
Composing and Decomposing Systems

under Security Properties

A. W. Roscoe and L. Wulf

Oxford University Computing Laboratory

Parks Road, Wolfson Building, Oxford OX1 3QD, UK

3 February 1995

Abstract

We investigate the formal relationship between separability of pro-
cesses and the types of non-interference properties they enjoy. Though
intuitively appealing, separability – the ability to define a process as a
parallel composition of disjoint components – alone cannot adequately
prove the absence of information flow. We present a number of laws
for the composition of secure systems, and an example to show how
such laws can be applied.

Separability is an idea which has origin in the design of secure operating
systems [Rus81]. Informally, a system is separable if its users (or user pro-
cesses) can be isolated from each other. The purpose of this isolation is to
achieve mutual non-interference between users.

The separability condition has been formalised elsewhere (e.g. [Bur89,
Jac90]), and we adopt the definition that a process is separable if equiv-
alent to a parallel composition of sub-processes with disjoint alphabets.
This condition is succinctly expressed in the process algebraic notation of
CSP [Hoa85] which we will employ in the following.

We formally relate separability to a number of non-interference condi-
tions including “lazy non-interference” of [RWW94]. An interesting by-
result of this is that separability alone should generally not be regarded as
proving the absence of information flow, as long as there is the possibility
of non-determinism. We present laws which preserve security under parallel
composition, even in the presence of non-determinism.

In the following section we summarise two related but subtly different
types of non-interference, which we call independence and invariance, re-

1

spectively. These will be related to the separability condition in Section 2.
The subsequent section shows how to compose secure parts to yield a secure
whole; the power of this idea is illustrated in Section 4. The final section
presents our conclusions.

1 Notions of Non-interference

The notation employed in the rest of this paper is summarised in the Ap-
pendix. We describe processes within the context of the failures-divergences
model of CSP, although unless specifically allowed otherwise we assume all
processes are free of divergence. Given a process P whose alphabet can be
partitioned into sets A and B , we reserve the notation

LB (P)

for the process RUNA ||| P ; the “L” with reference to the “lazy” abstraction
of [RWW94]. We do not address “eager” abstraction here since it supposes
that abstracted events happen instantaneously, which the lazy form does
not. Lazy abstraction thus takes a more standard view of how actions are
modelled, and appears likely to be more relevant in practice. A detailed mo-
tivation for the definition and its uses in the specification of non-interference
properties can be found in [RWW94, Ros95]. definition Let P be a
process and {A,B} be a partition of αP . Then B is said to be indepen-
dent (of A) in P , written LINDB(P), if and only if the process LB (P) is
deterministic.1 A number of weaker definitions of non-interference have
been proposed. Not all of these involve an explicit process abstraction, but
typically they demand that two processes, after some activity in one part of
the alphabet, are equivalent modulo lazy abstraction. All conditions stated
in the following definition are equivalent, and we refer to them with the
generic term “invariance”.

Theorem 1.1 Let {A,B} be a partition of the alphabet of process P . The

1The notation used in this paper is different from that in our previous paper [RWW94]
since our developing understanding of the variety and relationships of different security
properties has required a revised and more systematic nomenclature. In the earlier paper
the condition LINDB (P) was written L-SECA(P).

2

following statements are equivalent.

1. ∀ a ∈ A •
s 〈̂a〉 ∈ traces(P) ⇒ LB (P/s) =FD LB (P/s 〈̂a〉)

2. ∀ s, t ∈ traces(P) •

s |\ B = t |\ B ⇒ LB (P/s) =FD LB (P/t)
3. ∀ s ∈ traces(P) •

s |\ B ∈ traces(P) ∧ LB (P/s) =FD LB (P/(s |\ B))
4. ∀ s ∈ traces(P) •

s |\ B ∈ traces(P) ∧ (P/s)0 ∩ B = (P/(s |\ B))0 ∩ B

∧ refs(P/s) ∩ P B = refs(P/(s | \ B)) ∩ P B
5. ∀ s, t ∈ traces(P) •

s |\ B = t |\ B ⇒ (P/s)0 ∩ B = (P/t)0 ∩ B ∧
refs(P/s) ∩ P B = refs(P/t) ∩ P B

where the notation P B denotes the power set of B .

Condition (2.) is the failures-divergence invariance discussed in [Ros95].
Condition (4.) is a straightforward extension of Allen’s [All91] that also
takes refusal behaviour into account rather than initials only. Condition
(5.) is Ryan’s [Rya91] definition of security. definition Let P be a
process and {A,B} be a partition of αP . Then B is said to be invariant
(from A) in P , written LINVB (P), if and only if any of the conditions above
is satisfied. Invariance and independence are related as follows.

