
Everyone knows that the computer is a very
practical thing. In fact, computers have be-

come indispensable to running a modern soci-
ety. But what even computer experts don’t re-
member is that—I exaggerate only slightly—the
computer was invented in order to help to clar-
ify a philosophical question about the founda-
tions of mathematics. Surprising? Yes indeed.

This amazing story begins with David
Hilbert, a well-known German mathematician
who at the start of the 20th century proposed
formalizing completely all of mathematical
reasoning. It turned out that you can’t formal-
ize mathematical reasoning, so in one sense his
idea was a tremendous failure. Yet in another
way, Hilbert’s idea was a success, because for-
malism has been one of the biggest boons of
the 20th century—not for mathematical rea-
soning or deduction, but for programming, for
calculating, for computing. This is a forgotten
piece of intellectual history.

I will relate that history here without delving
into mathematical details. So it will be impos-
sible to fully explain the work of the relevant

contributors, which include Bertrand Russell,
Kurt Gödel and Alan Turing. Still, a patient
reader should be able to glean the essence of
their arguments and see what inspired some
of my own ideas about the randomness inher-
ent in mathematics.

Russell’s Logical Paradoxes
Let me start with Bertrand Russell, a mathe-
matician who later turned into a philosopher
and finally into a humanist. Russell is key be-
cause he discovered some disturbing paradox-
es in logic itself. That is, he found cases where
reasoning that seems to be sound leads to con-
tradictions. Russell was tremendously influen-
tial in spreading the idea that these contradic-
tions constituted a serious crisis and had to be
resolved somehow.

The paradoxes that Russell discovered at-
tracted a great deal of attention in mathematical
circles, but strangely enough only one of them
ended up with his name on it. To understand
the Russell paradox, consider the set of all sets

164 American Scientist, Volume 90 Drawings copyright © 2002 American Scientist

Computers, Paradoxes and the

Foundations of Mathematics

Some great thinkers of the 20th century have shown that even in the austere
world of mathematics, incompleteness and randomness are rife

Gregory J. Chaitin

Gregory J. Chaitin is a mathematician at the IBM Watson
Research Center in Yorktown Heights, New York. He is also
a visiting professor at the University of Buenos Aires and at
the University of Auckland. For the past 35 years, he has
been the principal architect of algorithmic information theo-
ry, which he invented as a teenager. His latest advance has
been to transform algorithmic information theory so that it
offers predictions about the size of real computer programs.
Chaitin has written seven books: Algorithmic Information
Theory (Cambridge University Press); Information,
Randomness & Incompleteness and Information-
Theoretic Incompleteness (both World Scientific); and
The Limits of Mathematics, The Unknowable,
Exploring Randomness and (most recently)
Conversations with a Mathematician (all Springer-
Verlag). This article is excerpted from a lecture that he deliv-
ered at the University of Massachusetts, Lowell, in 1999,
which appears in full in Conversations with a
Mathematician. This material is reproduced here with the
permission of Springer-Verlag. Address: IBM Watson
Research Center, P.O. Box 218, Yorktown Heights, NY
10598. Internet: chaitin@us.ibm.com

that are not members of themselves. Then ask,
“Is this set a member of itself?” If it is a member
of itself, then it shouldn’t be, and vice versa.

The set of all sets in the Russell paradox is
like the barber in a small, remote town who
shaves all the men who don’t shave them-
selves. That description seems pretty reason-
able, until you ask, “Does the barber shave

himself?” He shaves himself if and only if he
doesn’t shave himself. Now you may say,
“Who cares about this hypothetical barber?
This is just silly word play!” But when you’re
dealing with the mathematical concept of a set,
it’s not so easy to dismiss a logical problem.

The Russell paradox is a set-theoretic echo of
an earlier paradox, one that was known to the

2002 March–April 165Drawings copyright © 2002 American Scientist

Figure 1. Drawing Hands, composed by M. C. Escher in 1948, provides a visual analogy for the so-called Russell
paradox, named for the British mathematician Bertrand Russell, who brought this problem in logic to the atten-
tion of his contemporaries in the early years of the 20th century—eventually inspiring the work of Kurt Gödel,
Alan Turing and the author on the limits of mathematics. One form the Russell paradox takes is the pair of state-
ments: “The following sentence is false. The preceding sentence is true.” Either assertion alone seems reasonable
(that is, it may either be true or false), but together the sentences cannot be evaluated for their truth or falsehood.
It is their combination that creates the paradox, just as with the two hands of Escher’s drawing.

