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Introduction

N o b o d y d o u b t s t h a t c o m p u t e r s h a v e h a d a p r o f o u n d i n fl u e n c e o n t h e s t u d y o f h u m a n

cognition. The very existence of a discipline called  Cognitive  Science  is a tribute to this

 influence. One of the principal characteristics that distinguishes Cognitive Science from more

traditional studies of cognition within Psychology, is the extent to which it has been influenced

by both the ideas and the techniques of computing. It may come as a surprise to the outsider,

then, to discover that there is no unanimity within the discipline on either (a) the nature (and in

some cases the desireabilty) of the influence and (b) what computing is –- or at least on its--

 essential character, as this pertains to Cognitive Science.

In this essay I will attempt to comment on both these questions.  The first question will bring

us to a discussion of the role that computing plays in our understanding of human (and perhaps

animal) cognition. I will examine a variety of such roles –- from the instrumental use of--

 computers to express theories, through its role as a source of ideas, to the bold empirical claim

that cognition is quite literally a species of computing. The latter position (which will get us into

a discussion of what I have called the “strong equivalence” thesis) cannot even begin to be

 addressed until we have a much clearer understanding of what we intend by the term computing

–- i.e. what family of processes we intend to cover by that term.  This is the most contentious of--

the topics I will cover, but one that cannot be avoided; an understanding of the assumptions

 underlying the discipline is a prerequisite to understanding recent proposals for a redirection of

———————

1. In Posner, M. Foundations of Cognitive Science. Cambridge: MIT Press (A Bradford Book), 1989.  I wish to thank Alan Newell for his
extensive comments on an earlier draft.



t h e g o a l s o f t h e s c i e n c e ( s e e , f o r e x a m p l e , c h a p t e r s b y R u m e l h a r t a n d b y S e j n o w s k i a n d

Churchland).

In the final section of this chapter I will examine the methodologies available for validating

computational models as strong models of cognitive processes. While many of these techniques

are also discussed in other chapters of this book (e.g., the chapter by Simon and Kaplan, and by

Bower and Clapper) our own discussion is intended to show how some of these methods are

 relate to the notion of strong equivalence of processes, as the latter is developed here.

The many roles that computers play in Cognitive Science

It should be noted that the view that computing is relevant to understanding cognition, or

 intelligent behavior in general, goes as far back as the idea of computing itself. Turing’s (1937)

original paper on computability contains a section in which Turing attempts to provide some

 intuitive motivation for his notion of a mechanically “effective procedure” by looking at what a

mathematician does in the course of solving mathematical problems, and distilling this process to

i t s e s s e n t i a ls. Later Turing (1951) argued that a properly programmed computer co u l d i n

principle exhibit intelligent behavior. The argument rests on Turing’s own discovery of the

existence of a Universal Turing Machine, an abstract automaton that can imitate any other

formally specifiable computer. The relevance of the Universal Machine to cognitive science will

be raised briefly later.

Computers are relevant to Cognition in many ways. Newell (1970) has discussed a range of

views of the possible relation between computing and cognition. These vary all the way from the

view that computers provide an interesting new metaphor, to the view –- which I will defend--

herein –- that cognition is literally a species of computing, carried out in a particular type of--

biological mechanism. Below I sketch two of the major ways that computing is relevant to the

study of cognition. Later I shall attempt to elaborate and defend both these general propositions,

and argue that they have been decisive in the development of cognitive science, even though

t h e r e h a v e b e e n m a n y a r g u m e n t s c o n c e r n i n g t h e d e t a i l s – - a n d e v e n t h e f o u n d a t i o n a l- -

assumptions –- behind them.--

•  At the most abstract level, the class of mechanisms called computers are the only known

mechanisms that are sufficiently plastic in their behavior to match the plasticity of human

cognition. They are also the only known mechanism capable of producing behavior that
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can be described as “knowledge dependent”. Because of such properties computing

remains the primary candidate for meeting the dual needs of (a) explaining cognition in

m e c h a n i s t i c t e r m s a n d ( b ) a c c o u n t i n g f o r c e r t a i n o t h e r w i s e p r o b l e m a t i c a s p e c t s o f

cognition –- in particular the fact that behavior can be systematically influenced by--

inducing differences in beliefs or goals.

•  At a more concrete level, computers provide a way to deal with a number of problems

that plague the attempt to understand cognition.  Among them are the complexity of the

processes underlying cognition, and the need for a theory that bridges the gap from

internal processing to actual instances of behavior.  Such a theory is sometimes said to

m e e t t h e “ s u f fi c i e n c y c o n d i t i o n ” . T h i s c o n d i t i o n i m p o s e s a p a r t i c u l a r l y s t r i n g e n t

requirement on measures of the adequacy of a theory. It also forces the theorist to

e x p l i c i t l y c o n f r o n t c e r t a i n i s s u e s t h a t c o u l d o t h e r w i s e b e t a k e n f o r g r a n t e d o f

presupposed. Chief among them are the architecture-process distinction (and the nature

of the cognitive architecture) and the closely related question of the control structure

underlying cognitive processing.

What is Computing?

Some Background: Formalisms, Symbols and Mechanisms

The possibility of imitating life by artifact has intrigued people throughout history.  But it is

only in the second half of this century that the possibility of using the special type of artifact we

call a computer has been considered seriously as a means of understanding mental phenomena.

What is different about this latest interest is that the focus is not primarily on the imitation of

movements (as was the case with early clockwork mechanisms) but on the imitation of certain

u n o b s e r v a b l e i n t e r n a l p r o c e s s e s . T h i s n o t i o n o n l y b e c a m e c o n c e i v a b l e w i t h t h e g r a d u a l

e m e r g e n c e , i n s e v e r a l d i s p a r a t e a r e a s o f i n t e l l e c t u a l d e v e l o p m e n t , o f a c e r t a i n w a y o f

understanding mechanism. This new and more abstract notion of mechanism is entirely divorced

from the old style “mechanical” considerations (such as those that preoccupied Descartes, and

which Chomsky has characterized as “contact mechanics”) and is concerned only with abstractly

defined operations such as storing, retrieving and altering tokens of symbolic codes.
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This notion of mechanism arose in conjunction with attempts to develop a completely formal,

content-free foundation for mathematics.  The “Hilbert program” was one of the most ambitious

attempts to build up mathematics by purely formal means –- without regard to questions of what--

the formalism was about.  Some of this enterprise succeeded in the work of Frege and of Russell

and Whitehead.  On the other hand, one of the greatest intellectual achievements of our age was

the demonstration by purely formal means that the ultimate goal of complete formalization was

in principle not achievable (this was done originally by Godel and subsequently by Turing,

 Church, Post, and others, see the collection of papers in Davis, 1965).

T h e s a m e w o r k t h a t p r o v i d e d d e m o n s t r a t i o n s o f p a r t i c u l a r i n - p r i n c i p l e l i m i t a t i o n s o f

formalization also provided demonstrations of its universality.  Thus, Alan Turing, Emil Post and

Alonzo Church independently developed distinct formalisms which they showed were complete

in the sense that they were powerful enough to formally (i.e., “mechanically”) generate all

 sequences of expressions that could be interpreted as proofs, and hence could generate all

 provable theorems of logic.  In Turing’s case this took the form of showing that there exists a

universal mechanism (a particular Turing machine called the Universal Machine “UM”) which

c o u l d s i m u l a t e a n y m a c h a n i s m d e s c r i b a b l e i n i t s f o r m a l i s m . I t d o e s t h i s b y a c c e p t i n g a

description of the mechanism to be simulated, and then carries out a procedure whose input-

output behavior is identical to that which would have been generated by the machine whose

description it was given. We say that the UM computes the same function as the target machine,

where by “same function” we mean the same input-output pairs or the same extension of the

 function. There is no requirement that UM carry out the same steps as the target machine.  That

would be a stronger sense of equivalence –- one to which we will return presently.--

What is interesting about the latter work, from our point of view, is that in order to derive

such results (concerning the universality and incompleteness of certain formal systems) it was

necessary to understand the notions of proof and of deduction in a formal system in terms of the

manipulation of symbol tokens or marks on a piece of paper, where the manipulation was

 specified “mechanically” in a way that was entirely independent of how the symbols might be

interpreted. Logic became a game played with meaningless symbol tokens according to certain

formal rules (i.e., syntactic rules).

It was the development of the notion of universality of formal mechanism, first introduced in

the work on foundations of mathematics in the 1930s, which provided the initial impetus for

               v i e w i n g m i n d a s a s y m b o l p r o c e s s i n g s y s t e m . U n i v e r s a l i t y imp l i e s t h a t a f o r m a l s y m b o l

processing mechanism can produce any arbitrary input-output function that we can specify in

 suffient detail.  Put in more familiar terms, a Universal Machine can be programmed to compute
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any formally specified function.  This extreme plasticity in behavior is one of the reasons why

computers have from the very beginning been viewed as artifacts that might be capable of

 e x h i b i t i n g i n t e l l i g e n c e . M a n y p e o p l e w h o w e r e n o t f a m i l i a r w i t h t h i s b a s i c i d e a h a v e

misunderstood the capacity of machines. For example, the Ge s t a l t p s y c h o l o g i s t W o l f g a ng

Kohler (1947) viewed machines as too rigid to serve as models of mental activity. The latter, he

claimed, are governed by what he called “dynamic factors” –- an example of which are self--

distributing field effects, such as the effects which cause magnetic fields to be redistributed when

we introduce n e w p i e c e s o f m e t a l – - a s opposed to the “topographical factors” which are- -

structurally rigid. He says,

To the degree to which topographical conditions are rigidly given, and not to be
changed by dynamic factors, their existence means the exclusion of certain forms
of function, and the restriction of the processes to the possibilities compatible
with those conditions… This extreme relation between dynamic factors and
i m p o s e d t o p o g r a p h i c a l c o n d i t i o n s i s a l m o s t e n t i r e l y r e a l i z e d i n t y p i c a l
machines… we do not construct machines in which dynamic factors are the main
determinants of the form of operation (Kohler, 1947, p65).

That computers violate this claim is one of their most important and unique characteristics.

Their topographic structure is completely rigid, yet they are capable of maximal plasticity of

 function. It is this very property that led Alan Turing to speculate that computers would be

 capable in principle of exhibiting intelligent behavior. For example he devoted an important

 early philosophical paper (Turing, 1950) to an exposition of this idea.  Turing argued that a

 computer could in principle be made to exhibit intelligent activity to an arbitrary degree.  He

 claimed that a machine should qualify as being intelligent if it could successfully play the

 “imitation game” –- i.e.  fool a human observer, with whom it could only communicate through a--

keyboard and terminal, so that the observer could not discriminate between it and another person.

The possibility of a computer being able to successfully pass what has become known as the

 Turing Test is based entirely on the recognition of the plasticity of behavior entailed by symbolic

systems, which can be programmed to behave according to any finitely specifiable function.

Computation as a Symbolic Process

Devices that we call computers now come in a wide variety of forms –- most of which appear--

quite different from the one that Turing developed in his mathematical analysis. It is appropriate

to ask, then, what makes a system a computer.  This is a particularly relevant question inasmuch

as a working hypothesis of much of cognitive science is that the mind is literally a type of
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computer. One might begin by asking, In virtue of what property does the Turing machine

 achieve the universality or the programability that recommended it as a model of intelligence?

Newell (1980) provides an interesting insight into one characteristic that is essential for a

 device to be universal or programmable.  In order for a mechanism to be universal, its inputs

 m u s t b e p a r t i t i o n e d i n t o t w o d i s t i n c t c o m p o n e n t s , o n e o f w h i c h i s a s s i g n e d a p r i v i l e g e d

interpretation as instructions or as a specification of some particular input-output function, and

the other of which is treated as the proper input to that function. Such a partition is essential for

defining a Universal Turing machine. Thus there can only be arbitrary plasticity of behavior if

some of the inputs and outputs of the system are interpreted (or, as Newell puts it, if they have

the power to “designate” something extrinsic).