Lemma 1.2 Given that {A,B} partitions the alphabet of process P , then

LINDB (P) ⇒ LINVB (P).

Theorem 1.3 Given that {A,B} partitions the alphabet of process P , and
P is deterministic, then

LINDB (P) ⇔ LINVB (P).

proof Can be found in [Ros95].

2 Characterising Separability

Separability as a security criterion has intuitive appeal. Processes with
disjoint alphabets do not synchronise on events when combined in parallel;

3

there is thus no scope for direct interference between them. We adopt the
following standard definition of a process that can be separated into two
components. definition (Jacob [Jac90]) Let P be a process and {A,B}
partition αP . P is said to be separable with respect to {A,B} if there exist
processes PA and PB with αPA = A and αPB = B such that

P = PA ‖
Ø

PB .

An important strengthening of this condition is the requirement for the
component processes to be deterministic. This case is referred to as strong
separability. definition Process P is said to be strongly separable with
respect to partition {A,B} if and only if there exist deterministic processes
PB and PA with αPA = A and αPB = B such that

P = PA ‖
Ø

PB .

Let us start to investigate the relationship between separability and the
non-interference conditions of the previous section. It is tempting to conjec-
ture (and indeed the authors did) that separability is equivalent to mutual
invariance, i.e. that a process P can be split as PA ‖

Ø
PB precisely if both

LINVB (P) and LINVA(P) hold. For many processes this will indeed be
the case.

On closer inspection, however, this conjecture turns out to be untrue.
The simplest counterexample is given by

P = (a → P) u (b → P).

After any trace of P , event a may be accepted or refused, irrespective of
any b events occurring, and the same is true for the reverse. Therefore both
{a} and {b} are invariant in P . The process, however, is not separable. In
particular, P is not equivalent to

P ′ = (STOP u (a → P ′)) ‖
Ø

(STOP u (b → P ′))

since P ′ may refuse the set {a, b} which P cannot. This means a user with
interface {a} who sees this event refused can deduce that the other event b is
not refused; this is a flow of information we probably want to prohibit. This
example demonstrates that (i) it is essential to consider refusals in addition

4

to traces when analysing information flows, and (ii) the flows resulting from
refusals can be more subtle than anticipated.

In order to establish an equivalence between separability and mutual in-
variance, it is necessary to strengthen the definition of invariance. This can
be achieved by considering the behaviour of the process, not after a par-
ticular trace s is observed, but after a particular failure (s,X) is observed.
We therefore re-define the standard ‘after’ operator to include refusal infor-
mation as follows. definition Let P/(s,X) (for (s,X) ∈ fails(P) and
s 6∈ divs(P)) be defined

fails(P/(s,X)) = { (〈〉,Y) | (s,X ∪ Y) ∈ fails(P) }∪
{ (〈a 〉̂ t ,Y) | (s 〈̂a 〉̂ t ,Y) ∈ fails(P) ∧ a 6∈ X }

divs(P/(s,X)) = { 〈a 〉̂ t | s 〈̂a 〉̂ t ∈ divs(P) ∧ a 6∈ X }

(noting that P/(s,Ø) = P/s). Equipped with this operator, Definition 1 is
strengthened as follows. definition Let A and B partition αP . Then B
is strongly invariant in P , written LSINVB (P), if P is divergence-free and,
whenever (s,Y) ∈ fails(P) then (s | \ B ,Y ∩ B) ∈ fails(P) and

LB (P/(s,Y)) = LB (P/(s |\ B ,Y ∩ B)).

Strong invariance lies half-way between invariance and independence, and
consequently (Theorems 1.3 and 2.1) these three conditions are equivalent
for deterministic processes.

Theorem 2.1 Let A and B partition αP . Then

LINDB (P) ⇒ LSINVB (P) ⇒ LINVB (P).

We can now turn attention to the main theorem of this section.

