomy for operations). A set of Boolean op-
erations is tractable if it contains an essentially nonunary operation. Otherwise it is
NP-complete.

1Note that in some earlier papers [27, 30, 46] the term ACI operation is used.
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3. Algebras. We have shown in section 2 that the problem of analyzing the
complexity of a constraint language can be translated into the problem of analyzing
the complexity of the set of operations which preserve all of the relations in that
language. In the Boolean case, this is sufficient to obtain a complete classification of
complexity, but over larger sets we need to develop more powerful analytical tools, as
the next example indicates.

Example 3.1. Consider the binary operation ◦ on the set {0, 1, 2} defined by the
following Cayley table:

◦ 0 1 2
0 0 1 1
1 1 1 0
2 2 2 2

This operation does not fall into any known tractable class, nor is it essentially unary.
Hence we cannot determine the complexity of this operation using the tools of the
previous section (but see Example 5.5 below).

In this section we shall open the way to the use of a further set of powerful ana-
lytical tools by making the final translation step, from sets of operations to algebras.

Definition 3.2. An algebra is an ordered pair A = (A,F ) such that A is a
nonempty set and F is a family of finitary operations on A. The set A is called the
universe of A, and the operations from F are called basic. An algebra with a finite
universe is referred to as a finite algebra.

To make the translation from sets of operations to algebras we simply note that
any set of operations F on a fixed set A can be associated with the algebra (A,F ).
Hence, we will define what it means for an algebra to be tractable by considering the
tractability of the basic operations.

Definition 3.3. An algebra A = (A,F ) is said to be tractable if F is tractable.
An algebra A = (A,F ) is said to be NP-complete if F is NP-complete.
Using Definition 3.3 we can now translate our original tractable relations problem

(Problem 2.12) into the following equivalent problem for algebras.
Problem 3.4 (“tractable algebras problem”). Characterize all tractable alge-

bras.
Using Definition 3.3, we can reformulate Schaefer’s dichotomy theorem [52] in yet

another way, this time as a classification of the complexity of algebras defined on a
two-element set.

Corollary 3.5 (Schaefer’s dichotomy for algebras). An algebra with a two-
element universe is NP-complete if all of its basic operations are essentially unary.
Otherwise it is tractable.

The first advantage of using algebras instead of sets of operations is that we can
make use of some standard constructions on algebras to obtain new results about
the complexity of constraint languages. Another advantage is that finite algebras
have been extensively studied, and a considerable body of structural theory has been
developed [25, 42, 53]. We explore these ideas further in the remainder of the paper.

In our study it will be useful to describe an equivalence relation linking algebras
that correspond to the same constraint language. As we noted earlier, the mappings
Pol and Inv have the property that Inv(Pol(Inv(F ))) = Inv(F ), and so we can extend a
set of operations F to the set Pol(Inv(F )) without changing the associated invariant
relations. The set Pol(Inv(F )) consists of all operations that can be obtained from the
operations in F , together with the set of all projection operations, by forming arbitrary
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compositions of operations [16, 48]. (If f is an n-ary operation on A, and g1, g2, . . . , gn
are k-ary operations on A, then the composition of f and g1, g2, . . . , gn is the k-ary
operation h on A defined by h(a1, a2, . . . , ak) = f(g1(a1, . . . , ak), . . . , gn(a1, . . . , ak)).)
The set of operations obtained in this way is usually referred to in universal algebra
as the set of term operations over F [16], so we will make the following definition.

Definition 3.6. For any algebra A = (A,F ), an operation f on A will be called
a term operation of A if f ∈ Pol(Inv(F )).

The set of all term operations of A will be denoted Term(A).
Two algebras with the same universe are called term equivalent if they have

the same set of term operations. Note that, for any algebra A = (A,F ), we have
Inv(F ) = Inv(Term(A)), so two algebras are term equivalent if and only if they have
the same set of associated invariant relations. It follows that we need to characterize
tractable algebras only up to term equivalence.

Example 3.7. A group is an algebra with three basic operations: a binary multipli-
cation operation, a unary converse operation, and a constant unit operation (see [37]).
A coset of a group is a relation which is invariant under the ternary term operation
t(x, y, z) = xy−1z. It is stated in Theorem 33 of [20] that any constraint language con-
sisting of cosets of a finite group is tractable. Hence any finite group is tractable, and
moreover, any finite algebra with the ternary term operation t is also tractable.

4. Special classes of algebras. In this section we will show that, when study-
ing the tractability of finite algebras, we can restrict our attention to certain special
classes of algebras.

Definition 4.1. We call an algebra surjective if all of its term operations are
surjective.2

It is easy to verify that a finite algebra is surjective if and only if its unary term
operations are all surjective and hence form a group of permutations.

It was shown in [27] that any unary polymorphism can be applied to a set of
relations without changing the complexity of that set.