Image not available in this version

ancient Greeks. It is often called the Epi-
menides paradox or the paradox of the liar.
The essence of the problem is this: Epimenides
was said to exclaim, “This statement is false!”
Is it false? If his statement is false, that means
that it must be true. But if it’s true, it’s false. So
whatever you assume about his veracity,
you’re in trouble. A two-sentence version of
the paradox goes like this: “The following
statement is true. The preceding statement is
false.” Either statement alone is okay, but com-
bined they make no sense. You might dismiss
such conundrums as meaningless word
games, but some of the great minds of the 20th
century took them very seriously.

One of the reactions to the crisis of logic was
Hilbert’s attempt to escape into formalism. If
one gets into trouble with reasoning that seems
okay, the solution is to use symbolic logic to
create an artificial language and be very careful
to specify the rules so that contradictions don’t
crop up. After all, everyday language is am-
biguous—you never know what a pronoun
refers to.

Hilbert’s Rescue Plan
Hilbert’s idea was to create a perfect artificial
language for reasoning, for doing mathemat-
ics, for deduction. Hence, he stressed the im-
portance of the axiomatic method, whereby
one works from a set of basic postulates (ax-
ioms) and well-defined rules of deduction to
derive valid theorems. The notion of doing
mathematics that way goes back to the ancient
Greeks and particularly to Euclid and his
geometry, which is a beautifully clear mathe-
matical system.

In other words, Hilbert’s intention was to be
completely precise about the rules of the
game—about the definitions, the elementary
concepts, the grammar and the language—so
that everyone could agree on how mathemat-
ics should be done. In practice it would be too
much work to use such a formal axiomatic sys-
tem for developing new mathematics, but it
would be philosophically significant.

Hilbert’s proposal seemed fairly straightfor-
ward. After all, he was just following the for-
mal traditions in mathematics, drawing from a
long history of work by Leibniz, Boole, Frege
and Peano. But he wanted to go all the way to
the very end and formalize all of mathematics.
The big surprise is that it turned out that this
could not be done. Hilbert was wrong—but
wrong in a tremendously fruitful way, because
he had asked a very good question. In fact, by
asking this question he created an entirely new
discipline called metamathematics, an introspec-
tive field of math in which you study what
mathematics can or cannot achieve.

The basic concept is this: Once you entomb
mathematics in an artificial language à la
Hilbert, once you set up a completely formal
axiomatic system, then you can forget that it
has any meaning and just look at it as a game
played with marks on paper that enable you to
deduce theorems from axioms. Of course, the
reason one does mathematics is because it has
meaning. But if you want to be able to study
mathematics using mathematical methods,
you have to crystallize out the meaning and
just examine an artificial language with com-
pletely precise rules.

What kind of questions might you ask? Well,
one question is whether one can prove, say, that
0 = 1. (We can hope not.) Indeed, for any state-
ment, call it A, you can ask if it’s possible to
prove either A or the opposite of A. A formal
axiomatic system is considered complete if you
either prove that A is true, or prove that it’s false.

Hilbert envisioned creating rules so precise
that any proof could always be submitted to
an unbiased referee, a mechanical procedure
that would say, “This proof obeys the rules,” or
perhaps, “On line 4 there’s a misspelling” or,
“This thing on line 4 that supposedly follows
from line 3, actually doesn’t.” And that would
be the end; no appeal.

His idea was not that mathematics should
actually be done this way, but rather that if you
could take mathematics and do it this way, you
could then use mathematics to study the pow-
er of mathematics. And Hilbert thought that
he was actually going to be able to accomplish
that feat. So you can imagine just how very,
very shocking it was in 1931 when an Austrian
mathematician named Kurt Gödel showed
that Hilbert’s rescue plan wasn’t at all reason-
able. It could never be carried out, even in
principle.

166 American Scientist, Volume 90 Drawings copyright © 2002 American Scientist

Gödel’s Incompleteness
Gödel exploded Hilbert’s vision in 1931 while
on the faculty of the University of Vienna, al-
though he originally came from what is now
called the Czech Republic, from the city of
Brno. (It was then part of the Austro-Hungari-
an empire.) Later Gödel was to join Einstein at
the Institute for Advanced Study in Princeton.