Theorem 2.2 If A and B partition αP , and process P does not diverge,
then P is separable relative to this partition if, and only if,

LSINVA(P) ∧ LSINVB (P).

proof

The proof in the “only if” direction is easy. If P = Q ‖
Ø

R with αQ = A

and αR = B then by symmetry it is sufficient to prove one of the two
invariance properties. If (s,Y ∪ Z) ∈ fails(Q ‖

Ø
R) (where, as will be our

5

convention from now on, Y ⊆ A and Z ⊆ B) then, by definition of the
parallel operator, (s | \ A,Y) ∈ fails(Q) and (combining this with (〈〉,Ø) ∈
fails(R)), (s |\ A,Y) ∈ fails(Q ‖

Ø
R). Now,

LA(P/(s,Y ∪ Z)) = (Q/(s | \ A,Y) ‖
Ø

R/(s |\ B ,Z)) ||| RUNB

= (Q/(s |\ A,Y) ||| R/(s |\ B ,Z)) ||| RUNB

= Q/(s |\ A,Y) ||| RUNB

= Q/(s |\ A,Y) ||| R ||| RUNB

= LA(P/(s |\ A,Y))

The first line here is a simple property of ‘after’, the second because the
alphabets of Q and R are disjoint, the next two both because RUNB is a
zero of ||| for divergence-free processes with alphabet B , and the last one by
definition.

The “if” proof requires us to show that if both invariance properties hold
then we can separate P . In fact, we will show that

P = (P ‖
B

STOP) ‖
Ø

(P ‖
A

STOP).

Call the left- and right-hand processes in the above parallel PA and PB

respectively. The main part of the proof is contained in the following lemma:

Lemma 2.3 (Under assumptions of the theorem we are trying to prove) If
s ∈ traces(P) ∩ traces(PA ‖

Ø
PB) then

(a) (P/s)0 = ((PA ‖
Ø

PB)/s)0

(b) refs(P/s) = refs((PA ‖
Ø

PB)/s)

proof Assume first that a ∈ (P/s)0, and wlog that a ∈ A. Then we
know s 〈̂a〉 |\ A ∈ traces(P), and s | \ B ∈ traces(P) by the invari-
ance properties. It follows that s 〈̂a〉 | \ A ∈ traces(PA) and s |\ B ∈
traces(PB) by definition of these processes. It easily follows that s 〈̂a〉 ∈
traces(PA ‖

Ø
PB) which is what we want.

Conversely, assume that a ∈ ((PA ‖
Ø

PB)/s)0 and wlog a ∈ A. Then we

have s 〈̂a〉 |\ A ∈ traces(PA) ⊆ traces(P), and hence

a ∈ (P/s |\ A)0 ⊆ (LA(P/s |\ A))0 = (LA(P/s))0

6

and it follows that a ∈ (P/s)0 as required.
This completes the proof that (P/s)0 = ((PA ‖

Ø
PB)/s)0.

One half of the proof for refusals is very like the above. The other is
more interesting since it uses the full power of the enhanced ‘after’ operator
contained in the definition of LSINV. This is to show that any refusal of
(PA ‖

Ø
PB)/s is a refusal of P/s. If there were a counter-example, Y ∪ Z ,

to this assertion, then we have (s | \ A,Y) ∈ fails(PA) and (s |\ B ,Z) ∈
fails(PB) since (s,Y ∪ Z) ∈ fails(PA ‖

Ø
PB). The definitions of PA and

PB then imply that (s |\ A,Y) and (s |\ B ,Z) are both members of fails(P).
Hence, by LSINVA(P) applied to the failure (s,Ø), (s,Y) ∈ fails(P). By
assumption, Z 6∈ refs(P/(s,Y)) and hence

Z 6∈ refs(LB (P/(s,Y)))

= refs(LB (P/(s |\ B ,Y ∩ B))) by LSINVB (P)
= refs(LB (P/s))

as Y ∩ B = Ø. But this contradicts what we already know.

The above lemma proves the remainder of the theorem, since given
part (a) it is an easy induction that the two sets traces(PA ‖

Ø
PB) and

traces(P) are identical.

Suppose that process P is separable and that all its components are
deterministic. Since a parallel composition of deterministic processes is
always deterministic [Hoa85], P itself will be deterministic. From Theo-
rems 1.3 and 2.2 we therefore obtain:

Corollary 2.4 Process P is strongly separable with respect to partition
{A,B} if, and only if,

LINDB (P) ∧ LINDA(P).

3 Secure Composition

The previous section has shown the close link between separability of a
process into disjoint components and security conditions. Separability when
provable, is evidence of the lack of information flow. However we should
point out that separability is, surprisingly, not sufficient evidence to exclude

7

information flow. For while clearly any process that is actually constructed
as the disjoint parallel composition of two processes will be secure no matter
what the internal structure of the processes, mere semantic equivalence to
such a system (which is what separability states) turns out not to be good
enough. The reason is that the resolution of nondeterminism within the
system may create insecurities. This is discussed at length in [Ros95]. Here,
we merely give a simple example.