Proposition 4.2 (see [27]). For any set of relations Γ, and any unary operation
f ∈ Pol(Γ), let f(Γ) be the set of relations {f(ρ) | ρ ∈ Γ}, where f(ρ) = {f(a) | a ∈ ρ}.
The set Γ is tractable if and only if f(Γ) is tractable, and Γ is NP-complete if and
only if f(Γ) is NP-complete.

Any algebra A = (A,F ) which is not surjective will have a unary term operation
f which is not surjective, and hence has range U , where U is a proper subset of A. By
applying this operation to all of the relations in Inv(F ), as described in Proposition 4.2,
we can obtain a set of relations over U without changing the tractability. The algebra
corresponding to this new set of relations can be shown to be a term induced algebra
of A, which is defined as follows.

Definition 4.3 (see [55]). Let A = (A,F ) be an algebra, and let U be a nonempty
subset of A. The term induced algebra A|U is defined as (U,Term(A)|U ), where
Term(A)|U = {g|U : g ∈ Term(A) and g preserves U}.

By choosing a unary term operation f with a range U of minimal cardinality,
we can ensure that the term induced algebra A|U is surjective. Hence we have the
following theorem.

Theorem 4.4. For any finite algebra A, there exists a set U such that
(i) the algebra A|U is surjective, and

2Note that in [54] an algebra is said to be surjective if all of its basic operations are surjective.
However, such algebras can have nonsurjective term operations, so our definition is more restrictive.
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(ii) the algebra A is tractable if and only if A|U is tractable, and is NP-complete
if and only if A|U is NP-complete.

Theorem 4.4 shows that we can restrict our attention to surjective algebras. The
next theorem shows that for many purposes we need consider only those surjective
algebras with the additional property of being idempotent.

Definition 4.5. An operation f on A is called idempotent if it satisfies f(x, . . . , x) =
x for all x ∈ A.

The full idempotent reduct of an algebra A = (A,F ) is the algebra (A,Termid(A)),
where Termid(A) consists of all idempotent operations from Term(A).

Note that an operation f on a set A is idempotent if and only if it preserves
all the relations in the set Γcon = {{(a)} | a ∈ A}, consisting of all unary one-
element relations on A. Hence, Inv(Termid(A)) is the relational clone generated by
Inv(F ) ∪ Γcon.

To establish the next theorem we need an auxiliary lemma from [53].
Lemma 4.6. Let A = ({a1, a2, . . . , ak}, F ) be a finite algebra whose unary term

operations form a permutation group G. Then the relation ρG, defined by

ρG = {(g(a1), . . . , g(ak)) | g ∈ G},

belongs to Inv(F ).
Proof. Proposition 1.3 of [53] states that relations of the form ρG are preserved

by all operations of the algebra A and hence belong to Inv(F ).
Theorem 4.7. A finite surjective algebra A is tractable if and only if its full

idempotent reduct A0 is tractable. Moreover, A is NP-complete if and only if A0 is
NP-complete.

Proof. Let A = (A,F ) be a finite surjective algebra, and let A0 be the full
idempotent reduct of A.

As observed above, Inv(Term(A0)) is the relational clone generated by the set
Inv(F )∪Γcon, where Γcon = {{(a)} | a ∈ A}. By Corollary 2.17, it follows that A0

is tractable if and only if Inv(F ) ∪ Γcon is tractable, and A0 is NP-complete if and
only if Inv(F ) ∪ Γcon is NP-complete. In the remainder of the proof we will show
that CSP(Inv(F ) ∪ Γcon) is polynomial-time equivalent to CSP(Inv(F )).

Clearly, every instance of CSP(Inv(F )) may be considered as an instance of
CSP(Inv(F ) ∪ Γcon), so there is a constant-time reduction from CSP(Inv(F )) to
CSP(Inv(F ) ∪ Γcon).

For the converse result, let P = (V,A, C) be an instance of CSP(Inv(F ) ∪ Γcon)
and let P ′ be the problem instance (V ′, A, C′), where V ′ = V ∪ {va | a ∈ A} (each of
the variables va is a new variable not in V ). To obtain the constraints C′, take the
original constraints C of P, and replace each unary constraint of the form 〈v, {(a)}〉
in C with the constraint 〈(v, va),=A〉, where =A is the binary equality relation on A.
Finally, add the constraint 〈(va1

, . . . , vak
), �G〉, where a1, a2, . . . , ak are the elements

of A (in some order) and �G is the relation defined in Lemma 4.6. Note that P ′ is an
instance of CSP(Inv(F )) and that this construction can be carried out in polynomial
time.