Desig n a t i o n i s i n d e e d o n e o f t h e c o r e i d e a s o f c o m p u t ing. In computers symbols may

d e s i g n a t e i n s e v e r a l w a y s : t h e y c a n p r o v i d e a c c e s s t o o t h e r s y m b o l s , t h e y c a n c a u s e a n

interpreter to perform the action designated by that symbol or they may designate other extrinsic

things. For example, they may designate abstract objects called numbers or they may designate

objects of reasoning (e.g. objects in the world or in the imagination, propositions, predicates, and

so on) or they may even designate goals.  Indeed, since what symbols “designate” need not exist

(e.g. unicorns, or the pot of gold at the end of the rainbow) the very notion of “designation”, as

meaning “refering to”, is problematic inasmuch as people usually understand “refer” to apply

 only when there exists a thing being referred to.  That’s why we usually talk about the relation of

symbols and what they symbolize as “semantics”, or we speak of the “meaning” of a symbol.  In

any case semantics, or meaning are relevant terms used to describe properties of states of

 computers (and people), but not of many other complex systems that are not functioning as

 computers (e.g. the Andromeda Galaxy).

Systems that have traditionally been called computers (e.g. the Turing machine) share a

 number of properties.  The view that certain of these properties are constitutitive of computing

(and consequently, that they are also constitutive of cognition, insofar as cognition is a species of

computing) will be called the “Classical view” (after Fodor & Pylyshyn, 1988).  In the next

 section we will consider some of these properties, acknowledging that this view is by no means

unanimously held among Cognitive Scientists (see, for example, the Chapter by Rumelhart).

The “Classical” view of Computing and Cognition
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In Turing’s original theoretical machine, and in every real digital computer, a distinction is

made between the processor and the memory. The processor “writes” symbolic expressions into

memory, alters them, and “reads” them.  Reading certain of these symbols causes specified

 actions to occur which may change other symbols. The memory  may consist of a tape, a set of

registers, or any form of working storage.  The expressions that are written are complex symbols

that are made up of simpler symbols, just the way sentences are complex symbols made up of

simpler symbols in a systematic way.  The processor (or, in the case of logic, the rules of

 inference) then transforms the expressions into new expressions in a special kind of systematic

way. The way such symbolic expressions are transformed in a Classical computer is very

 important. As has already been mentioned, the symbolic expressions have a semantics –- i.e.,--

they are codes for something, or they mean something.  Therefore the transformations of the

               expressions are designed to coherently maintain this meaning, or to ensure that the expressions

continue to make sense when semantically interpreted in a consistent way.

For example, if the expressions are numerals like 19, 1011, XIX, or expressions in some

 o t h e r n u meral notations, they usually serve as  codes  for n u m b e r s . I n t h a t c a s e w h e n t h e

computer transforms these expressions, they might refer to different numbers. If you can arrange

for the computer to transform them systematically in the appropriate way, the transformations

can correspond to useful mathematical operations, such as addition or multiplication. Take the

c a s e o f a n a b a c u s . H e r e p a t t e r n s o f b e a d s r e p r e s e n t n u m b e r s . P e o p l e l e a r n r u l e s f o r

transforming these patterns of beads in such a way that the semantic interpretation of before-and-

after pairs corresponds to a useful mathematical function.  But there is nothing instrinsically

 mathematical about the rules themselves: they are just rules for moving beads around.  What

 makes the rules useful for doing mathematics is that we are assured of a certain continuing

 correspondence between the formal or syntactic patterns of beads and mathematical objects (such

as numbers).  The way such a correspondence can be assured will be illustrated by an example in

the next section.

In scientific computing, as well as in the history of computer applications up to the 1970’s,

the most frequently encountered domain of representation was doubtlessly that of numbers, and

c o n s e q u e n t l y t h e m o s t c o m m o n t r a n s f o r m a t i o n s o v e r e x p r e s s i o n s w e r e t h o s e t h a t m i r r o r

m a t h e m a t i c a l f u n c t i o n s o v e r n u m b e r s . B u t i f t h e s y m b o l i c e x p r e s s i o n s w e r e c o d e s f o r

propositions or beliefs or knowledge, as they might be if they were expressions in some symbolic

logic, then the computer might transform them in ways corresponding to proofs or inferences, or

perhaps to a sequence of “thoughts” that occur during common-sense reasoning.  The important

thing is that, according to the Classical view, certain kinds of systems, which includes both

 minds and computers, operate on representations which take the form of symbolic codes.
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There is one more important property that such symbolic codes must have, according to the

Classical view.  In Classical symbol systems the meaning of a complex expression depends in a

systematic way on the meaning of its parts (or consituents). This is the way ordinary language,

formal logic, and even the number system works –- and there are good reasons believing that--

they must work that way in both practical computing and in modelling cognition.  In the case of

cognition, these reasons have to do with the productivity and the systematicity of thought and

 reasoning; two issues discussed at length in Fodor & Pylyshyn, 1988.

So to summarize, here is what the Classical view assumes. It assumes that both computers

and minds have at least the following three distinct levels of organization.

21. The semantic level or the knowledge level. At this level we explain why people, or

appropriately programmed computers, do certain things by saying what they know and

what their goals are, and by showing that these are connected in certain meaningful or

even rational ways.

2. The symbol level. The semantic content of knowledge and goals is assumed to be

encoded by symbolic expressions.  Such structured expressions have parts, each of which

also encodes some semantic content.  The codes and their structure, as well as the

regularities by which they are manipulated, are another level of organization of the

system.

 3. The physical (or biological) level. In order for the entire system to run, it has to be

realized in some physical form. The structure and the principles by which the physical

object functions corresponds to the physical or the biological level.

This three-level organization is what defines what I will call the Classical Computational (or

Cognitive) Architecture.

To illustrate the claim that there are different principles that apply at each of these levels,

 consider the following example.  Suppose you have a calculator with a square root button.  If you

want to explain why it gives strange answers or fails to work when the batteries are low or when

you cut one of the wires in it or when the temperature is too low, you have to refer to physical

properties of the calculator; to the physical level.  If you want to explain why certain rounding

———————

2. Although the Cognitive Science community tends to use the term “knowledge” quite freely in discussing semantic level principles, it is
sometimes worth distinguishing those semantic entities that are knowledge, from those that are goals, percepts, plans, and so on.  The more
general term “semantic level” will be used in contexts where such distinctions are important.  Philosophers even talk about the “intentional”
level or of “intentional” objects; but since the use of that terminology tends to raise a large, ancient, and not entirely relevant set of issues we
shall shun that term here.
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errors occur in the lower order digits of the answer, or why it takes longer to compute the answer

to some problems than to others, you have to refer to how numbers are symbolically encoded and

to what particular sequence of transformations of these symbolic expressions occurs (i.e. to the

algorithm used).  This is an explanation at the symbol level.  But then if you want to show that

the algorithm will always give the correct answer you have to refer to facts and theorems of

 number theory; i.e. to the semantics of the symbols.

One might ask how it is possible for symbolic expressions and rules to keep maintaining their

semantic interpretation; to keep the semantics of the expressions coherent. It is one of the

 i m p o r t a n t d i s c o v e r i e s o f f o r m a l l o g i c t h a t o n e c a n s p e c i f y r u l e s t h a t o p e r a t e o n s y m b o l i c

expressions in such a way that the sequence of expressions always corresponds to a proof. In

computing (and in cognitive science generally), one is not only interested in logical, or truth-

preserving sequences, but also in sequences that preserve such semantic properties as those

exhibited in heuristic or goal-directed reasoning.

The following numerical example shows how one can define an operation over symbolic

expressions and a semantic mapping (which I designate SF) from symbols to numbers, in such a

way that the operation can be constistently interpreted as addition.

A numerical example

To emphasize the generality of the following example (so that, for example, it could apply to

some system other than a conventional computer) I present it in its most abstract form. Suppose

 we have a certain “instantiation function” IF from equivalence classes of physical states of a

 certain system (perhaps only the parts of the system called its “memory registers”) to symbolic

expressions. For concreteness, let us say that the expressions consist of the atomic symbols o

and x arranged in strings of arbitrary length.  In this example then, the states of the memory

 registers would correspond to such expressions as o, x, ox, xo, xx, oox, oxo, oxx, xoo, xox, xxo,

xxx, xooo and so on. Each of these expressions corresponds to some possible state of each of the
3machine’s memory registers

———————

3. Note that although no bounds are assumed on the length of the expressions, the arguments presented hold even if the expressions are bounded
– so long as the length is sufficiently great that the expressions have to be treated as though they were not atomic, which is true in any useful---
computer. Because of this IF instatiates the expressions by means of instantiations of the elementary symbols o and x and the concatenation
relation. Similarly, operations on expressions (such as the operation # that will be defined below) are defined in terms of operations on
individual symbols.
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Let us further suppose that when a certain pattern (which I henceforth designate by the

 symbol “#”) occurs in a portion of the machine called its “instruction register,” the machine’s

memory registers change states according to a certain specifiable regularity.  For example, when

the portion of the machine we call register 1 is in the state that maps onto the string xox and

 register 2 is in the state that maps onto the string xxo, then register 3 changes its state from

 whatever it was to the state that corresponds to the string xoxx.

This sort of regularity might conceivably be used to represent addition of numbers, providing

we adopt an appropriate semantic function SF, and providing that the regularity meets certain

requirements. In this case the required semantic function is easy to define –- it happens to be the--

function which maps strings of o’s and x’s onto numbers, using the familiar binary number

 system. In defining the SF formally, moreover, we provide a way of stating the requirements

that the regularity must meet if it is to be consistently interpretable as addition of numbers.

Before defining the SF, however, it is necessary to give a formal definition of the set of

 expressions consisting of x’s and o’s. Since we are not assuming any bound on the number of

states that a register can take (and hence on the length of the strings of x’s and o’s), the definition

of the strings must be given recursively as follows:

(1) o is a string
(2) x is a string
(3) if T is a string, then so is To (i.e. string T followed by “o”)
(4) if T is a string, then so is Tx (i.e. string T followed by “x”)

A simpler way to express (1) to (4) is in Backus-Nauer form as:

T ::= o|x|To|Tx  (where ::= means “is defined to be” and “|” means “or”)

The semantic function can then be defined recursively as follows,  using the definition of the

strings provided above:

(1) SF(o) = 0 (the semantic interpretation of “o” is the number zero)

(2) SF(x) = 1 (the semantic interpretation of “x” is the number one)

(3) SF(To)= 2*SF(T) (the semantic interpretation of a string T followed by “o” is two times

the semantic interpretation of T alone)

(4) SF(Tx)= 2*SF(T) + 1

(the semantic interpretation of a string T followed by “x” is twice the

semantic interpretation of T alone plus one).
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The above constitutes an example of a semantic function, defined recursively on the structure

of the strings of symbols.  It is analogous to Tarski’s method for defining the semantics of

 sentences in some formal calculus in terms of their combinatorial properties.  This mapping

 function is nontrivial.  In fact, it defines the semantic interpretation of a place-value numeral

 notation.

 In order for this semantic function to be a useful one, however, there must be regularities in

the state transitions in the computer that correspond to mathematical operation defined over the

interpretations of the symbols in the intended domain.  In other words, there must be state

 transitions which preserve the intended interpretation SF. One such regularity, which was

 associated with the occurrence of the symbol “#” in the instruction register, has already been

 p r o p o s e d . F o r “ # ” t o c o r r e s p o n d t o a d d i t i o n ( o r , a l t e r n a t i v e l y , f o r i t t o b e c o n s i s t e n t l y

interpretable as addition) state transitions must preserve the semantic interpretation of the symbol

strings under the mathematically defined operation of addition (defined, say, in terms of Peano’s

axioms). In other words something like the following must be true:

If the computer is in the state characterized by the description:

1. Register 1 “contains” (or IF maps it onto) string T1

2. Register 2 “contains” (or IF maps it onto) string T2

3. The “Instruction Register” “contains” (or IF maps it onto) the symbol “#”

Then the computer goes into the state characterized by:

4. R e g i s t e r 3 “ c o n t a i n s ” ( o r I F m a p s i t o n t o ) t h e s t r i n g T , w h e r e t h e3
following relation holds:

SF(T ) = SF(T ) + SF(T )3 1 2

In other words the (mathematically defined) sum of the semantic interpretations of the two

register states must always correspond to the semantic interpretation of the state of the third

 register. Note that the interpretation is in the abstract domain of numbers where operations such

as additions are mathematically defined, whereas the symbols being interpreted (the domain of

the SF function) are functional states, defined by IF as equivalence classes of physical states of

the computer.