CHAOSA∪B = STOP u x : A ∪ B → CHAOSA∪B

is the most nondeterministic divergence-free process with alphabet A ∪ B .
And it is separable (it equals CHAOSA ‖

Ø
CHAOSB). Constructed as above

we would have few doubts as to the security of this process, but unfortu-
nately it is semantically equal to the process

CHAOSA∪B u P

for any divergence-free P at all, however insecure. A process like this, with
an internal mechanism that allows it to behave securely or insecurely (per-
haps being certain to choose the latter because of considerations below the
level of modelling) should not be regarded as secure. But it is still separa-
ble. It is only strong separability that should be regarded as establishing the
absence of information flow (though noting it still ignores timing issues).

From a more practical point of view, however, separability of processes
is far from a universal security condition. The main reason for this is that
non-interference is generally regarded as an asymmetric property in the sense
that if A must not interfere with B , we need not always exclude the reverse.
Fortunately, Corollary 2.4 shows how we can “skew” the condition of separa-
bility to give an asymmetric property: we might want to demand LINDB (P)
but do not necessarily require A to be independent as well.

Secondly, even if the final result of a development is separable, it is highly
unlikely that the actual system is built as the disjoint parallel composition
of two processes. (If it were, there would not be much need of a detailed
formal analysis!) If we are to seek rules which allow us to build up secure
systems, we will need ones that allow us to deal with cases of composing
processes whose alphabets do intersect.

What is required is a development method that allows functional designs
and verification of their security properties. Such a method would permit the
definition of components, not necessarily with disjoint alphabets, and their

8

composition to yield systems secure as a whole. The compositional laws we
present below show under which conditions we can combine subsystems such
that their composition is guaranteed to be secure. We concentrate here on
the determinism-based independence properties, since we believe they give
the most satisfactory definition of absence of information flow.

The context of the following two laws is a system in which events A
are required not to interfere with events B . They simply allow us to add a
process at one end of a secure system without violating security.

Theorem 3.1 If LINDB (P) holds, αQ ⊆ A, and process Q does not di-
verge, then

LINDB (P ‖
αP∩αQ

Q).

Theorem 3.2 If LINDB(P) holds, αQ ⊆ B , and process Q is deter-
ministic, then

LINDB (P ‖
αP∩αQ

Q).

The final law states that we safely combine two secure components, confident
in the knowledge that the result will be secure as well.

Theorem 3.3 If both LINDB (P) and LINDB (Q) hold, then

LINDB (P ‖
αP∩αQ

Q).

proof

We base the proof on the following lemma, which holds by virtue of prop-
erties of the ||| operator.

Lemma 3.4 Suppose S is divergence-free. Then LB (S) is non-deterministic
if, and only if, there exist t1, t2 ∈ traces(S) and b ∈ B such that

t1 |\ B = t2 |\ B ∧
t1 〈̂b〉 ∈ traces(S) ∧ (t2, {b}) ∈ fails(S).

If RUNA ||| (P ‖
αP∩αQ

Q) were non-deterministic (but free of divergence),

we would therefore know that there must be traces t1, t2 and an event b ∈ B

9

such that

t1 |\ B = t2 |\ B ∧
t1 〈̂b〉 ∈ traces(P ‖

αP∩αQ
Q) ∧

(t2, {b}) ∈ fails(P ‖
αP∩αQ

Q).

We distinguish two cases: either b is in both alphabets of P and Q , or b is
only in one of the alphabets of the processes, in which case we assume wlog
b ∈ αP .

Case b ∈ αP − αQ . Since P does not need Q ’s cooperation for b we
know it must be possible for P to refuse this event after t2. Also, it is P
that contributes b after t1, and so we conclude

(t2 |\ αP , {b}) ∈ fails(P) ∧ (t1 |\ αP)̂ 〈b〉 ∈ traces(P)

by the properties of parallel composition, which contradicts the assumption
of LINDB (P).

Case b ∈ αP ∩ αQ . The refusal of b after t2 may have been caused
by either P or Q ; we assume wlog that P refuses the event after t2. Since
both processes have to synchronise for b to occur after t1, we must come to
precisely the same conclusion as in the first case.

In either case we derive a contradiction with the assumptions, and so
the theorem holds.

4 Example

The following example specification is intended to illustrate how the ideas
described in the previous section allow the functional design of a system
that is secure by construction.

4.1 Informal Requirements

A system is required in which four users are to share access to common
resources. These resources are binary variables on which the following op-
erations can be carried out:

• reading the current value of the variable,

• toggling (i.e. complementing) the current value, and

10

• setting the value to 1, which is only possible if the variable is unset
(value 0).

There are three variables X , Y , and Z , which are to provide the following
functionality to their four users A, B , C , and D .