We claim that if the problem P ′ has a solution ψ, then it has a solution φ such
that φ(va) = a for all a ∈ A. To establish this claim, note that, by the definition of
ρG, there is g ∈ G such that ψ(va) = g(a) for all a ∈ A. Since G is a group, the
inverse operation g−1 ∈ G, which means that it is a term operation of A. This implies
that every relation in Inv(F ) is invariant under g−1, so φ = g−1ψ is also a solution to
P ′, and has the property that g−1ψ(va) = a for all a ∈ A.



CLASSIFYING THE COMPLEXITY OF CONSTRAINTS 733

Any solution φ satisfying this condition clearly satisfies all the constraints in C, so
the restriction of φ to V is a solution to P. Conversely, if ψ is any solution to P, then
its extension ψ′ to V ′ such that ψ′(va) = a, for all a ∈ A, is a solution to P ′. Hence
this construction establishes a polynomial-time reduction from CSP(Inv(F )∪ Γcon)
to CSP(Inv(F )).

Theorem 4.7 can be restated in terms of constraint languages, as follows.
Corollary 4.8. Let Γ be a constraint language over a finite set A, and let

Γcon = {{(a)} | a ∈ A} be the set of all unary one-element relations on A.
If all unary polymorphisms of Γ are permutations, then Γ is tractable if and

only if Γ ∪ Γcon is tractable, and Γ is NP-complete if and only if Γ ∪ Γcon is
NP-complete.

Corollary 4.8 has an interesting consequence connecting decision problems and
search problems. In this paper we have formulated the constraint satisfaction problem
as a decision problem (Definition 2.2), in which the question is to decide whether
or not a solution exists. However, the corresponding search problem, in which the
question is to find a solution, often arises in practice. We will now show that the
tractable cases of these two forms of the problem coincide. (Note that the tractable
cases of the search problem are those which belong to the complexity class FP.)

Corollary 4.9. A decision problem CSP(Γ) is tractable if and only if the
corresponding search problem can be solved in polynomial time.

Proof. Obviously, tractability of the search problem implies tractability of the
corresponding decision problem.

For the converse, let Γ be a tractable set of relations over a finite set A. By
choosing a unary polymorphism f of Γ, whose image set U is minimal, we can obtain
a corresponding set of relations Γ′ = f(Γ) over U , such that every unary polymorphism
of Γ′ is a permutation. By Proposition 4.2, Γ′ is also tractable.

Now consider any instance P = (V,A, C) of CSP(Γ). By the choice of Γ, we can
decide in polynomial time in the size of P whether this instance has a solution. Assume
that it has. Then the instance P ′ = (V,U, C′), obtained by replacing each constraint
relation ρ with the corresponding relation f(ρ), also has a solution. Furthermore,
every solution of P ′ is also a solution to P.

Since P ′ has a solution, it follows that for each v ∈ V there must be some a ∈ A
for which we can add the constraint 〈(v), {(a)}〉 and still have a solvable instance.
Hence, by considering each variable in turn, and each possible value a ∈ A for that
variable, we can add such a constraint to each variable in turn, and hence obtain
a solution to P ′. Checking for solvability for each possible value at each variable
requires us to solve an instance of the decision problem CSP(Γ′ ∪ Γcon) at most
|V | · |U | times, and hence can be completed in polynomial time in the size of P ′, by
Corollary 4.8.

5. Constructions on algebras. The results in this section link the complexity
of a finite algebra with the complexity of its subalgebras and homomorphic images
[9, 16, 42]. In many cases, we can use these results to reduce the problem of analyzing
the complexity of an algebra to a similar problem involving an algebra with a smaller
universe.

Definition 5.1. Let A = (A,F ) be an algebra and B a subset of A such that,
for any f ∈ F and for any b1, . . . , bn ∈ B, where n is the arity of f , we have
f(b1, . . . , bn) ∈ B. Then the algebra B = (B,F |B) is called a subalgebra of A, where
F |B consists of the restrictions of all operations in F to B. If B �= A, then B is said
to be a proper subalgebra.
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Theorem 5.2. Let A be a finite algebra.
(i) If A is tractable, then so is every subalgebra of A.
(ii) If A has an NP-complete subalgebra, then A is NP-complete.

Proof. Let B = (B,F |B) be a subalgebra of A = (A,F ). It is easy to check
that Inv(F |B) ⊆ Inv(F ). Hence, CSP(Inv(F |B)) can be reduced to CSP(Inv(F )) in
constant time.

Now (i) and (ii) follow immediately from the existence of this reduction.
Definition 5.3. Let A1 = (A1, F1) and A2 = (A2, F2) be such that F1 = {f1

i |
i ∈ I} and F2 = {f2

i | i ∈ I}, where both f1
i and f2

i are ni-ary, for all i ∈ I.
A map ϕ : A1 → A2 is called a homomorphism from A1 to A2 if

ϕf1
i (a1, . . . , ani) = f2

i (ϕ(a1), . . . , ϕ(ani
))

holds for all i ∈ I and all a1, . . . , ani
∈ A1.