Gödel’s amazing discovery is that Hilbert
was dead wrong: There is, in fact, no way to
have a formal axiomatic system for all of math-
ematics in which it is crystal clear whether
something is correct or not. More precisely,
what Gödel discovered was that the plan fails
even if you just try to deal with elementary
arithmetic, with the numbers 0, 1, 2, 3,. . . and
with addition and multiplication.

Any formal system that tries to contain the
whole truth and nothing but the truth about
addition, multiplication and the numbers
0, 1, 2, 3,. . . will have to be incomplete. Actu-
ally, it will either be inconsistent or incomplete.
So if you assume that it only tells the truth,
then it won’t tell the whole truth. In particular,
if you assume that the axioms and rules of de-
duction don’t allow you to prove false theo-
rems, then there will be true theorems that you
cannot prove.

Gödel’s incompleteness proof is very clever.
It’s very paradoxical. It almost looks crazy.
Gödel starts in effect with the paradox of the
liar: the statement “I’m false!,” which is neither
true nor false. Actually what Gödel does is to
construct a statement that says of itself, “I’m un-
provable!” Now if you can construct such a
statement in elementary number theory, in
arithmetic, a mathematical statement that de-
scribes itself, you’ve got to be very clever—but if
you can do it, it’s easy to see that you’re in trou-
ble. Why? Because if that statement is provable,
it is by necessity false, and you’re proving false
results. If it’s unprovable, as it says of itself,

then it’s true, and mathematics is incomplete.
Gödel’s proof involves many complicated

technical details. But if you look at his original
paper, you find something that looks a lot like
LISP programming in it. That is because Gödel’s
proof involves defining a great many functions
recursively, functions dealing with lists—pre-
cisely what LISP is all about. So even though
there were no computers or programming lan-
guages in 1931, with the benefit of hindsight
you can clearly see a programming language at
the core of Gödel’s original paper.

Another famous mathematician of that era,
John von Neumann (who, incidentally, was in-
strumental in encouraging the creation of com-
puter technology in the United States) appreci-
ated Gödel’s insight immediately. It had never
occurred to von Neumann that Hilbert’s plan
was unsound. So Gödel was not only tremen-
dously clever, he had the courage to imagine
that Hilbert might be wrong.

Many people saw Gödel’s conclusion as ab-
solutely devastating: All of traditional mathe-
matical philosophy ended up in a heap on the
floor. In 1931, however, there were also a few
other problems to worry about in Europe.
There was a major depression, and a war was
brewing.

Turing’s Machine
The next major step forward came five years lat-
er, in England, when Alan Turing discovered
uncomputability. Recall that Hilbert had said
that there should be a “mechanical procedure”
to decide if a proof obeys the rules or not. Hilbert
never clarified what he meant by a mechanical
procedure. Turing essentially said, “What you
really mean is a machine” (a machine of a kind
that we now call a Turing machine).

2002 March–April 167Drawings copyright © 2002 American Scientist

Turing’s original paper contains a program-
ming language, just as Gödel’s paper does, or
what we would now call a programming lan-
guage. But these two programming languages
are very different. Turing’s isn’t a high-level
language like LISP; it’s more like a machine lan-
guage, the raw code of ones and zeros that are
fed to a computer’s central processor. Turing’s
invention of 1936 is, in fact, a horrible machine
language, one that nobody would want to use
today, because it’s too rudimentary.

Although Turing’s hypothetical computing
machines are very simple and their machine
language rather primitive, they’re very flexi-
ble. In his 1936 paper, Turing claims that such a
machine should be able to perform any com-
putation that a human being can carry out.

Turing’s train of thought now takes a very
dramatic turn. What, he asks, is impossible for
such a machine? What can’t it do? And he im-
mediately finds a problem that no Turing ma-
chine can solve: the halting problem. This is
the problem of deciding in advance whether a
Turing machine (or a computer program) will
eventually find its desired solution and halt.

If you allow a time limit, it’s very easy to
solve this problem. Say that you want to know
whether a program will halt within a year.
Then you just run it for a year, and it either
halts or doesn’t. What Turing showed is that
you get in terrible trouble if you impose no
time limit, if you try to deduce whether a pro-
gram will halt without just running it.