The above ideas and distinctions arise in clear form in the case of conventional computers.

However, they apply equally in the case of cognition, even though our subjective experience

 suggests that what is going on in the mind may be different.  However, the empirical facts and
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the requirement of exmplanatory adequacy demand all three distinct levels (physical, symbolic,

and semantic) in the case of human cognition, just as we needed them in the computer case.

 Although the arguments are beyond the scope of this essay (see Pylyshyn, 1984), it appears that

i n o r d e r t o e x p l a i n i n t e l l i g e n t h u m a n b e h a v i o r w e n e e d t o a p p e a l t o a l l t h r e e l e v e l s o f

organization.

•  We need the knowledge level to explain why certain goals and beliefs tend to lead to

certain behaviors, and why the behaviors can be changed in rational ways when new

beliefs are added by telling people things.  For example, in order to explain why I am

sitting here at this moment striking these particular keys of my keyboard, one must

mention my beliefs about Cognitive Science, my beliefs about what will become of this

manuscript, and my general goals of conveying true information to those who might read

the book in which this essay is intended to appear.  Without this level we could not

capture such regularities as, for example, the fact that if I were to have the belief that

publication of the book had been cancelled I would exhibit quite different behavior;

regardless of the particular “stimuli” that might have led me to have this (presumeably

false) belief. This sort of semantically-characterizable malleability of behavior is referred

to as “cognitive penetrability”, and has been used as diagnostic of behavior requiring

knowledge-level explanation (for more on this, see the later section on methodologies for

strong equivalence, as well as Pylyshyn, 1984).

•  We need the symbol level in order to explain such things as why some tasks take longer

or result in more errors than other tasks.  Information processing psychology is full of

examples of discovering that the form of the representation makes a difference to their

b e h a v i o r i n e x p e r i m e n t s . For example, in problem solving experiments it makes a

difference whether subjects encode the fact that all the objects in a box are red or the

equivalent fact that none of the objects are blue.

•  We obviously need the biological level in order to explain such things as the effects of

drugs or jet lag or brain damage  on behavior.  It is also possible that we may need the

biological level to explain other things as well, such as possibly the nature of cognitive

development or maturation or psychopathology, and perhaps some changes that are now

called “learning”; exactly what facts fall at each of the three levels remains to a large

extent an open empirical question.

Objections to the Classical View
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There has always been opposition to the view that we have symbol structures in our heads.

The idea that the brain thinks by writing symbols and reading them sounds absurd to many.  It

suggests to some people that we have been influenced too much by the way current electronic

computers work.  The basic source of uneasiness seems to come from the fact that we do not

have the subjective experience that we are manipulating symbols.  But subjective experience has

been a notoriously misleading source of evidence for what goes on in the mind.  Research in

 human information processing reveals countless processes that clearly must be occurring (e.g.

 parsing, inference) of which we have little or no subjective awareness.

Arguments for the necessity of positing symbol structures in human reasoning –- for a--

 “ L a n g u a g e o f T h o u g h t ” – - a r e g i v e n e l s e w h e r e ( F o d o r , 1 9 7 5 ; P y l y s h y n , 1 9 8 4 ; F o d o r &- -

Pylyshyn, 1988).  Details of these argument are beyond the scope of this essay.  For the present

purposes, the following summary will suffice.

If the knowledge level description is correct then we have to explain how it is possible for a

physical system, like a human being, to behave in ways that correspond to the knowledge-level

principles, while at the same time being governed by physical laws.  The content of knowledge is

related to the state of a system by a semantic relation, which is quite a different relation from the

ones that appear on natural laws (for one thing, the object of the relation need not exist).  At the

present time there is only one candidate explanation for how knowledge-level principles can be

causally realized, and that is the one that builds on a set of ideas going back to the insights of

Boole, Hilbert, Turing, Frege and other logicians.  It says that knowledge is encoded by a system

of symbolic codes, which themselves are physically realized, and that it is the physical properties

of the codes that cause the behaviors in question.

What Fodor and Pylyshyn (1988) have added to this general statement is an argument that the

system of codes must be structured much like a language (as, indeed, it is in the various logical

calculi that have been developed).  The argument stems in part from the observation that both

r e p r e s e n t a t i o n a l c a p a c i t y a n d i n f e r e n t i a l c a p a c i t y i n i n t e l l i g e n t s y s t e m s i s s y s t e m a t i c .

Representational or inferential capacities are not punctate –- they do not occur in isolation: the--

capacity for representing certain things or for drawing certain inferences goes along with the

 c a p a c i t y f o r r e p r e s e n t i n g o t h e r t h i n g s a n d f o r d r a w i n g o t h e r i n f e r e n c e s . F o r e x a m p l e , a n

intelligent system that is capable of representing certain situations (e.g. that John loves Mary, or

that a small red ball is in a large blue box), must also be capable –- whether or not this capacity is--

exercised –- of representing other situations involving the same conceptual components (e.g.,--

that Mary loves John or that a large blue ball is in small red box). Similarly, any intelligent

system that can draw certain inferences (e.g. can infer from knowing that it is sunny and warm
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and humid, that it is sunny; i.e. infer P from P and Q and R), can also draw other related

 inferences (e.g., can infer from knowing that it is sunny and warm, that it is sunny; i.e. infer P

from P and Q).

T h i s s o r t o f s y s t e m a t i c i t y f o l l o w s a u t o m a t i c a l l y f r o m t h e u s e o f s t r u c t u r e d s y m b o l i c

expressions to represent knowledge and to serve as the basis for inference. In other words it is a
4side-effect of a classical architecture . In contrast it is a property that must be stipulated and

 enforced by the theorist (i.e. it is a free empirical parameter) in other non-symbolic architectures,

such as the so-called Connectionist architectures.

It must be stressed that at present there exists no alternative to what Newell (1980) has called

the “physical symbol system” assumption for dealing with reasoning in a mechanical way, even

though there are many speculative discussions of how one might eventually be able to do without

symbols. Therefore, even if one does not accept the various arguments that have been given for

the ultimate necessity of symbol structures, the rational strategy is to continue with the classical

assumption until some better alternative comes along.  At least that is the strategy adopted in

 every other mature science.

Computational Methodologies in Cognitive Science:

The High Road and the Low Road

As I have already suggested, computers can enter into the detailed process of contructing

 m o d e l s o f c o g n i t i v e p r o c e s s e s a t s e v e r a l l e v e l s . I n p r a c t i c e t h e m o r e fi n e - g r a i n e d t h e

correspondence match, the narrower the range of phenomena the model is able to cover.  For this

reason experimental psychologists, who have traditionally been more concerned with models that

can be tested in quite specific detail against laboratory data, have generally worked with models

that are relatively narrow in scope.  On the other hand investigators working within the Artificial

I n t e l l i g e n c e t r a d i t i o n h a v e b e e n m o r e c o n c e r n e d w i t h e x p l a i n i n g t h e g e n e r a l a b i l i t i e s o r

capacities in question, while postponing the detailed empirical validation of the mechanisms and

algorithms actually used in the model.  These have sometimes been referred to as the “low road”

———————

4. We are using the term “architecture” here somewhat losely since it has not yet been defined.  In a later section this notion will be discussed in
greated detail since it is one of the central computational ideas in cognitive science
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and the “high road”, respectively, to understanding cognitive processes.  They represent different
5strategies for arriving at the same ultimate end: modelling human cognitive processes .

David Marr was one of the most influential champions of the high road, or at least of the

 strategy that begins at the high end of the road.  He has proposed that there are three levels at

which cognitive processes may be studied.  He referred to these as the level of the computation,

the level of the algorithm, and the level of the mechanism. A theory at the first level was called a

Type I Theory.  Although the notion of a Type I Theory is not very well defined, Marr did give

some examples, chiefly from his own work or that of his colleagues.

Any domain that has a closed formal characterization of the task or of the input-output

 function being carried out has a Type I Theory. A frequently cited examples involve the

 recovery of 3-D structure from a variety of types of visual cues.  Thus, for example, there are at

least partial theories concerning what is entailed in recovering structure from motion or from

 s t e r e o p s i s o r f r o m s h a d i n g o r f r o m c o n t o u r i n f o r m a t i o n . S u c h t h e o r i e s g i v e a p r e c i s e

characterization of the conditions under which the “inverse mapping” from the data in question

(e.g. motion of points or contours on a 2-D surface) to a 3-D structure is possible, and they

 formally characterize the mapping. Such theories invariable rely on recognizing certain “natural

constraints” that exist in the world and which are exploited by the visual system in recovering the

3-D structure.

In those cases in which there is a type I theory of some particular cognitive skill, it might be

possible to determine the conditions under which that skill will succeed or fail to accomplish

 some particular task.  For example if we had a mathematical characterization of the relations

 between certain features of the light and the percepts which they engendered (i.e. a type I theory

of certain aspects of visual perception), then we might be able to relate the light features in

 question to the scene layout (via projective geometry) and determine the conditions under which

perception mediated by those features would be veridical.

T h i s , i n f a c t , i s w h a t w a s d o n e i n m o d e l l i n g s u c h p r o c e s s e s a s t h o s e i n v o l v e d i n t h e

perception of form from motion (Ullman, 1979), of surface orientation from texture (Stevens,

1980), or of stereopsis (Marr and Poggio, 1979). In the first of these, for example, Ullman

showed mathematically that the unambiguous recovery of three-dimensional shape from the

motion of certain visual features on the retina (e.g. random dots in the case of the “kinetic depth

———————

5. Of course, there are also those studying cognition who deny any concern with modelling human cognitive processes:  They wish only to create
computer systems that carry our some intelligent task.  Yet there is reason to think that such people are also implicitly developing theories of
human cognition, inasmuch as facts about human cognition are being brought in as part of the task definition (see the discussion of implicit
empirical constraints in Artificial Intelligence research in Pylyshyn, 1978).
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effect” studied by Wallach & O’Connell, 1953) can only be done if certain conditions are met.

The mathematical function relating moving proximal features to the three-dimensional scene

 from which the features are projected is unique only if (a) there are enough distinct views and

distinct features (3 views and 4 features for orthographic projection, or 2 views and 5 features for

perspective projection), and (b) if the process is constrained in the possible interpretations it

 considers. Without (b) a unique function is not possi b l e s i n c e t h e s a m e p r o x i m a l f e a t u re

movements can originate from arbitrarily many different distal configurations. However if the

interpretation is constrained by what Ullman calls the “rigidity assumption”, then a unique

i n t e r p r e t a t i o n i s p o s s i b l e i n v e r y n e a r l y j u s t t h o s e c a s e s w h e r e p e o p l e g i v e t h e v e r i d i c a l

interpretation. The constraint is that the process attempts to provide an interpretation of the

f e a t u r e s a s o r i g i n a t i n g f r o m p o i n t s o n a r i g i d b o d y i n m o t i o n a n d f a i l s t o p r o v i d e a n y

interpretation if that is not possible –- it does not consider other logically possible interpretations.--

While this is not yet a completely adequate Type I theory (e.g. it fails for biological motion, such

as studied by Johansson, 1975, and for perceived elastic deformations), it provides an original

computational account of the kinetic depth effect.