If the map ϕ is surjective, then A2 is said to be a homomorphic image of A1.
Theorem 5.4. Let A be a finite algebra.

(i) If A is tractable, then so is every homomorphic image of A.
(ii) If A has an NP-complete homomorphic image, then A is NP-complete.

Proof. Let B = (B,FB) be a homomorphic image of A = (A,FA) and let ϕ be
the corresponding homomorphism. We will show that, for any finite Γ ⊆ Inv(FB),
CSP(Γ) is linear-time reducible to CSP(Γ′) for some finite Γ′ ⊆ Inv(FA).

For ρ ∈ Inv(FB), set ϕ−1(ρ) = {a | ϕ(a) ∈ ρ} where ϕ acts componentwise. It
is clear that ϕ−1(ρ) is a relation of the same arity as ρ. It can straightforwardly be
checked that ϕ−1(ρ) ∈ Inv(FA). Let Γ′ = {ϕ−1(ρ) | ρ ∈ Γ}. Then Γ′ is a finite subset
of Inv(FA).

Take an instance P = (V,B, C) of CSP(Γ) and construct an instance P ′ =
(V,A, C′) of CSP(Γ′) where C′ = {〈s, ϕ−1(ρ)〉 | 〈s, ρ〉 ∈ C}.

If ψ is a solution of P ′, then ϕψ is a solution of P. Conversely, if ξ is a solution of
P, then any function ψ : V → A such that ϕψ(v) = ξ(v) for any v ∈ V is a solution
of P ′.

We now give two examples to illustrate the use of Theorems 5.2 and 5.4. The
examples show that both of these results can be useful (independently) to establish the
complexity of certain algebras by reducing the question to an algebra over a smaller
set.

Example 5.5. Reconsider Example 3.1. Let A be the idempotent algebra ({0, 1, 2}, ◦),
where ◦ is the binary operation defined by the following Cayley table:3

◦ 0 1 2
0 0 1 1
1 1 1 0
2 2 2 2

By using Theorem 5.4, we will show that A is NP-complete even though all of its
proper subalgebras are tractable.

Notice that, as the equalities 0 ◦ 2 = 1, 1 ◦ 2 = 0, 0 ◦ 1 = 1 ◦ 0 = 1 show,
A has only one proper subalgebra having more than one element, the algebra B =
({0, 1}, ◦|{0,1}). It is easy to check that ◦|{0,1} is a semilattice operation on {0, 1}.
Hence, by Definition 3.3 and Theorem 16 of [29] (see Example 2.25), the algebra B is
tractable.

3Note that we write x ◦ y instead of ◦(x, y).
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On the other hand, consider the algebra C = (C, ∗), where C = {a, b} and for all
x, y ∈ {a, b}, x ∗ y = x. It is easy to check that the mapping ϕ : {0, 1, 2} → C such
that ϕ(0) = ϕ(1) = a, ϕ(2) = b, is a homomorphism from A onto C. By Corollary 3.5,
C is NP-complete. Hence, by Theorem 5.4, A is NP-complete.

Example 5.6. Consider the idempotent algebra A = ({0, 1, 2}, ◦), where ◦ is the
binary operation defined by the following Cayley table:

◦ 0 1 2
0 0 1 1
1 0 1 1
2 1 1 2

By using Theorem 5.2, we will show that A is NP-complete even though all of its
smaller homomorphic images are tractable.

Since one-element algebras are certainly tractable, we need to consider only two-
element homomorphic images B of A. Let B = ({a, b}, ∗), where ∗ is a binary operation
on {a, b}, and assume that ϕ is a homomorphism from A onto B. Then we have
ϕ(x ◦ y) = ϕ(x) ∗ ϕ(y) for all x, y ∈ {0, 1, 2}.

Case 1. ϕ(0) = ϕ(1) = a, ϕ(2) = b. In this case we have

a ∗ a = ϕ(0) ∗ ϕ(0) = ϕ(0 ◦ 0) = ϕ(0) = a,

a ∗ b = ϕ(0) ∗ ϕ(2) = ϕ(0 ◦ 2) = ϕ(1) = a,

b ∗ a = ϕ(2) ∗ ϕ(0) = ϕ(2 ◦ 0) = ϕ(1) = a,

b ∗ b = ϕ(2) ∗ ϕ(2) = ϕ(2 ◦ 2) = ϕ(2) = b.

It is easy to check that ∗ is a semilattice operation on {a, b}. Hence, by Definition 3.3
and Theorem 16 of [29] (see Example 2.25), the algebra B is tractable.

Case 2. ϕ(0) �= ϕ(1).
It follows that ϕ(2) ∈ {ϕ(0), ϕ(1)}. If ϕ(2) = ϕ(0), then

ϕ(0) = ϕ(0 ◦ 0) = ϕ(0) ∗ ϕ(0) = ϕ(0) ∗ ϕ(2) = ϕ(0 ◦ 2) = ϕ(1).