Let me outline Turing’s reasoning: Suppose
that you could write a computer program that

checks whether any given computer program
eventually halts. Call it a termination tester. In
theory, you feed it a program, and it would
spew out an answer: “Yes, this program will
terminate,” or, “No, it will go off spinning its
wheels in some infinite loop and never come to
a halt.” Now create a second program that uses
the termination tester to evaluate some pro-
gram. If the program under investigation ter-
minates, have your new program arranged so
that it goes into an infinite loop. Here comes
the subtle part: Feed your new program a copy
of itself. What does it do?

Remember, you’ve written this new program
so that it will go into an infinite loop if the pro-
gram under test terminates. But here it is itself
the program under test. So if it terminates, it
goes off in an infinite loop, which means it
doesn’t terminate—a contradiction. Assuming
the opposite outcome doesn’t help: If it doesn’t
terminate, the termination tester will indicate
this, and the program will not go into an infi-
nite loop, thus terminating. The paradox led
Turing to conclude that a general purpose ter-
mination tester couldn’t be devised.

The interesting thing is that Turing immedi-
ately deduced a corollary: If there’s no way to
determine in advance by a calculation whether
a program will halt, there also cannot be any
way to decide it in advance using reasoning.
No formal axiomatic system can enable you to
deduce whether a program will eventually
halt. Why? Because if you could use a formal
axiomatic system in this way, that would give
you the means to calculate in advance whether
a program will halt or not. And that’s impossi-
ble, because you get into a paradox like, “This
statement is false!” You can create a program
that halts if and only if it doesn’t halt. The
paradox is similar to what Gödel found in his
investigation of number theory. (Recall he was
looking at nothing more complicated than
0, 1, 2, 3,. . . and addition and multiplication.)
Turing’s coup is that he showed that no formal
axiomatic system can be complete.

After World War II broke out, Turing began
working on cryptography, von Neumann
started working on how to calculate atom-
bomb detonations, and people forgot about
the incompleteness of formal axiomatic sys-
tems for a while.

Randomness in Mathematics
The generation of mathematicians who were
concerned with these deep philosophical ques-
tions basically disappeared with World War II.
Then I showed up on the scene.

In the late 1950s, when I was a youngster, I
read an article on Gödel and incompleteness
in Scientific American. Gödel’s result fascinated
me, but I couldn’t really understand it; I
thought there was something fishy. As for Tur-
ing’s approach, I appreciated that it went much

168 American Scientist, Volume 90 Drawings copyright © 2002 American Scientist

Figure 2. Alan Turing’s seminal paper of 1936 introduced the notion of a machine that
could perform operations, one cell at a time, on an infinitely long tape. His mental con-
struction has since become known as a “Turing machine.” This imaginary device can
read what is written on one cell of the tape. Depending on the internal state of the ma-
chine, it leaves or modifies that cell and moves the tape one space to the left or right,
then repeats the process. Turing showed that such an automaton could use this simple
procedure to carry out any conceivable calculation, so long as the machine was given
the appropriate set of basic instructions.

deeper, but I still wasn’t satisfied. This is when
I got a funny idea about randomness.

When I was a kid, I also read a lot about an-
other famous intellectual issue, not the foun-
dations of mathematics but the foundations of
physics—about relativity theory and cosmolo-
gy and even more often about quantum me-
chanics. I learned that when things are very
small the physical world behaves in a com-
pletely crazy way. In fact, things are random—
intrinsically unpredictable. I was reading about
all of this, and I started to wonder whether
there was also randomness in pure mathemat-
ics. I began to suspect that maybe this was the
real reason for incompleteness.

A case in point is elementary number theory,
where there are some very difficult questions.
Consider the prime numbers. Individual prime
numbers behave in a very unpredictable way,
if you’re interested in their detailed structure.
It’s true that there are statistical patterns.
There’s a thing called the prime number theo-
rem that predicts fairly accurately the overall
average distribution of the primes. But as for
the detailed distribution of individual prime
numbers, that looks pretty random.

So I began to think that maybe the inherent
randomness in mathematics provided a deeper
reason for all this incompleteness. In the mid-
60s I, and independently A. N. Kolmogorov in
the U.S.S.R., came up with some new ideas,
which I like to call algorithmic information the-
ory. That name makes it sound very impres-
sive, but the basic idea is simple: It’s just a way
to measure computational complexity.