Note that such a mathematical result is not based on a detailed study of the process of human

perception, only on the fact that it has a certain capacity, namely the capacity to perceive a

 u n i q u e t h r e e - d i m e n s i o n a l s t r u c t u r e f r o m t h e m o t i o n o f c e r t a i n f e a t u r e p o i n t s ( i . e . , o n t h e

existence of the “kinetic depth effect”). The mathematical result tells us the conditions under

w h i c h s uch an accomplishment is possible. Thus it tells us something about the i n t r i n s i c

r e q u i r e m e n t s o f t h a t t a s k ; r e q u i r e m e n t s w h i c h t h e v i s u a l s y stem must somehow m e e t . I n

Ullman’s case the function was also described in a constructive manner –- i.e. in a manner which--

enabled it to be computed from the sort of information that is available to a computer equiped

with appropriate transducers. The latter property is also an important part of the computationalist

program. Of course how the human visual system does in fact compute that function is a

question whose answer depends upon further empirical considerations. Notice, however, that

simply knowing some of the properties of the function that the visual system computes allows

one to understand why perception is generally veridical even though, contra Gibson, we know

that the step from activating sensors to perception involves a fallible process (an inference-like

process which, however, is insensitive to general knowledge of the world). The reason it is

generally veridical is that the conditions under which this quasi-inferencial inverse mapping is

valid, are ones that happen in fact to be frequently met in our kind of world –- i.e., the “rigidity--

assumption” is generally true, at least to a first approximation, in our world (though it may well

not be generally true in, say, the world inhabited by fish).
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What Marr was advocating is a special case of a top-down research strategy, wherein one

 proceeds by attempting to discover the broader outlines of a problem domain prior to solving

 some of the detailed subproblems.  This sort of approach is practiced systematically in computer

science, where –- sometimes under the name of “structured programming” –- it is considered the-- --

strategy of choice in the design of computer systems. Consequently it is the strategy that

 characterizes artificial intelligence approaches to understanding cognition. Marr went even

            further to advocate that one should not worry about developing a system that exhibits the

 performance in question until one has at least attempted to develop a theory of the task (a Type I

theory), and consequently that one should work first in domains (such as perhaps vision) which

lend themselves to a Type I theory, rather than domains like common-sense reasoning, where

 there may not be such a theory.  He argued is that if one begins by hypothesizing a particular

a l g o r i t h m u s e d b y a n o r g a n i s m w i t h o u t fi r s t u n d e r s t a n d i n g e x a c t l y w h a t t h e a l g o r i t h m i s

supposed to be computing, one runs the danger of simply mimicking fragments of behavior
6without understanding its principles or the goals that the behavior is satisfying. This is similar

to Chomsky and others’ methodological injunction not to hypothesize learning mechanisms for

the acquisition of certain skills until one has a good theory of the steady-state skill itself.

Although  f e w p e o p l e i n C o g nitive Science take a position as extreme as Marr’s, there

c o n t i n u e t o b e d i f f e r e n c e s i n s t y l e o f a p p r o a c h in C o g n i t i v e S c i e n c e r e s e a r c h . T h e r e a r e

differences between people who are concerned with generality and with the search for general

principles, as opposed to those who wish to account for experimental variance. There are also

differences between approaches that place top priority on the sufficiency criterion, and hence

construct working programs that cover some domain of skill, as opposed to those who are

concerned with deciding between one or two general options (e.g. deciding whether a certain

phenomenon, say the recognition that a stimulus is a member of a previously memorize set, is the

result of a parallel search, a serial self terminating search, or a serial exhaustive search).

To some extent which of these strategies is followed depends upon the area of research or the

particular empirical phenomena being investigated. Thus the study of early vision is frequently

p u r s u e d b y a t t e m p t i n g t o i m p l e m e n t a l g o r i t h m s a n d e x p l o r e t h e i r e n t a i l m e n t s . P r o b l e m s

associated with language understanding and discourse processes are aften pursued within that

tradition as well. On the other hand, the study of learning, memory, and problem solving has

———————

6. Although in discussing the distinction between a “computational theory” and an algorithm, Marr draws the analogy between mathematical
theories, such as the theory of Fourier Analysis, and particular algorithms, such as the Fast Fourier Transform (FFT) algorithm, the examples
from his own work in vision do not appear to fit that analogy.  In fact, what is called a “theory of the computation” (or a Type I theory) is
typically a theory that links a function (such as computing structure from motion or shading) to a teleological story.  Marr was preoccupied
with the question “what is this computation for?” or “What useful information about the world does it provide the organism?”  This, however,
does not provide the basis for a principled distinction between levels.  It is clearly just a useful heuristic for encouraging the theorist to look for
independent motivations and broader functional units when formulating a theory in some domain.
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been successfully approached by both the high road and the low road.  Insofar as the empirical

phenomenon of interest can be attributed to some particular isolated mechanism or process, it

 may be possible to establish empirically the nature of that process by carrying out a series of

 experiments. But to the the extent that the phenomenon arises from the interaction of many

 processes, it may not be possible to explain it without a more general model that embodies the

entire set of relevant processes.  The pitfalls of attempting to answer general questions by

 isolating effects and by attributing phenomena to particular features of the process have been

 well documented by Newell (1973c), who argued that (as the title of his paper says) “You can’t

play twenty questions with nature and win”.

Despite these pitfalls, it appears to be possible to study certain specific subprocesses in detail

in some cases without building large scale models.  Indeed, the area of Cognitive Science

 sometimes known as “Information Processing Psychology” has been dominated by the empirical

v a l i d a t i o n o f m i n i - m o d e l s . T h e a n a l y s i s o f c o g n i t i v e p r o c e s s e s i n t o s t a g e s u s i n g “ m e n t a l

chronometry” (e.g. Posner, 1978) is a good example. The methodology for such fine-grained

analysis of cognitive processes is discussed in the chapter by Bower & Clapper. To take a

specific example, it appears to be possible to study aspects of short-term memory without

developing large scale models (e.g. Sperling, 1967). Indeed, because the models are so small-

scale, theorizing in this area has typically not involved implementating models in the form of

computer programs.

But even here one must be cautious in concluding that there is nothing to be gained by

actually implementing small-scale models. Newell (1973b) provides an excellent example of

how the attempt to design a computer system to account for certain empirical phenomena of

short-term memory can itself lead to new hypotheses –- hypotheses which might otherwise not--

have arisen. In that particular example, the attempt to implement a model in an independently

motivated architecture led to a particular way of accounting for Sternberg’s (1969) short-term

memory scanning results; the so-called “decoding hypothesis”, which involves neither exhustive

nor self-terminating search (the two options that had been under investigation in much of the

experimental research) and contains both parallel and serial components (also two options that

had been assumed to exhaust the possibilities).

The control issue

The commitment to the construction of a model meeting the sufficiency condition, i.e., which

actually generates token behaviors, forces one to confront the problem of how, and under what
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conditions, the internal representations and the rules are invoked in the course of generating

 actions. These are question that concern the control of the process.  While they form a central

topic of study in computer science, they were virtually never raised in a cognitive psychology

that was not constrained by computational sufficiency.  Indeed one of the main criticism that was

leveled against the early work by cognitive psychologists like Tolman, was that their theories

 dealt only with the organism’s representations (“mental maps”), but had no way of saying how

these representations would lead to action.  For example, in an early critique of this cognitivist

approach Guthrie (1935) wrote,

In his concern for what goes on in the rat’s mind, Tolman has neglected to predict
what the rat will do. So far as the theory is concerned the rat is left buried in
thought; if he gets to the food-box at the end that is his concern, not the concern
of the theory (p 172).

There is much more to understanding control structures than knowing how operations are

 s e q u e nced. We are so used to thinking of procedures as seque n c e s o f i n s t r u c t i o n s w h i c h

continue their fixed course until some conditional branch operation detects a specified condition,

t h a t a l t e r n a t i v e o r g a n i z a t i o n s d o n o t r e a d i l y s p r i n g t o m i n d . Y e t t h i s is ju s t o n e t y p e o f

organization of control –- one in which control is passed along a linear sequence from operation--

t o o p e r a t i o n : w h e n o n e o p e r a t i o n fi n i s h e s i t p a s s e s c o n t r o l t o t h e n e x t o p e r a t i o n i n l i n e .

However, in computer science and artificial intelligence there is a great deal of interest in very

different control schemes –- ones which may change psychologists’ thinking about the range of--

possibilities available for converting representations into action.

In what follows, I briefly survey some of the issues that arise when one considers the

problem of controlling the way that processes unfold in response to representations, rules, and

the contingencies of the environment. Our purpose is not to describe the range of control

structures that are currently being studied in computer science, but merely to provide some

intuitive sense of what some of the distinctions are in this field and to suggest that cognitive

science has much to learn from this area of development. Considerations such as these are not

likely to be raised without a commitment to the realization of the process model on a computer.

And because control issues are one of the central areas of study in computer science, progress in

developing computational models of cognitive processes will very likely depend on technical

ideas originating in that field (and more particularly in Artificial Intelligence).

One of the earliest breakthroughs in understanding the nature of control was the articulation

of the idea of feedback from the environment to be controlled. With this a certain balance was

restored between a device and its environment: Although only the device is credited with having

a goal, the responsibility for its behavior is shared. At times when the environment is passive the
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initiative appears to come primarily from the device, while at other times the environment

 appears to intervene and the initiative seems to go in the opposite direction.  This notion of the

responsibility for initiation of different actions is fundamental to the understanding of control.  In

the case of most computer programs, the most common idea has been that of control moving

 from point to point, or from instruction to instruction, in a largely predetermined way.  Such

 s e q u e n c i n g o f i n s t r u c t i o n s m a k e s t h e n o t i o n o f fl o w o f c o n t r o l q u i t e n a t u r a l , a n d b r a n c h

instructions make it equally natural to think of passing or sending control to another locus.

 W h e n c o n t r o l p a s s i n g i s c o m b i n e d w i t h a p r i m i t i v e m e s s a g e p a s s i n g f a c i l i t y ( f o r p a s s i n g

arguments)  subroutines  beco m e p o s s i b l e . A n d s i n c e s u b r o u t i n e s c a n b e n e s t e d – - that is,- -

subroutines can themselves send control to still lower subroutines with the assurance that it will

eventually find its way back –- the notion of a hierarchy of control also emerges. Miller,--

 Galanter, and Pribram (1960) saw the psychological importance of the idea of hierarchical

 subroutine s ; t h e y c a l l e d t h e m t e s t - o p e r a t e - t e st-exit or TOTE units, and suggested that they

should be viewed as the basic theoretical unit of psychology –- to replace the ubiquitous reflex--

arc. This idea has been very influential in shaping psychologists’ thinking about cognition.

There are a number of good reasons why a hierarchical system of control is such a powerful

concept. By keeping the interactions between routine and subroutine simple (in terms both of

when control is passed, and of what messages are sent along with it), it becomes easier to think

of each routine as a nearly independent subsystem; and that makes the whole system easier to

add to, modify, and understand (see the classical discussion of the importance of hierarchical

organization in nature, in Simon, 1969). Each routine in the hierarchy can be thought of as

defining some (sub-)goal, in an overall goal-directed system. Passing control to a subroutine

 amounts to activating a subgoal, and control is returned when that subgoal is consummated.  So

powerful an idea is this, that its shortcomings were largely overlooked for many years.

As early as 1962, however, Allen Newell (Newell, 1962) pointed out some of the rigidity in

such an organization. So long as each subroutine is a narrow “specialist,” such as a routine for

searching a list, the usual highly restricted communication between routine and subroutine works

well; you can just pass the arguments and a return address to that routine and give it control.  It

will then return with an answer when it is finished.  But if the subroutine is not such a narrow

s p e c i a l i s t , i t m i g h t h e l p t o b e a b l e t o c o m m u n i c a t e e a c h t a s k i n m o r e fl e x i b l e t e r m s .

Furthermore, it might help if the subroutine’s progress could be monitored along the way, to

               prevent it from using up an unwarranted amount of time and resources (e.g. memory) on some

relatively minor task, or on a task that some other process might be able to determine was

 doomed to fail.  Likewise, it would help if the subroutine could report its results more flexibly –---

especially if it could report “what went wrong” in cases where it failed.  How to convert these
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d e s i d e r a t a i n t o e f fi c i e n t c o m p u t a t i o n a l f o r m h a s b e e n o n e o f t h e m a i n d e s i g n c o n c e r n s i n

developing artificial intelligence programming languages.

A variety of different control structures can be characterized in terms of two distinctions: (1)

between sending control (where the initiative lies with the old locus), and capturing control

 (where the initiative lies with the new locus); and (2) between directing a message to one

 specified recipient, and broadcasting it to all routines or “modules” at once.  For example, in the

standard subroutine-hierarchy case, control is always sent (by the routine that already has it), and

a message (containing parameters and a return address) is directed specifically to the routine that

is being given control; and when the subgoal is achieved, control is sent back, along with a result

message. In pattern-invoked procedure calls, such as used in Planner or Prolog, when a task

needs to be done, a message describing the goal is broadcast, and control is then captured by

 some module designed to respond to that particular goal message. This is also the basic idea of

what is sometimes called a “blackboard” control structure, of which the old Pandemonium

s y s t e m ( s e e , f o r e x a m p l e , L i n d s a y & N o r m a n , 1 9 7 7 ) a n d t h e n e w e r H e a r s a y - I I s p e a c h

recognition system (Erman, Hayes-Roth, Lesser & Reddy, 1980) are examples.