Alternatively, if ϕ(2) = ϕ(1), then

ϕ(0) = ϕ(1 ◦ 0) = ϕ(1) ∗ ϕ(0) = ϕ(2) ∗ ϕ(0) = ϕ(2 ◦ 0) = ϕ(1).

Hence this second case is impossible, and we have shown that all smaller homo-
morphic images of A are tractable.

On the other hand, the algebra A has a subalgebra A′ = ({0, 1}, ◦) such that
x ◦ y = y for all x, y ∈ {0, 1}. By Corollary 3.5, A′ is NP-complete. Hence, by
Theorem 5.2, A is NP-complete.

6. Strictly simple surjective algebras. The results of the previous section
have established that a tractable algebra must have the property that all of its sub-
algebras and homomorphic images are tractable. Hence, a natural first question is
whether we can classify the complexity of all algebras which do not have any smaller
(nontrivial) subalgebras or homomorphic images. Classifying all such algebras can be
viewed as a possible “base case for induction” in the pursuit of a general classification.

Definition 6.1. A finite algebra is called simple if all of its smaller homomorphic
images are one-element; and strictly simple4 if it is simple and all of its proper
subalgebras are one-element.

4In some papers appearing before 1990 such algebras are called plain.
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By Theorem 4.4, it is sufficient to consider only surjective algebras. In this section
we obtain a complete classification for all strictly simple surjective algebras.5 We
show that any algebra of this type is either tractable or NP-complete, and we give a
complete characterization of the tractable cases. Such algebras include all surjective
two-element algebras, as well as many algebras over larger universes, so this dichotomy
result includes and generalizes Schaefer’s dichotomy for algebras with a two-element
universe (see Corollary 3.5 above).

To obtain the result, we make use of the complete description of finite strictly
simple surjective algebras obtained by Szendrei [54]. To formulate Szendrei’s result,
we first need to introduce some further standard algebraic concepts and notation (for
a general introduction to these algebraic concepts, see, for example, [37]).

Let G be a permutation group acting on a set A. By R(G) we denote the set
of operations on A preserving each relation of the form {(a, g(a)) | a ∈ A}, for some
g ∈ G. By Rid(G) we denote the set of idempotent operations in R(G).

A permutation group G acting on a set A is called regular if, for any a, b ∈ A,
there exists g ∈ G such that g(a) = b, and if each nonidentity member of G has no
fixed point. G is called primitive if the algebra (A,G) is simple.

Let A = (A,+) be a finite Abelian group, and let K be a finite field. The finite
dimensional vector space on A over K will be denoted KA = (A; +,K), the group of
translations {x+ a | a ∈ A} will be denoted T (A), and the endomorphism ring of KA
will be denoted End KA. Note that one can consider A as a module over End KA.
This module will be denoted by (End KA)A.

Finally, let F0
k denote the set of all operations preserving the relation

X0
k = {(a1, . . . , ak) ∈ Ak | ai = 0 for at least one i, 1 ≤ i ≤ k},

where 0 is some fixed element of A, and let F0
ω =

⋂∞
k=2 F0

k .
Theorem 6.2 (see [54]). Let A be a finite strictly simple surjective algebra.
• If A has no one-element subalgebras, then A is term equivalent to one of the

following algebras:
(a) (A,R(G)) for a regular permutation group G acting on A;
(b) (A,Termid((End KA)A) ∪ T (A)) for some vector space KA = (A; +,K)

over a finite field K;
(c) (A,G) for a primitive permutation group G on A.

• If A has one-element subalgebras, then A is idempotent and term equivalent
to one of the following algebras:
(a◦) (A,Rid(G)) for a permutation group G on A such that every nonidentity

member of G has at most one fixed point;
(b◦) (A,Termid((End KA)A)) for some vector space KA over a finite field K;

(d) (A,Rid(G) ∩ F0
k ) for some k ( 2 ≤ k ≤ ω), some element 0 ∈ A and

some permutation group G acting on A such that 0 is the unique fixed
point of every nonidentity member of G;

(e) (A,F ) where |A| = 2 and F contains a semilattice operation;
(f) a two-element algebra with an empty set of basic operations.

In the following theorem we determine all tractable finite strictly simple surjective
algebras by analyzing each of the cases listed in Theorem 6.2.

5Note that the full idempotent reduct of a strictly simple surjective algebra is not always strictly
simple. Hence we obtain a slightly stronger result by classifying all strictly simple surjective algebras,
rather than just the strictly simple idempotent algebras.
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Theorem 6.3. A finite strictly simple surjective algebra is NP-complete if all of
its term operations are essentially unary. Otherwise it is tractable.