One of the first places that I heard about the

idea of computational complexity was from
von Neumann. Turing considered the comput-
er as a mathematical concept—a perfect com-
puter, one that never makes mistakes, one that
has as much time and space as it needs to do
its work. After Turing came up with this idea,
the next logical step for a mathematician was
to study the time needed to do a calculation—
a measure of its complexity. Around 1950 von
Neumann highlighted the importance of the
time complexity of computations, and that is
now a well-developed field.

My idea was not to look at the time, even
though from a practical point of view time is
very important. My idea was to look at the size
of computer programs, at the amount of infor-
mation that you have to give a computer to get
it to perform a given task. Why is that interest-
ing? Because program-size complexity con-
nects with the notion of entropy in physics.

Recall that entropy played a particularly cru-
cial role in the work of the famous 19th-century
physicist Ludwig Boltzmann, and it comes up
in the fields of statistical mechanics and ther-
modynamics. Entropy measures the degree of
disorder, chaos, randomness, in a physical sys-
tem. A crystal has low entropy, and a gas (say,
at room temperature) has high entropy.

Entropy is connected with a fundamental
philosophical question: Why does time run in
just one direction? In everyday life, there is, of
course, a great difference between going
backward and forward in time. Glasses break,
but they don’t reassemble spontaneously. Sim-
ilarly, in Boltzmann’s theory, entropy has to in-
crease—the system has to get more and more

2002 March–April 169Drawings copyright © 2002 American Scientist

Figure 3. Quantum mechanics reflects the role of randomness in physics. The seemingly smooth, regular decay of a radioactive substance, for
example, is in reality made up of a series of discrete steps, where the exact moment that the next atom decays cannot be predicted (left). The au-
thor’s work highlights a similar randomness in mathematics, which can be seen, for instance, in the distribution of prime numbers. Although
the number of primes less than x follows a well-known trend, the curve is made up of a series of erratic steps, and the exact value of the next
larger prime cannot be predicted precisely from any general theory (right).

disordered. This is the well-known Second
Law of Thermodynamics.

Boltzmann’s contemporaries couldn’t see
how to deduce that result from Newtonian
physics. After all, in a gas, where the atoms
bounce around like billiard balls, each interac-
tion is reversible. If you were somehow able to
film a small portion of a gas for a brief time,
you couldn’t tell whether you were seeing the
movie run forward or backward. But Boltz-
mann’s gas theory says that there is an arrow
of time—a system will start off in an ordered
state and will end up in a very mixed up disor-
dered state. There’s even a scary expression for
the final condition, “heat death.”

The connection between my ideas and Boltz-
mann’s theory comes about because the size of
a computer program is analogous to the de-
gree of disorder of a physical system. A gas
might take a large program to say where all its
atoms are located, whereas a crystal doesn’t re-
quire as big a program at all, because of its reg-
ular structure. Entropy and program-size com-

plexity are thus closely related.
This concept of program-size complexity is

also connected with the philosophy of the sci-
entific method. Ray Solomonoff (a computer sci-
entist then working for the Zator Company in
Cambridge, Massachusetts) proposed this idea
at a conference in 1960, although I only learned
of his work after I came up with some very sim-
ilar ideas on my own a few years later. Just
think of Occam’s razor, the idea that the sim-
plest theory is best. Well, what’s a theory? It’s a
computer program for predicting observations.
And the statement that the simplest theory is
best translates into saying that a concise com-
puter program constitutes the best theory.

What if there is no concise theory? What if
the most concise program for reproducing a
given body of experimental data is the same
size as the data set? Then the theory is no
good—it’s cooked up—and the data are in-
comprehensible, random. A theory is good
only to the extent that it compresses the data
into a much smaller set of theoretical assump-
tions and rules for deduction.

So you can define randomness as something
that cannot be compressed at all. The only way
to describe a completely random object or
number to someone else is to present it and
say, “This is it.” Because it has no structure or
pattern, there is no more concise description.
At the other extreme is an object or number
that has a very regular pattern. Perhaps you
can describe it by saying that it is a million rep-
etitions of 01, for example. This is very big ob-
ject with a very short description.