Production systems are special cases of pattern-invoked procedure calls.  In production

 systems messages are also broadcast, and control captured.  But when the production finishes, it

again just broadcasts a message.  Its basic control cycle is called a “recognize-act” cycle, in

 contrast with the more traditional “fetch-execute” cycle of conventional computing.  The current

work on production systems is described in the chapter by Newell, Rosenbloom and Laird.

The distinction between whether processes are invoked explicitly by commands, indirectly

 by the occurence of other events, or implicitly by certain conditions being met is an important

one in computer science.  The distinction is closely related to the difference between a test and

an “interrupt” (the latter of which can occur in aribitrary relation to a process). The distinction

b e t w e e n d a t a - i n v o k e d , o r e v e n t - i n v o k e d , p r o c e s s e s ( c h a r a c t e r i s t i c o f s o - c a l l e d “ d e m o n ”

p r o c e d u r e s , w h i c h i n c l u d e s “ i f - a d d e d ” o r “ i f - a l t e r e d ” o r “ i f - e x a m i n e d ” p r o c e d u r e s t h a t a r e

e v o k e d b y v a r i o u s d i s t i n c t t y p e s o f c o m p u t a t i o n a l e v e n t s ) , a n d e x p l i c i t p r o c e s s - i n v o k e d

procedures (characteristic of what are sometimes called “servant” or “if-needed” procedures) is

an important recurring theme in the study of control regimes.

Many of the concerns in designing new architectures reduce to the following three questions:

(1) how to enable flexible and effective communication among different processes or modules,

(2) how to ensure that all relevant information (and as little as possible irrelevant information) is

brought to bear in making decisions or inferences, and (3) how to withhold and release the
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making of decisions until the appropriate times.  The second question has received a great deal of

research, and has led to some proposals for organizing knowledge so that its relevance to

 particular topics is easily determined (e.g. “Frames”, “Scripts”, “schemas”).  The third question

i s a l s o o f s p e c i a l c o n c e r n t o p s y c h o l o g i s t s ( e g B r a n s f o r d a n d J o h n s o n , 1 9 7 3 ) w h o h a v e

demonstrated experimentally that many inferences are carried out in advance of being required

for some particular task (e.g. at the time utterances are heard, as opposed to at the time their

c o n t e n t i s n e e d e d f o r s o m e d e c i s i o n ) . M a k i n g d e c i s i o n s o r e x e c u t i n g p r o c e d u r e s m u s t

sometimes be withheld until the appropriate context is available.  Several proposals for dealing

with such linguistic problems as referential opacity rely on this notion of withholding execution

pending the appropriate context.  For instance, Davies and Isard’s (1972) discussion of language

comprehension places considerable emphasis on the importance of withholding the evaluation of

procedures which attempt too identify the referents of various parts of an utterance until the

 appropriate time.  Thus there is a growing recognition among investigators interested in the

 problems of cognitive psychology that a variety of questions related to control must play a more

prominent role.

For psychologists it has primarily been the attempt to provide a running system that has

 forced such issues to the fore. Without the need to think in terms of a running system, people

have typically focussed on what are sometimes called “permissive” rules –- such as the rules of--

logic or of grammar –- which specify the relations among representations that are permissible.--

In that case there is no need to be concerned with the conditions under which particular rules are

invoked, or for the implications of such control issues for the cognitive architecture.

There is no denying that the system of permissive rules is important.  Without a distinction

between what Chomsky calls a competence theory and a performance theory, or what McCarthy

& Hays (1969) refer to as the epistemological and the heuristic problems of intelligence, we can

find ourselves simply mimicking the most frequent behavior rather than inferring the underlying

mechanisms. Yet according to the computational view, understanding a process also requires

 having a theory of what makes the process unfold as it does on particular occasions, and that in

turn requires that issues of control and of the appropriate cognitive architecture be addressed as

well.

The Empirical Status of Computational Models
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Levels of Correspondence and “Strong Equivalence”

Regardless of whether one takes the high road or the low road, in Cognitive Science one is

ultimately interested in whether the computational model is empirically valid –- whether it--

 corresponds to human cognitive processes.  “Corresponding”, however, is not a straightforward

notion; correspondence can occur at many levels.  If a computational process is to be a serious

candidate as an explanatory model of mental processing, one is owed some account, as explicit

as possible, of how this model relates to the domain of phenomena it is to explain.  Specifying

the empirical claims entailed by the model is the task of the theory which that model instantiates.

Such a theory might, for example, simply claim that the model realizes the same input-output

 function as the organism being modelled; that it is, perhaps, a theory of that function, or a Type I

Theory in Marr’s terms.  As we have seen in discussing the high road methodology in the

 previous section, even at this most general level of correspondence, such a theory can make a

substantial contribution to understanding the process by providing a theory of the demands of the

task.

A stronger claim might be that the model realizes some particular function using the same

method as the person being modelled.  The notion of a method is not a very well defined nor

consistently used one, even among computer scientists.  However, it generally entails something

more specific than just input-output equivalence.  For example, we talk of the relaxation method

for solving equations of interacting constraints, Newt o n ’ s m e t h o d f o r l o c a t i n g m i n i m a a nd

maxima of a function, the Fourier transform method of computing the effect of a certain filter on

a waveform, and so on. These provide a more specific indication of the nature of the process

than we would get if we only knew the input-output function.

To specify in greater detail what sequence of steps the system went through would be to

provide something like an algorithm for the process. The notion of algorithm is somewhat better

established in computer science than is the notion of method. For example there are a variety of

well known algorithms for various kinds of numerical approximations to functions (which are, in

fact, catalogued and published), for parsing context-free languages (e.g the Early algorithm), and

so on.  Algorithms for sorting and merging lists are another major area of study (e.g.  Knuth,

1968), as are algorithms for table lookup.

There are, of course, even finer levels of comparison between computational processes.  For

example, an even more specific level of comparison for computational models is that of a

program: the encoding of a particular algorithm in some programming language. Even finer
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levels of comparison between computational systems is possible when they are implemented on

actual computers. For example, we could have identical programs that were run on phsycally

different computers, and so on.  Thus there is plenty of scope in the possible claims that a theory

might make about the level of correspondence between model and empirical domain, or about

what properties of the model could be said to have “psychological reality”. Clearly, if the

 computational system is to be viewed as a model of the cognitive process, rather than as a

 simulation of cognitive behavior, it must correspond to the mental process in more detail than is

implied by weak equivalence.  On the other hand, it is equally clear that because computers are

not only made of quite different stuff from brains, but the details of how they realize particular

operations (say by certain register transfer paths, and by using binary mechanisms and bit-

 shifting operations), are different from the ways brains work.  The correspondence between

 c o m p u t a t i o n a l m o d e l s a n d c o g n i t i v e p r o c e s s e s s e e m s t o f a l l s o m e w h e r e i n b e t w e e n t h e s e

extremes.

T h e g e n e r a l a s s u m p t i o n i n c o g n i t i v e s c i e n c e h a s b e e n t h a t t h e a p p r o p r i a t e l e v e l o f

comparison corresponds roughly to the intuitive notion of algorithm.  From our point of view we

can think of two computational systems as strongly equivalent, or as being different realizations

of the same algorithm or the same cognitive process, if they can be represented by the same

 program in some theoretically specified computer.  A simple way to put this is to say that we

individuate cognitive process in terms of their expression in the canonical language of this

 theoretical machine.  The functional (as opposed to anatomical) structure of the machine –- or--

w h a t w e c a l l i t s f u n c t i o n a l a r c h i t e c t u r e o r j u s t s i m p l y i t s a r c h i t e c t u r e – - r e p r e s e n t s o u r- -

theoretical definition of the right level of specificity (or level of aggregation) at which to view

c o g n i t i v e p r o c e s s e s . I t i s t h e l e v e l a t w h i c h d a t a s t r u c t u r e s ( o r s t a t e s ) o f t h e m o d e l a r e

semantically interpreted, with the semantic domain being the cognitive one (i.e. in which the

states represent the things that are the objects of thought and reasoning; what subjects are

t h i n k i n g a b o u t ) . A d e s c r i p t i o n o f t h e f u n c t i o n a l a r c h i t e c t u r e a l s o s e t s o u t t h e f u n c t i o n a l

p r o p e rties of the cognitive system t h a t a r e d e t e r m i n e d b y i t s s t r u c t u r e ( r a t h e r t h a n b y t h e

instantateous contents of its memory); properties such as the functional resources that the brain

makes available (e.g. which operations are primitive, how memory is organized and accessed,

what sequences are allowed, what limitations exist on the passing of arguments and on the

capacities of various buffers, and so on). Specifying the functional architecture of a system is

very much like providing a manual defining some particular programming language.

Thus one way to address the issue of the appropriate level of comparison between a model

and a cognitive process –- or the notion of strong equivalence of processes –- is by providing a-- --

specification of the functional architecture of a “cognitive computer”, which I will henceforth
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refer to as the “cognitive architecture”. Much of (Pylyshyn, 1984) is concerned with developing

this idea –- with providing constraints on an adequate cognitive architecture and showing its--

 relevance to the computational view of mind.  For the present purpose, the notion of functional

architecture will be introduced by discussing the role that this idea plays in computer science and

by introducing the closely related, though in many ways unique, role it is required to play in

 c o g n i t i v e s c i e n c e . T h e f o l l o w i n g d i s c u s s i o n i l l u s t r a t e s t h e p o i n t t h a t a n y n o t i o n o f

correspondence stronger that weak equivalence must presuppose some underlying functional

 architecture. Thus the question is not whether we need to worry about the cognitive architecture

in developing computational models.  Rather, the issue is whether we can be content to leave it

as an implicit assumption –- largely conditioned by the functional architecture of currently--

 a v a i l a b l e c o m p u ters –- or whether we ought to make it expl i c i t a n d t o e n d e a v o r t o b r i n g--

empirical criteria to bear in constraining it.

Algorithms and Cognitive Architecture

Cognitive algorithms, the central concept in computational psychology, are understood to be

executed by the cognitive architecture.  According to the strong realism view that many of us

have advocated, a valid cognitive model must execute the same algorithm as that carried out by

subjects. But now it turns out (as we shall see below) that which algorithms can be carried out in

a direct way depends on the functional architecture of the device. Devices with different
7functional architectures cannot in general directly execute the same algorithms. But typical

 c o m m e r c i a l l y a v a i l a b l e c o m p u t e r s a r e l i k e l y t o h a v e a f u n c t i o n a l a r c h i t e c t u r e t h a t d i f f e r s
8significantly in detail from that of brains . Hence we would expect that in constructing a

 computer model the mental architecture will first have to be emulated (i.e., itself modelled)

 before the mental algorithm can be implemented. In what follows this claim and its implications

will be discussed.

———————

7. We can take this claim as a point of definition for present purposes, although there are some technical issues here that would have to be
addressed in a more detailed discussion.  The criterion for being the same algorithm is closely linked to the idea of direct execution.  For
example, we can trivially change an algorithm (say by adding a fixed number of redundant operations such as “no ops” to each original
operation), yet for our purposes we may not want to count this variant as a distinct algorithm — i.e. we may want to count any machine
executing the variant as carrying out the same process as the original machine executing the original algorithm.  To develop this idea we may
need concepts such as that of a canonical description of a process (e.g. along the lines that I tried to sketch in Pylyshyn, 1984).