Proof. If A is an algebra of type (c) or (f), then all of its term operations are
essentially unary. Hence Pol(Inv(Term(A))) contains essentially unary operations only,
so A is NP-complete, by Proposition 2.27.

If A = (A,F ) is an algebra of type (a) or (a◦), then we claim that the dual
discriminator operation d(x, y, z) defined in Example 2.24 is a term operation of A.
To establish this claim, it is easy to verify that d preserves every relation of the form
{(a, g(a)) | a ∈ A} where g is a permutation on A. Since d is an idempotent operation,
it belongs to both R(G) and Rid(G). Hence, in cases (a) and (a◦), every relation in
Inv(F ) is invariant under d. It follows from Theorem 5.7 of [30] that CSP(Inv(F )) is
tractable (see Example 2.24). Hence, in this case A is tractable.

If A is an algebra of type (b) or (b◦), then the affine operation f(x, y, z) = x−y+z
is a term operation of A. Tractability of A then follows from Theorem 33 of [20] (see
Example 3.7).

Now let A = (A,F ) be an algebra of type (d) corresponding to some k with
2 ≤ k ≤ ω. Consider the operation f(x, y) defined as follows:

f(x, y) =
{
x if x = y,
0 otherwise.

First, we show that f preserves any relation of the form g◦ = {(a, g(a)) | a ∈ A} where
g ∈ G. Let a = (a1, a2), b = (b1, b2) ∈ g◦. If a1 = b1, then a2 = g(a1) = g(b1) = b2,
and, by definition of f , we have that the pair f(a, b) is equal to (a1, g(a1)) and hence
belongs to g◦. If a1 �= b1, then, since g is a permutation, a2 �= b2 and the pair
f(a, b) equals (0, 0), which also belongs to g◦ because 0 is a fixed point of g. Hence
f ∈ Rid(G).

Next, we show that f ∈ F0
k . Let a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ X0

k ; that is,
each of a, b contains 0. If, say, ai = 0, then f(ai, bi) = 0, so the tuple f(a, b) contains 0
and hence belongs to X0

k .
We have shown that f ∈ Rid(G) ∩ F0

k , and hence f is a term operation of A. It
is easy to check that f is a semilattice operation. By Theorem 16 of [29], this implies
that CSP(Inv(F )) is tractable (see Example 2.25). Hence, in this case A is tractable.

Finally, if A is an algebra of type (e), then tractability again follows from Theo-
rem 16 of [29].

7. Toward a general classification. Theorem 6.3 gives a straightforward cri-
terion to determine whether a finite strictly simple surjective algebra is tractable or
NP-complete. In this section we examine what can be said about more general finite
algebras.

Theorems 5.2 and 5.4 establish two separate necessary conditions for any finite
algebra to be tractable. We can combine these conditions by using the standard
algebraic notion of a factor [9].

Definition 7.1. A homomorphic image of a subalgebra of an algebra A is called
a factor of A. A factor whose universe contains only a single element is called a
trivial factor.

Corollary 7.2. If A is a tractable finite algebra, then so is every factor of A.
Theorems 5.2 and 5.4 also establish two separate sufficient conditions for any

finite algebra to be NP-complete. Using the notion of a factor, we can combine
these results, together with Proposition 2.27, to obtain a single sufficient condition
for NP-completeness.
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Corollary 7.3. A finite algebra A is NP-complete if it has a factor B all of
whose term operations are essentially unary.

However, the condition described in Corollary 7.3 is not a necessary condition for
an arbitrary algebra A to be NP-complete, as the next example shows.

Example 7.4. Consider the algebra A = ({0, 1, 2, 3}, {d, f, p}), where d is a binary
operation and f, p are unary operations, defined by the following tables:6

d 0 1 2 3
0 0 3 0 3
1 2 1 2 1
2 2 1 2 1
3 0 3 0 3

x f(x) p(x)
0 1 1
1 0 0
2 3 2
3 2 3

Since f(0) = 1, any subalgebra of A containing 0 also contains 1. Furthermore,
since f(1) = 0, any subalgebra containing 1 also contains 0. Similarly, any subalgebra
containing one of 2, 3 also contains the other. Finally, since d(0, 1) = 3 and d(2, 3) = 1,
it follows that the only subalgebra of A is A itself.

Now let φ be a homomorphism of A. If φ(0) = φ(1), then

φ(2) = φ(d(1, 0)) = d(φ(1), φ(0)) = d(φ(0), φ(0)) = φ(0), and

φ(3) = φ(d(0, 1)) = d(φ(0), φ(1)) = d(φ(0), φ(0)) = φ(0),

so φ maps all the elements of A to a single element. Furthermore, if φ(0) = φ(2), then

φ(0) = φ(2) = φ(p(2)) = p(φ(2)) = p(φ(0)) = φ(p(0)) = φ(1),

and we get the previous case. In all other cases a similar proof shows that if φ is not
injective, then it maps all the elements of A to a single element.