My idea was to use program-size complexi-
ty to define randomness. And when you start
looking at the size of computer programs—
when you begin to think about this notion of
program-size or information complexity in-
stead of run-time complexity—then an inter-
esting thing happens: Everywhere you turn,
you find incompleteness. Why? Because the
very first question you ask in my theory gets
you into trouble. You measure the complexity
of something by the size of the smallest com-
puter program for calculating it. But how can
you be sure that what you have is the smallest
computer program possible? The answer is
that you can’t. This task escapes the power of
mathematical reasoning, amazingly enough.

Showing why this is so gets somewhat in-
volved, so I’m just going to quote the actual
result, which is one of my favorite statements
of incompleteness: If you have n bits of axioms,
you can never prove that a program is the
smallest possible if it is more than n bits long.
That is, you get into trouble with a program if
it’s larger than a computerized version of the
axioms—or more precisely, if it’s larger than
the size of the proof-checking program for the
axioms and the associated rules of deduction.

So it turns out that you cannot in general

170 American Scientist, Volume 90 Drawings copyright © 2002 American Scientist

Figure 4. Kurt Gödel’s work led to the modern understanding that randomness is
inherent in mathematics just as it is in physics—a notion that Albert Einstein resist-
ed. Still, these two men were close friends when they both lived in Princeton.
(Courtesy of the archives of the Institute for Advanced Study.)

calculate program-size complexity, because to
determine the program-size complexity of
something is to know the size of the most con-
cise program that calculates it. You can’t do
that if the program is larger than the axioms. If
there are n bits of axioms, you can never deter-
mine the program-size complexity of anything
that has more than n bits of complexity, which
means almost everything.

Let me explain why I claim that. The sets of
axioms that mathematicians normally use are
fairly concise, otherwise no one would believe
in them. In practice, there’s this vast world of
mathematical truth out there—an infinite
amount of information—but any given set of
axioms only captures a tiny, finite amount of
this information. That, in a nutshell, is why
Gödel incompleteness is natural and inevitable
rather than mysterious and complicated.

Where Do We Go from Here?
This conclusion is very dramatic. In only three
steps one goes from Gödel, where it seems
shocking that there are limits to reasoning, to
Turing, where it looks much more reasonable,
and then to a consideration of program-size
complexity, where incompleteness, the limits of
mathematics, just hits you in the face.

People often say to me, “Well, this is all very
well and good. Algorithmic information theory
is a nice theory, but give me an example of a
specific result that you think escapes the pow-
er of mathematical reasoning.” For years, one
of my favorite answers was, “Perhaps Fermat’s
last theorem.” But a funny thing happened: In
1993 Andrew Wiles came along with a proof.
There was a misstep, but now everyone is con-
vinced that the proof is correct. So there’s the
problem. Algorithmic information theory

shows that there are lots of things that you
can’t prove, but it cannot reach a conclusion
for individual mathematical questions.

How come, in spite of incompleteness,
mathematicians are making so much progress?
These incompleteness results certainly have a
pessimistic feeling about them. If you take
them at face value, it would seem that there’s
no way to progress, that mathematics is im-
possible. Fortunately for those of us who do
mathematics, that doesn’t seem to be the
case. Perhaps some young metamathemati-
cian of the next generation will prove why
this has to be so.

Bibliography
Casti, J. L., and W. DePauli. 2000. Gödel: A Life of Logic.

Cambridge, Mass.: Perseus Publishing.
Chaitin, G. J. 1975. Randomness and mathematical

proof. Scientific American 232(5):47–52.
Chaitin, G. J. 1988. Randomness in arithmetic.

Scientific American 259(1):80–85.
Hofstadter, D. R. 1979. Gödel, Escher, Bach: An Eternal

Golden Braid. New York: Basic Books.
Nagel, E., and J. R. Newman. 1956. Gödel’s Proof.

Scientific American 194(6):71–86.
Nagel, E., and J. R. Newman. 1958. Gödel’s Proof. New

York: New York University Press.

2002 March–April 171Drawings copyright © 2002 American Scientist

Links to Internet resources for further exploration
of “Computers, Paradoxes and the Foundations of

Mathematics” are available on the American
Scientist Web site:

http://www.americanscientist.org/articles/
02articles/chaitin.html