8. Although, as I have already suggested, the working hypothesis of most of cognitive science is that whatever the functional architecture turns
out to look like in detail, it will continue to fall into the class of symbol-processing, or “classical” architectures, as originally envisaged by
Turing, and as is true of all systems we call digital computers today.  The reason is that in order to have sufficient representational power as
well as the right kind of semantically coherent behavioral plasticity, the computational system must read, write and transform structured
symbolic expressions which have combinatorial semantic properties (these points are argued at some length in Fodor & Pylyshyn, 1988).
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In order for an algorithm to serve as a model of a cognitive process, it must be presented in

some standard or canonical form or notation; for example, as a program in some programming

language. What is typically overlooked when we do this is the extent to which the class of

 algorithms that can be considered is conditioned by the assumptions we make regarding what

 basic operations are possible, how these may interact, how operations are sequenced, what data

structures are possible, and so on.  Such assumptions are an intrinsic part of our choice of

 descriptive formalism, since the latter defines what I have been calling the functional architecture

of the system.

Yet the range of programming languages, or functional architectures, that are conveniently

available is actually quite narrow.  Most available architectures are register-based, in which

 s y m b o l s a r e s t o r e d a n d r e t r i e v e d b y t h e i r n u m e r i c a l o r s y m b o l i c “ a d d r e s s e s ” , c o n t r o l i s

transferred sequentially through a program (except for “branching” instructions), and operations

on symbols are accomplished by retrieving them from memory, placing them in a designated

register, applying one of the primitive commands to them, and then storing the resulting symbol

back into memory.  Although there are variants of this basic pattern, the main idea of a sequential

process proceeding through a series of “fetch”, “operate”, and “store” operations has been the

d o m i n a n t o n e s i n c e t h e b e g i n n i n g o f d i g i t a l c o m p u t a t i o n ( s e e t h e p r e v i o u s s e c t i o n f o r a

discussion of alternatives being examined in computer science research). This goes for both

hardware and software (see a discussion of the latter in Backus, 1978).

Because our experience has been with such a narrow range of architectures, we tend to

a s s o c i a t e t h e n o t i o n o f c o m p u t a t i o n , a n d h e n c e o f a l g o r i t h m , w i t h t h e p a r t i c u l a r c l a s s o f

algorithms that can be executed by architectures in this limited class. However, this is misleading

since, as I noted above, different architectures permit different algorithms to be executed.

T h i s p o i n t i s b e s t i l l u s t r a t e d b y c o n s i d e r i n g e x a m p l e s o f s e v e r a l s i m p l e a r c h i t e c t u r e s .

Perhaps the most primitive machine architecture is the original binary-coded Turing machine

introduced by Alan Turing (Turing, 1937). Although this machine is universal, in the sense that

it can be programmed to compute any computable function, anyone who has tried to write

p r o c e d u r e s for it will have noticed that most computations are e x t r e m e l y c o m p l e x . M o r e

importantly, however, the complexity of the sequence of operations it must go through varies

with such things as the task and the nature of the input in ways that are quite different from that

of machines with a more conventional architecture. For example, the number of basic steps

required to look up a string of symbols in such a Turing machine increases as the square of the

number of strings stored.
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In contrast to this architecture, in what is called a register architecture (an architecture that

has what is usually referred to as random access memory, in which retrieving a symbol by name

or by “reference” is a primitive operation) the time complexity for looking up a symbol in a table

can, under certain conditions, be made independent of the number of strings stored.  Because of

this, a register architecture can directly execute certain algorithms (e.g., the hash-coding lookup

algorithm) which are impossible in the Turing machine –- in spite of the fact that the Turing--

 machine is universal, and therefore can compute the same function as the algorithm, or be

 programmed to be “weakly equivalent” to the algorithm.  In other words, it can compute the

 same lookup function, but not with the same complexity profile, and hence not by using the same

hash-coding algorithm.

Now of course a Turing machine could be made to mimic the sequence of states that the

 register machine goes through by first arranging for the Turing machine to compute the functions

realized by each individual operation of the register machine, or in other words to simulate each

individual step that the register machine takes in executing its algorithm.  But in that case the

Turing machine would first be emulating the architecture of the register machine and then

 executing the algorithm in the emulated architecture, a very different matter from computing it

directly by the Turing machine.

The distinction between directly executing an algorithm and executing it by first emulating

some other functional architecture is crucial to cognitive science.  It bears on the central question

of which aspects of the computation can be taken literally as part of the model and which aspects

are to be considered as mere implementation details (like the color and materials out of which a

physical model of the double helix of DNA is built).  We naturally expect that we shall have to

have ways of implementing primitive cognitive operations in computers, and that the details of

how this is done may have little empirical content.

Explaining Cognitive Generalizations:

Knowledge vs Architecture

From the point of view of cognitive science it is important to be explicit about why a model

works the way it does, and to independently justify the crucial assumptions about the cognitive

a r c h i t e c t u r e . T h a t i s , i t i s i m p o r t a n t f o r t h e u s e o f c o m p u t a t i o n a l m o d e l s a s p a r t o f a n

explanation, rather than merely in order to mimic some performance, that we not take certain

architectural features for granted simply because they happen to be available in our computer

l a n g u a g e . W e m u s t fi r s t e x p l i c i t l y a c k n o w l e d g e t h a t c e r t a i n n o n c o m p u t a t i o n a l p r o p e r t i e s
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originate with certain assumed properties of the cognitive architecture, and then we must attempt

to empirically motivate and justify such assumptions.  Otherwise important features of our model

may be left resting on adventitious and unmotivated assumptions.

This issue frequently arises in connection with claims that certain ways of doing intellectual

tasks, for example by the use of mental imagery, bypasses the need for explicit representation of

certain logical or even physical properties of the represented domain, and bypasses the need for

inefficient combinatorially explosive processes like logical inference. The issue is frequently

 stated in terms of hypotheses that one or another mental function is carried out by an “analogue”

process. The whole issue of analogue versus digital processing is a complex one that has not in

general been well understood (see the discussion in chapter 7 of Pylyshyn, 1984).  For the

 present, I will consider only simple cases involving the claim that some process was carried out

b y “ d i r e c t r e a d o u t ” o r o t h e r w i s e n o n c o g n i t i v e o r n o n i n f e r e n t i a l m e a n s . F r o m t h e p r e s e n t

perspective this would be interpreted as the claim that some cognitive function was actually part

of the cognitive architecture.

Consider cases such as the following. People have occasionally suggested that subjects do

not need to have knowledge of relational properties such as, say, transitivity, in making certain

inferences, such as in the three-term series problems (“John is taller than Mary and John is

shorter than Fred. Who is tallest?”). According to this view, all subjects have to do is arrange

the three items in order (either in a list or in an image) and read the answer off –- they simply--

notice which objects is first (or last) in the list.  But of course even if a subject can solve the
9p r o b l e m i n t h i s w a y , t h a t d o e s n o t m e a n t h a t t a c i t k n o w l e d g e o f f o r m a l p r o p e r t i e s ( e . g . ,

transitivity) of the relation “taller than” is not needed.

T h e r e a r e a t l e a s t t w o r e a s o n s w h y o n e m i g ht have t o p o s t u l a t e k n o w l e d g e o f f o r m a l

relations. First, the decision to represent “taller” by something like “further on the list” must

have been based on the tacit recognition that the two relations were of the same formal type (a

list would not, for example, have been suitable for representing the relation “is married to”).

Secondly, while ordering three names in a list and then examining the list for the position of a

particular name may seem straightforward and free from logical deduction, a little thought will

show that the ability to carry out this operation mentally, as distinct from physically, presupposes

a great deal about the available primitive mental operations. In particular, appealing to the

existence of a “mental list” (or some such structure) involves certain assumptions about the

———————

9. The term “tacit knowledge” is used here in the usual way to refer to real knowledge that subjects have even though they are not aware of
having and using it – an unproblematic idea in contemporary Cognitive Science where it is taken for granted that subjects need not have---
awareness or “meta-access” to most cognitive structures and processes. The term has nothing to do with Polanyi’s (1964) use of the same
phrase.
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properties that such a structure intrinsically possesses.  For example, if the subject has a mental

representation of items A, B, and C and reasons (according to the theory) by placing A and B in a

certain order and then adding C next in the sequence, the model must assume that (a) placing C

next to B leaves the relation between A and B unchanged, and (b) the relation of A to C (with B

between them) will remain the same with respect to the relevant represented relation (i.e.,

 tallness) as that between A and B.

Assumptions such as these are justifiable only if there exists an operation in the cognitive

 architecture which has the same formal mathematical properties (i.e. falls under the same system

of logical axions) as the relations “taller” and “further along the ordering”.  Furthermore, even if

such an operation is part of the cognitive architecture, one is still not entitled to assume that the

use of this capacity requires no further appeal to tacit knowledge of logical constructs like

 t r a n s i t i v i t y , a s t h e fi r s t p o i n t a b o v e s h o w s . T o t a k e a n o t h e r t i m e l y e x a m p l e , m a t r i x d a t a

structures have frequently been used to represent the spatial properties of images (e.g., Kosslyn

& Schwartz, 1977; Funt, 1980). This is a convenient way to represent spatial layout, partly

because we tend to think of matrices in spatial terms anyway. In addition, however, this

structure seems to make certain consequences available without any apparent need for certain

deductive steps involving reference to knowledge of geometry. For example when we represent

the locations of imagined places in our model by filling in cells of a matrix, we can “read off”

such facts as which places are adjacent, which places are “left of” or “right of” or “above” or

“below” a given place, and which places are “in between” a given pair of places. Furthermore

when a particular object is moved to a new place, its spatial relations to other places need not be

recomputed. In an important sense, this is implicit in the data structure. Such properties make

the matrix a much more natural representation than, say, a list of assertions specifying the shape

of objects and their locations relative to other objects.

But, as in the example of solving the three-term series problem without apparently using

logical inference rules (by using a list), such properties of matrices arise from the existence of

c e r t a i n f o r m a l p r o p e r t i e s w h i c h a r e p a r t o f t h e c o g n i t i v e a r c h i t e c t u r e o f v i r t u a l l y a l l

contemporary computers.  Such properties are not, however, constitutive of computing.  They

 would not, for instance, be available in a Turing machine architecture.  In order for a matrix data

structure with the desired properties to be realizable, the architecture must provide at least the

primitive capacity to address the content of a representation by place –- i.e., it must be possible--

to name a location and to ask for the content of a named location.  This itself requires what is

called a register architecture (or some other kind of location-addressable store).
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Furthermore, in this architecture it must also be possible to primitively generate the names of

places adjacent to a given place (i.e., it must be possible to do this without appealing to other

r e p r e s e n t a t i o n s o r t o t a c i t k n o w l e d g e o f g e o m e t r y o r a n y t h i n g e l s e t h a t w o u l d i n v o l v e

intermediate inferential steps). This is necessary if we want “scanning” of the representation to

be a (nondeductive) primitive operation.  In addition there must be primitive predicates which,

when applied to names, evaluate the relative directions of places corresponding to those names

(e.g., two-place predicates such as right-of must be primitive in the architecture). This, in turn,

implies that there are at least two independent implicit total orderings over the set of names.  In

addition, if the relative distance between places is to be significant in this representation, then

there might have to be further primitive operations which can be applied to place names so as to

evaluate, say, relative size (e.g., the predicate larger-than).

This whole array of formal properties is available in all common computer architectures

 because they all use numerical expressions for register (i.e., place) names and have built-in

 primitive arithmetic operations.  But these properties are part of such architectures for reasons

that have nothing to do with the theoretical needs of cognitive science.  When these features are

exploited in building cognitive models, we are tacitly assuming that such operations are part of

the cognitive architecture of the mind –- an assumption which clearly needs to be independently--

motivated and justified. Arguments have rarely been provided for any such proposals. Among

 the few suggestions for such abstract architectural features that I have seen are due to Brouwer

(1964) and Nicod (1970) who, for quite different reasons, proposed that succession be viewed as

a cognitive primitive, and G. Spencer Brown (1969) who has proposed that drawing a (binary)

distinction (a sort of universal figure-ground conceptual separation) is a primitive operation of

the mind.  Of course, a great deal of the recent Cognitive Science research program –- at least--

since Newell’s seminal paper on Production Systems (Newell, 1973b) –- has been concerned--

 with proposing specific features of the cognitive architecture (see, for example, the chapter by

Newell, Laird & Rosenbloom).