Hence we have shown that the only nontrivial factor of A is A itself, and clearly
not all the operations of A are essentially unary.

However, we will now show that A is NP-complete. (Note that this does not
contradict Theorem 6.3 because A is not surjective.) To establish this, consider the
ternary relation ρ, consisting of 36 tuples, defined as follows (where tuples are written
as columns):

ρ =

⎛
⎝0 0 0 3 3 3 0 0 0 3 3 3 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 0 0 0 3 3 3

0 3 3 0 0 3 1 1 2 1 2 2 0 0 3 0 3 3 1 2 2 1 1 2 0 0 3 0 3 3 1 1 2 1 2 2
1 1 2 1 2 2 0 3 3 0 0 3 0 3 0 3 0 3 0 0 3 0 3 3 1 2 2 1 1 2 1 2 1 2 1 2

⎞
⎠ .

It is straightforward to verify that this relation is invariant under the operations d, f ,
and p. However, if we set h(x) = d(f(x), p(x)), then h(ρ) = N , where N is the relation
defined in Example 2.28, and hence {h(ρ)} is NP-complete. By Proposition 4.2, it
follows that {ρ} is NP-complete, and hence A is NP-complete.

On the other hand, it was shown in Theorem 6.3 that the condition described in
Corollary 7.3 is both necessary and sufficient for a finite strictly simple surjective alge-
bra to be NP-complete (assuming that P �= NP). Furthermore, all previously known
forms of NP-complete constraint satisfaction problems (see [46, 52]) can be shown
to be NP-complete using Corollary 7.3. Hence, we conjecture that the condition de-
scribed in Corollary 7.3 is both necessary and sufficient for NP-completeness for any

6This algebra is, in fact, the matrix square [42] of ({0, 1};−), where − denotes the negation.
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finite surjective algebra. We state this conjecture for the special case of idempotent
algebras, where the only essentially unary operations are projections.

Conjecture 7.5 (“tractable algebras conjecture”). A finite idempotent algebra
A is NP-complete if it has a nontrivial factor B all of whose operations are projec-
tions. Otherwise it is tractable.

As shown in sections 2–4, the problem of determining the complexity of an ar-
bitrary constraint language can be reduced to an equivalent problem for a certain
idempotent algebra associated with the language. Therefore, this conjecture, if true,
would solve all the various forms of the “tractability problem” mentioned above, in-
cluding the original problem for arbitrary constraint languages, Problem 2.12.

The next examples show that Conjecture 7.5 is confirmed in a number of special
cases, by existing dichotomy results. Moreover, we will show that in each case the
existing dichotomy result can be obtained as a simple consequence of Conjecture 7.5.

Example 7.6. A dichotomy theorem for two-element algebras was given in Corol-
lary 3.5. In this example we will show that this result is equivalent to Conjecture 7.5
restricted to two-element algebras.

Let A be a two-element algebra.
If A is idempotent, then Corollary 3.5 implies that either A is tractable, or else it

is NP-complete and all of its operations are projections. Hence Corollary 3.5 implies
that Conjecture 7.5 holds for any two-element algebra.

Conversely, we will now establish that Conjecture 7.5 implies Corollary 3.5. If
A is not surjective, then it has a nonsurjective unary term operation, which must
be constant, and hence A is tractable, by Theorem 4.4. On the other hand, if A
is surjective, then by Theorem 4.7 we can consider its full idempotent reduct, A0.
Assuming Conjecture 7.5 holds for any two-element algebra, we have that either A0 is
tractable or else it is NP-complete and every operation of A0 is a projection. If every
operation of A0 is a projection, then we claim that every operation of A must be
essentially unary. To establish this claim, let f be any term operation of A. Since A
is surjective, the unary term operation g(x) = f(x, x, . . . , x) must be a permutation.
Now let h be the composition of the inverse permutation g−1 and f . It is easy to
check that h is an idempotent term operation of A and hence is an operation of A0. If
h is a projection, then f must depend on only one of its arguments, which establishes
the claim. Hence, we have shown that either A is tractable, or else every operation
of A is essentially unary, which establishes that Conjecture 7.5 implies Corollary
3.5.

Example 7.7. A dichotomy theorem for constraint languages on a three-element
set was given as Theorem 4 of [3]. This result is stated in a very similar form to
Conjecture 7.5, and is easily shown to be equivalent to this conjecture restricted to
three-element algebras.

Example 7.8. A constraint language containing all unary relations is called a
conservative constraint language [5]. (One example of a problem with a conservative
constraint language is the List H-Colorability problem, defined in [19].)