In choosing a particular architecture one makes a commitment concerning which functions

are the free parameters that can be tailored to fit specific situations, and which ones are fixed over

a certain range of influences, or are primitive subfunctions shared by all processes in a certain

class. Restrictions on the availability of certain primitive computational functions is a virtue if

our goal is to provide an explanation.  The more constrained a notation or architecture, the

 greater the explanatory power of resulting models.

This is exactly the problem of reducing the degrees of freedom available for fitting a model

to observations.  Each function which can be attributed to the functional architecture, rather than

– 30 –



to the flexibly alterable program, attains the status of a constant rather than that of a free

 empirical parameter in the model. It provides a principled rationale for why, on some particular

occasion, the model takes one particular form, as opposed to other logically possible ones.  It is

precisely the lack of such a rationale that makes some computational models ad hoc.  One goal in

developing explanatory cognitive models, then, would be to fix as many properties as possible by

building them into the fixed cognitive architecture. Opposing this goal, however, is the need to

account for the remarkable flexibility of human cognition.  This, in turn, leads us to attribute the

behavioral regularities to the way in which the architecture is used –- i.e. to the programs and--

knowledge that allow the relatively rigid architecture to be exploited in generating behavior that

is highly plastic.  The stimulus-independence of cognition provides one of the strongest reasons

for attributing much of its manifest behavior to tacit knowledge of various kinds rather than to

the sorts of fixed functional properties that have frequently been proposed.

Methodologies for Assessing Strong Equivalence

How does one distinguish between regularities that are attributable to properties of the

 cognitive architecture and those that are attributable to the nature of the cognitive process and its

representations? Twenty-five years ago many of the techniques for assessing strong equivalence

(e.g., “mental chronometry”) were not available –- or rather, their use in this context was not--

 understood. If someone had undertaken to analyse the notion of strong equivalence at that time,

much of what we now feel is germane would not have been included.  Although we can expect

such techniques to continue to evolve, it may be useful to list a few provisional methods that are

implicit in the work of information processing psychologists.

Intermediate State Evidence

As an example, recall that strong equivalence requires that a model be expressed at a level of

aggregation in which all the basic representation states are revealed, since each such state is

 essential in the representational story.  Thus the transitions between representational states must

themselves not involve any representational states; these transitions must be realized directly by

t h e c o g n i t i v e a r c h i t e c t u r e . H e n c e a n y e v i d e n c e f o r t h e e x i s t e n c e o f s u c h i n t e r m e d i a t e
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representational states is evidence for the nonprimitiveness of the subprocess in question.  There

are a variety of methods for obtaining such evidence.

One of the earliest methods for discovering intermediate states in problem solving involves

t h e r e c o r d i n g o f s u b j e c t s ’ e x p r e s s e d t h o u g h t s w h i l e s o l v i n g t h e p r o b l e m ( D u n c k e r , 1 9 3 5 ) .

Newell & Simon (1972) developed this technique, which they call “protocol analysis” to a high

level of precision. Although the method can only be used with certain slow and deliberate types

of problem solving tasks (including, by the way, problems involving visual imagery; cf Baylor,

1972; Farley, 1974; Moran, 1973), it does provide evidence for intermediate states that might

o t h e r w i s e b e u n a v a i l a b l e f o r c o n s t r a i n i n g t h e m o d e l . W h e n c o m b i n e d w i t h a d d i t i o n a l

intermediate o b s e r v a t i o n s , s uch as protocols of movements obtained from video recordings

(Young, 1973) and records of eye movements (Just & Carpenter, 1976) this method can yield

extremely useful data. The use of this method is discussed in greater length in the chapter by

Simon & Kaplan.

The existence of intermediate representational states can sometimes also be inferred in more

indirect ways. A good example occurs in psycholinguistics, in the study of real-time sentence

p r o c e s s i n g . T h e r e i s s o m e i n d i r e c t e v i d e nce for the availability of certain c o m p o n e n t s o f

syntactic analysis in the course of sentence comprehension (Frazier & Fodor, 1978; Marslen-

Wilson and Tyler, 1980; Forster, 1979). Any evidence of the availability of intermediate states

of a process to any other process (i.e., any evidence that the workings of the process are

“transparent” to another part of the system) can be taken as evidence that such a process is not

primitive, but has a further cognitive decomposition.

In the remainder of this section I will consider two other empirically-based criteria for

deciding whether certain aspects of behavioral regularities ought to be attributed to properties of

mechanisms –- i.e. to the cognitive architecture – - o r t o t h e r e p r e s e n t a t ions and processes-- - -

operating on them. Both are, as suggested above, sufficient though not necessary conditions –---

i.e. they can ideally tell you when a function requires a more complex cognitive analysis, but it

can’t tell you that you have gone far enough since, as was pointed out above, there may be

various sources of indirect evidence for the need for further decomposition. The first of these

criteria derives from computational considerations and defines a notion of strong equivalence of

processes referred to as complexity-equivalence. This criterion is frequently associated with the

u s e o f r e a c t i o n t i m e m e a s u r e s , o r w i t h s u c h o n - l i n e m e a s u r e s a s t h o s e w h i c h a s s e s s t h e

“attention-demand” of tasks (e.g. measuring the performance on a secondary task).
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The second criterion helps us to decide whether a particular empirical phenomenon ought to

be attributed to the architecture or to goals and beliefs.  It relies on the assumption that we can

identify certain clear cases of phenomena that should be accounted for at the knowledge level,

i.e. in terms of the representations alone, rather than in terms of properties of the cognitive

 architecture. Phenomena that depend in a rational way on subjects’ goals, beliefs, amd utilities

are a case in point.  For example, in psychophysics we assume that if a measure (such as a

 threshold) changes systematically as we change the payoffs (i.e. the relative cost of errors of

 c o m m i s i o n a n d o f o m m i s i o n ) , t h e n t h e e x p l a n a t i o n o f t h a t c h a n g e m u s t b e g i v e n a t t h e

knowledge-level –- in terms of decision theory –- rather than in terms of properties of sensors or-- --

other mechanisms that are part of the architecture. In general, showing that certain empirical

phenomena are sensitive to goals and beliefs (or are what I have called cognitively penetrable) is

prima facie evidence that they should not be attributed to properties of the architecture.

Relative Complexity Evidence and Complexity-Equivalence

Recall that in the example discussed earlier, there was at least one property of the hash

 coding algorithm that needs to be preserved by any strongly equivalent process –- and which--

 would not be preserved if the same function were to be realized on a traditional Turing machine.

That property is the relation between (or the form of the function that characterizes the relation

between) the number of steps that it would take to look up a symbol in a table and the total

 number of symbols stored there.  The hash coding algorithm, implemented on a virtual machine

with a primitive facility to retrieve symbols by name (what is commonly referred to as a random

access or register architecture), is able to look up symbols with a number of steps that is (to a

first approximation) independent of the number of entries in the table.  By contrast, if this

 algorithm were emulated on a Turing machine, the number of steps that it would take would

 increase as the square of the number of strings stored on the tape (so that the function relating the

number of steps and the number of items stored would be a polynomial of order 2).

The relation between number of primitive steps taken and certain properties of the symbolic

input is generally considered to be an essential invariant property of what one intuitively thinks

of as different realizations of the same algorithm.  For example, one would clearly not count two

processes as realizing the same algorithm if one of them computed a function in some fixed time,

regardless of its input, whereas the other was combinatorially explosive –- so that the time it took--

increased without bound as some property (e.g. length) of the input was varied.  The total amount

o f t i m e o r t h e t o t a l n u m b e r o f s t e p s t a k e n i s n o t i m p o r t a n t f o r a s s e s s i n g e q u i v a l e n c e o f
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algorithms, since that depends on the particular machine on which the algorithm is running.

 What’s important is the nature of the relation between such things as time or number of steps

taken and properties of the input, such as its length. Because of this there are certain apparent

d i f f e r e n c e s a m o n g p r o g r a m s t h a t d o n o t m a t t e r f o r p u r p o s e s o f w h a t I h a v e c a l l e d t h e i r

complexity equivalence (Pylyshyn, 1984).

In cognitive science, the most common way of assessing relative complexity is by measuring

relative reaction times, i.e. by observing the form of the function relating the time taken for a

task and certain parametric properties of the task (e.g. size of the input).  Although the utility of

this measure also rests on methodlogical assumptions, it has turned out to be one of the most

 valuable sources of relative complexity evidence in the cognitive science toolbox.  Examples of

its use are discussed in the chapter by Bower and Clapper, as well as many other chapters.  In a

later section of this chapter, I will return to a consideration of the status of measures such as

 reaction time when I take up the question of whether it is possible in principle to decide on the

correct computational models by using behavioral data alone.

The set of programs that are complexity-equivalent clearly represents a refinement of the set

of programs that compute the same input-output function, and hence complexity-equivalence

 represents a restriction of the weak equivalence relation. Although complexity-equivalence

 captures an important aspect of the intuitive notion of “same algorithm”, it is not by itself

 sufficient to define strong equivalence.  It is, in other words, a necessary but not sufficient

 condition for strong equivalence.

Cognitive Penetrability

A second class of methods for studying strong equivalence assumes that what I have been

calling cognitive phenomena are a “natural scientific domain” which can be explained entirely in

terms of the nature of the representations and the structure of programs running on the cognitive

architecture. If that is to be true, then the cognitive architecture itself must not vary in ways that

demand the same sort of cognitive explanation.  It must, in other words, form a cognitive “fixed

p o i n t ” s o t h a t d i f f e r e n c e s i n c o g n i t i v e p h e n o m e n a m i g h t b e e x p l a i n e d b y a p p e a l t o t h e

a r r a n g e m e n t s ( s e q u e n c e s o f e x p r e s s i o n s a n d o f b a s i c o p e r a t i o n s ) a m o n g t h e fi x e d s e t o f

operations, and to the basic resources provided by this architecture. Though the architecture

might vary as a function of physical or biochemical conditions, it should not vary directly and in

logically coherent ways with changes in the content of the organism’s goals and beliefs. If the

cognitive architecture were to change in ways requiring a cognitive rule-governed explanation it
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could itself no longer serve as the basis for explaining how changes in rules and representations

produce chan g e s i n b e h a v i o r . Consequently the input-output behavior of the hypothesized

primitive operations of the cognitive architecture must not itself depend on goals and beliefs, and

hence on conditions which change the organism’s goals and beliefs: it must be what I refer to as

cognitively impenetrable.

This is usually a straightforward criterion to apply in practice.  In order to determine whether

certain empirical evidence favors certain particular hypothesizes architectural properties of the

 cognitive system, the natural question to ask is whether the evidence is compatible with some

other, different, architectural properties.  One way to do this is to see whether the empirical

 phenomena in question can be systematically altered by changing subjects’ goals or beliefs.  If

they can, then this suggests that the phenomena do not tell us about the architecture, but rather

they tell us about some representation-governed process; something which, in other words,

 would remain true even if the architecture were different from that hypothesized.

For example, this appears to be the case with certain kinds of imagery phenomena, such as

the linear relation between reaction time and the distance on a mental image that is mentally

 “scanned” (for more on this case, see Pylyshyn, 1981).  That’s because the linear increase can be

made to disappear by changing the instructions; for example, by asking subjects to imagine a

 situation in which they do not believe there would be any increase in reaction time as a function

of distance (that is, in which they believe there would be no relation between time and distance

in the real situation which they are to imagine).

In general, showing that a certain phenomenon is cognitive penetrable provides strong reason

to interpret that phenomenon as arising from the nature of the representations and from cognitive

processes operating over these representations.  In practice, there is always the question of

 exactly which stage of the process is affected by the instructions, but this is not a problem unique

to the penetrability criterion.  Being able to determine whether some phenomenon is due to

 properties of the architecture or of the representation-governed process is critical to asssessing

strong equivalence, since it gives us a way of determining whether we have broken down the

 processing steps into the right primitive elements.

Can we decide which model is correct from behavioral data?

The “Behavioral Indeterminacy” Claim
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Finally, I will end this section on methodology with a brief discussion of the claim that strong

equivalence may in principle not be possible in psychology (or that it can only be achieved by

appealing to the facts of biology, or by the gratuitous importation of esthetic or other sorts of

subjective judgments).  Weak equivalence is, by definition, equivalence with respect to input-

 output behavior.  Consequently one might suppose that if all we had in cognitive science was

observed behavior, one could not hope to determine which computational model is the correct

one beyond choosing one of the weakly equivalent ones?  Indeed, this point of view has freuently

been advocated (cf. Anderson, 1978; Townsend, 1974).  Note that this is supposed to be an

 indeterminacy beyond the usual scientific indeterminacy, wherein a finite body of data never

 uniquely determines the true theory.

First, it should be pointed out that nobody wishes to exclude psychobiological data as a

 source of evidence in evaluating theories of cognition (see, for example, the discussions by

 S e j n o w s k y & C h u r c h l a n d ) . B u t w h e t h e r o r n o t t h e y a r e i n c l u d e d h a s n o b e a r i n g o n t h e

indeterminism arguments because cognitive models are not models of how the brain realizes

p r o c e s s e s i n n e u r a l t i s s u e : t h e y a r e t h e o r i e s w h i c h d e s c r i b e c o g n i t i v e m e c h a n i s m s w h i c h

processes cognitive representations. Neurophysiological evidence can, and sometimes does,

 help to decide psychological issues, but contrary to what some people appear to believe, this sort

of evidence is just as indirect and fallible as the measurement of reaction times: we can no more

directly observe a cognitive mechanism by the methods of biology than we can by the methods

of psychophysics (or, for that matter, by introspection).  If that is the case, how they can we hope

to do better than selecting one of the set of models that are weakly equivalent (other than,

 perhaps, by appeal to such external criteria as parsimony and elegance –- as some have suggested--

(Anderson, 1978)).

The answer that I have suggested (Pylyshyn, 1979) for this sort of indeterminacy claim is

 this: While in a sense all we have is behavior, not all behavior is of the same kind from the point

o f v i e w o f t h e o r y c o n s t r u c t i o n . B y d i s t i n g u i s h i n g b e t w e e n d i f f e r e n t k i n d s o f b e h a v i o r a l

measures, and by interpreting these measures in different ways that are independantly motivated,

we can do very much better than weak equivalence.

N o t i c e t h a t p l a c i n g d i f f e r e n t i n t e r p r e t a t i o n s o n o b s e r v e d b a h a v i o r i s r o u t i n e i n a l l

experimental psychology.  For example, an investigator may collect primary observations in a

certain domain –- say concerning the behavior of a person in solving a problem. These are--

 observations that a constructive theory of that domain might be expected to account for by

 generating similar behavior as its output. But the investigator typically also collects observations

of a secondary kind (which might even be called, without too serious a distortion of terminology,
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meta-behavioral observations), from which certain properties of the problem-solving process

 itself might be inferred.  This is the case, for example, when subjects provide “thinking-out-loud”

protocols. It is also the case when observations are made which are interpreted as indices of such

things as processing complexity, or the attention demand of the task. In such a case it is not

 expected that a theory or a model would actually generate such behavior as part of its output.

Rather the idea is that the model should generate the primary (output) behavior in a manner that

reflects certain real-time processing properties indexed by observations in the secondary class.

Consider the following example in which the developing methodology of cognitive science

has led to a gradual shift in the way an important aspect of observed behavior is interpreted.  The

e x a m p l e c o n c e r n s w h a t i s p r o b a b l y t he most w i d e l y u s e d d e p e n d e n t m e a s u r e i n c o g n i t i v e

psychology, namely reaction time. This measure has sometimes been interpreted as just another

response, to be accounted for by a cognitive model in the same way that the model accounts for

s u c h r e s p o n s e r e c o r d s a s t h e s e q u e n c e o f t h e b u t t o n s t h a t w e r e p r e s s e d . S i n c e D o n d e r s ’

pioneering work (carried out in the 1860s and reprinted as Donders, 1969), it has also been

w i d e l y i n t e r p r e t e d a s a m o r e - o r - l e s s d i r e c t m e a s u r e o f t h e d u r a t i o n o f m e n t a l p r o c e s s e s

(Wasserman & Kong, 1979). I have argued (Pylyshyn 1984) that neither of these interpretations

is correct in general; that reaction time can neither be viewed in general as the computed output

of a cognitive process itself, nor as a measure of the duration of a mental event or mental
10operation .

 If reaction time were thought of as simply another response, then it would be sufficient if our

c o m p u t a t i o n a l m o d e l s i m p l y c a l c u l a t e d a p r e d i c t e d v a l u e f o r t h i s r e a c t i o n t i m e , g i v e n t h e

appropriate input. But that would not be sufficient if the computation is to be viewed as a literal

model of the cognitive process. Contemporary cognitive scientists would not view a system that

generated pairs of output strings, interpreted as the response and a number designating the time

taken, as being an adequate model of the underlying process, no matter how well these outputs fit

the observed data.  That’s because they wish to interpret the model as computing the output in

the same way as the subject (i.e. by using the same algorithm).

———————

10. The reason that reaction times can’t be viewed as measuring the duration of a mental operation is simply that when one speaks of a certain
“mental operation”, such as comparing a stimulus with an item in memory, one is not referring to any one particular occurence of this
operation in the brain, but one is referring in general to the class of all occurences – all event tokens – that would constitute the same event- -- -- -
type – for example, the event-type “compare stimulus S with item X in memory”.  Thus, in referring to the CAR function in LISP, one is not---
referring to any particular occasion on which that function is evaluated.  Because we distinguish between the operation as a computational
event, and the particular physical events that carry it out on particular occasions, all occurences of a particular operator need not (by
definition) have a unique duration associated with them, just as they need not have a unique size or location in the brain (or a computer)
associated with them.  Because of this, one does not in general speak of the duration of a CAR operation although, of course, each particular
event-token that constitutes the execution of a CAR operation does have a some unique duration on each occassion. For some reason the idea
of distinguising token events from event types is alien to many psychologists, so this point is frequently lost (e.g. Wasserman & Kong, 1979).

– 37 –



It has become customary in cognitive science to view reaction time the same way that

 m e a s u r e s s u c h a s g a l v a n i c s k i n r e s p o n s e o r p l e t h y s m o g r a p h r e c o r d s , o r m e a s u r e s o f

distractibility (e.g. Brown, 1962) are viewed, namely as an index, or an observable correlate, of

some aggregate property of the process.  In particular, reaction time is frequently viewed as an

index of what I have called “computational complexity”, which is usually taken to correspond to

such properties of the model as the number of operations carried out.  A process which merely

computed time as a parameter value would not account for reaction time viewed in this particular

way, since the parameter would not express the computational complexity of the process.

Earlier I discussed several cases in which it was possible to decide which of two different

algorithms was being used by examining the relative number of primitive steps that they took

when given different inputs.  Now if there is some reason to believe that the amount of (real)

time it takes is proportional to (or at least a monotonically increasing function of) the number of

such primitive steps of the algorithm, then measures of relative time taken might provide the

 evidence needed to decide between the putative algorithms.  But in this case we need to have

independent reason to believe that reaction time is a valid index of the number of primitive steps

of the cognitive architecture.  Such independent reasons are frequently available, as for example

when regularities inferred on the basis of the assumption that reaction time is a reliable indicator

of processing complexity are corroborated by other methods.  When such patterns of consistency

keep showing up under converging methodologies we then have a prima facie reason to expect

such methods to be valid, other things being equal (cf. Posner, 1978).

Nonetheless it should be kept in mind that when we draw inferences about the nature of the

algorithm from reaction time data (or any other physical measurement) we are always depending

on the validity of an ancillary hypothesis.  Such hypotheses could in principle be false.  There are

many situations in which measurements of properties of the underlying physical events may tell

us little about the algorithm. They might, instead, tell us either about the way in which the

 process is physically (i.e., neurophysiologically) instantiated on some particular occasion or in

one particular individual, or they might tell us about subjects’ tacit knowledge, or about the

 nature of the task itself.  For example, I have argued (Pylyshyn, 1981, 1984) that many of the

phenomena of mental imagery research (e.g. the so-called “mental scanning” results of Kosslyn,

1980) are of just this sort. In these cases it appears that the particular reaction time patterns

 o b s e r v e d a r e n o t t h e d i r e c t r e s u l t o f p r o p e r t i e s o f t h e a r c h i t e c t u r e , b u t o f s u b j e c t s ’ t a c i t

knowledge of what would happen in the imagined situations and their ability to duplicate aspects

of these situations (e.g. their duration) imaginally. The argument for this is based on the

“cognitive penetrability” criterion discussed ealier: if the pattern of behavior can be altered in a

rational way by changing subjects’ beliefs about the task, then we have prima facie evidence that
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the process involves inference.  Moreover, we have little reason to hypothesize special purpose

architectural properties if we can account for the pattern of reaction times merely in terms of

 subjects’ beliefs together with their psychophysical ability to generate the relevant time intervals.

This, of course, does not apply in cases where it is clear that subjects’ performance is not

 explicable in terms of their beliefs –- as, for example, when they are operating at the limits of the--

ability, as is the case with most studies carried out in the “information processing” tradition,

 i n c l u d i n g s ome of the imagery manipulation experiments, such a s t h o s e i n v o l v i n g “ m e n t a l

rotation” (e.g. Shepard & Cooper, 1982; but not Shepard & Feng, 1972).

There are other sorts of cases where observer reaction times do not tell us much about the

nature of the cognitive architecture. For example, Ullman (1984) has suggested that the reason

certain kinds of visual processes (which he calls “visual routines”) are carried out serially is not

because of the nature of the cognitive architecture, but because the nature of the task itself

requires it. In that case, the fact that the process is serial cannot be attributed to requirements

imposed by the architecture (at least not entirely), though it does show that the architecture is

capable of serial operation.

Conclusion: The Domain of Cognitive Science

W h a t m a k e s s o m e a r e a o f s t u d y a n a t u r a l s c i e n t i fi c d o m a i n , i s t h e d i s c o v e r y ( n o t t h e

stipulation) that some relatively uniform set of principles can account for phenonema in that

domain. It is never the case that we can stipulate in advance precisely what will fall into that

natural domain. Nor can we stipulate in advance what the class of principles are that will define

the domain; the evolution of the boundaries of a scientific domain is a gradual process, requiring

provisional conjectures as one proceeds.

Cognitive Science has been viewed as the study of the natural domain of “cognition”, where

the latter includes prototypical phenomena of perception, problem-solving, reasoning, learning,

memory, and so on. At the present time the working hypothesis appears to be that what these

have in common is that they involve intelligent activity in some general sense.

A bolder hypothesis is that “cognition” is the domain of phenomena that can be viewed as

natural information processing, which in current terms means that it is computational, that being

the only notion of autonomous mechanistic information processing we have. This, in turn means
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that phenomena in this domain can be explanained on at least three distinct levels, as suggested

by what I have called the “classical view”.  According to this hypothesis (which we might call

the computational realist view), we cannot stipulate in advance which empirical phenomena will

t u r n o u t t o b e “ c o g n i t i v e ” i n t h e t e c h n i c a l s e n s e ( m e a n i n g s u s c e p t i b l e t o a c o m p u t a t i o n a l

explanation). While it would be both surprising and troublesome if too many of what we

pretheoretically took to be clear cases of cognition ended up being omitted in the process. But it

would also not be entirely surprising if some of our favorite candidate “cognitive” phenomena

got left out. For example, it could turn out that consciousness is not something that can be given

a computational account. Similarly, certain kinds of statistical learning, aspects of ontogenetic

development, the effect of moods and emotions, and many other important and interesting

phenomena could simply end up not being amenable to a computational account Substantial

components of such phenomena could, for example, require a noncomputational explanation, say

in terms of biochemistry or some other science.

In that regard, it could turn out that certain phenomena phenomena might not arise from

 symbol processing, contrary to earlier assumptions.  In that case Connectionists claims that

 symbols systems are not needed (e.g. Rumelhart, McClelland, et. al. 1986) could turn out to be

right for those phenomena.  On the other hand, there are very good reasons for maintaining that

reasoning and other knowledge dependent or rational processes require symbol processing and,

moreover, that these processes are extremely pervasive in the phenomena that have been studied

in cognitive science.  Only time and further research will tell which phenomena might be better

explained by models that do not conform to the classical notions of computing.
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