It was shown in Theorem 4 of [5] that, for any conservative constraint language
Γ on a finite set A, either Γ is tractable, or else there exists some two-element subset
B ⊆ A, such that for every polymorphism f of Γ, f |B is a projection. In this example
we will show that this result is equivalent to Conjecture 7.5 restricted to algebras
whose operations preserve all unary relations.

Let A = (A,F ) be any finite algebra such that the set of relations Γ = Inv(F )
contains all unary relations. Since Γ contains every relation {(a)}, for each a ∈ A, the
algebra A is idempotent. Furthermore, since Γ contains every relation {(a1), (a2)}, for
each two-element subset B = {a1, a2} ⊆ A, it follows that each of the corresponding
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algebras B = (B,F |B) is a subalgebra of A.
Hence, by Theorem 4 of [5], either Γ is tractable, or else there exists some two-

element subalgebra B of A, all of whose operations are projections. Hence this result
implies that Conjecture 7.5 holds for any algebra whose operations preserve all unary
relations.

Conversely, to show that Conjecture 7.5 implies Theorem 4 of [5], assume that
Conjecture 7.5 holds for the algebra A. This implies that either Γ is tractable, or else
there exists some nontrivial factor C of A all of whose operations are projections. In
the latter case, by the definition of a factor, C must be the image of some subalgebra B
of A under some homomorphism ϕ. Choose elements a1, a2 ∈ B such that their images
ϕ(a1), ϕ(a2) in C are distinct. Since every two-element subset of A is a subalgebra, for
any f ∈ F we have that f |{a1,a2} has range {a1, a2}. Furthermore, the corresponding
operation f ′ of C is a projection, so we have that for any tuple a over {a1, a2}, the tuple
ϕ(f(a)) = f ′(ϕ(a)) = the ith component of ϕ(a) for some i. Hence f |{a1,a2} is also a
projection, and we have shown that Conjecture 7.5 implies Theorem 4 of [5].

Finally, we note that if Conjecture 7.5 is true, then it yields an effective procedure
to determine whether any finite constraint language is tractable or NP-complete, as
the following result indicates.

Proposition 7.9. Let A be a finite set. If Conjecture 7.5 is true, then for any
finite constraint language Γ over A, it is possible to determine in polynomial time in
the size of Γ whether Γ is NP-complete or tractable.

Proof. First set Γ′ = f(Γ) ∪ Γcon, where f is a unary polymorphism of Γ whose
range f(A) = U is minimal and Γcon = {{(a)} | a ∈ U}. (Note that the number of
possible unary operations depends only on |A|, so Γ′ can be obtained in polynomial
time in the size of Γ.) By Proposition 4.2 and Corollary 4.8, Γ is NP-complete if and
only if Γ′ is NP-complete, and Γ is tractable if and only if Γ′ is tractable.

By Corollary 2.17 and Proposition 2.21, Γ is NP-complete if and only if the
idempotent algebra A = (U,Pol(Γ′)) is NP-complete, and Γ is tractable if and only
if A is tractable. By Conjecture 7.5, A is NP-complete if it has a nontrivial factor B
whose operations are all projections; otherwise it is tractable.

Assume first that A does have a nontrivial factor B whose operations are all
projections, and let B be the homomorphic image of the subalgebra A′ of A under the
homomorphism ϕ. We may assume, without loss of generality, that the universe of B
contains the set {0, 1}. The ternary NP-complete relation N , defined in Example 2.28,
is preserved by all operations of B, so the ternary relation R = ϕ−1(N) is preserved
by all operations of A′ and hence by all operations of A. By Proposition 2.21, this
implies that R ∈ 〈Γ′〉.

Conversely, assume that R = ϕ−1(N) ∈ 〈Γ′〉, where ϕ is an arbitrary unary
function from some subset A′ of U onto {0, 1}. By Proposition 2.21, R is preserved by
all operations of A, and hence A′ is the universe of a subalgebra A′ of A. Furthermore,
the relation ϕ−1(={0,1}) = ∃zR(x, z, z) ∧ R(y, z, z) ∈ 〈Γ′〉. Using standard algebraic
results (see Theorem 1.16 of [42]), this implies that ϕ is a homomorphism from A′ to
a two-element factor B of A whose operations preserve N . Moreover, B is idempotent,
so all its operations are projections.

It follows that Γ is NP-complete if there is a relation R ∈ 〈Γ′〉 where R is of the
form ϕ−1(N) for some unary function ϕ from some subset of A onto {0, 1}, and in all
other cases Γ is tractable. By Proposition 1.1.19 of [48], the presence of any relation
R in 〈Γ′〉 can be determined by checking whether R is preserved by all polymorphisms
of Γ′ of arity bounded by |R| (see [26] for an explicit construction). Since the number
of possible unary functions ϕ is less than 3|A|, and each |R| ≤ |A|3, this condition can
be checked in polynomial time in the size of Γ, for any fixed finite set A.
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