1. Variable X can be read by A when Y is set, and toggled by any of A,
C , and D when Z is set.

2. Variable Y can be read by A and B when Z is set, toggled by B and
D any time, and set only by B .

3. Variable Z can be read by any user any time, but toggled only by D .

The security requirements we need to take into account are:

• A must not interfere with any other user.

• Neither B nor C must interfere with D , and B and C must not inter-
fere with each other.

• D may interfere with any user.

4.2 Design

Using USER to denote the set {A,B ,C ,D} and BIT to denote the range
of the binary variables, we specify the access operations as

Read = { readX .u.b, readY .u.b, readZ .u.b | u ∈ USER, b ∈ BIT }
Set = { setY .u | u ∈ USER }
Toggle = { toggleX .u, toggleY .u, toggleZ .u | u ∈ USER }

The alphabets of the processes implementing the variables are given by

αVARX = { readX .u.b, toggleX .u | u ∈ USER, b ∈ BIT }
αVARY = { readX .u.b, readY .u.b, setY .u, toggleY .u

| u ∈ USER, b ∈ BIT }
αVARZ = { readY .u.b, readZ .u.b, toggleX .u, toggleZ .u

| u ∈ USER, b ∈ BIT }

11

It is straightforward to implement the desired functionality with a single
process for each variable.

VARX (x) = (readX .A!x → VARX (x))
2 (toggleX .A → VARX ((x + 1)mod2))
2 (toggleX .C → VARX ((x + 1)mod2))
2 (toggleX .D → VARX ((x + 1)mod2))

VARY (y) = (readY .A!y → VARY (y))
2 (readY .B !y → VARY (y))
2 (toggleY .B → VARY ((y + 1)mod2))
2 (toggleY .D → VARY ((y + 1)mod2))
2 (if (y = 0)

then (setY .B → VARY (1))
else (readX .A?x → VARY (y)))

VARZ (z) = (readZ ?user !z → VARZ (z))
2 (toggleZ .D → VARZ ((z + 1)mod2))
2 (if (z = 1)

then (toggleX ?user → VARZ (z)
2 readY .A?y → VARZ (z)
2 readY .B?y → VARZ (z))

elseSTOP)

Let us compose the system in two steps

VARYZ = VARY (0) ‖
αVARY ∩αVARZ

VARZ (0),

SYSTEM = VARYZ ‖
αVARYZ∩αVARX

VARX (0)

and check at the same time whether the compositions preserve our security
requirements. This can be done by applying the compositional law described
in Theorem 3.3 four times, for each step. Before doing this, we need to define
the alphabets of the users of the system.

userA = { readX .A.b, readY .A.b, readZ .A.b, toggleX .A | b ∈ BIT },
userB = { readY .B .b, readZ .B .b, setY .B , toggleY .B | b ∈ BIT },
userC = { readZ .C .b, toggleX .C | b ∈ BIT },
userD = { readZ .D .b, toggleX .D , toggleY .D , toggleZ .D | b ∈ BIT }

and define userBD = userB ∪ userD , userCD = userC ∪ userD , and
userBCD = userB ∪ userCD .

For the first composition, there are four proof obligations for security of
process VARYZ .

12

1. show independence of userD in VARY (0) and in VARZ (0),

2. show independence of userBD in VARY (0) and in VARZ (0),

3. show independence of userCD in VARY (0) and in VARZ (0),

4. show independence of userBCD in VARY (0) and in VARZ (0).

This is sufficient, by Theorem 3.3, to prove that

LINDuserD(VARYZ) ∧ LINDuserBD(VARYZ) ∧
LINDuserCD(VARYZ) ∧ LINDuserBCD(VARYZ).

Given these, there are again four proof obligations for the second step.

1. show independence of userD in VARX (0),

2. show independence of userBD in VARX (0),

3. show independence of userCD in VARX (0),

4. show independence of userBCD in VARX (0).

Verifying these will guarantee

LINDuserD(SYSTEM) ∧ LINDuserBD(SYSTEM) ∧
LINDuserCD(SYSTEM) ∧ LINDuserBCD(SYSTEM)

and thus the security in the overall system. Of course, we can check these
conditions directly, but this will yield the expected result.

We point out that all conditions above can be verified using the CSP
model checker FDR2. This tool allows direct verification of whether a process
is deterministic, as described in [RWW94].

4.3 An Alternative Design

Let us now enhance the functionality of the system. Variables Y and Z
should remain unchanged, while X should additionally allow user B to set

2FDR (Failures-Divergence Refinement) is a product of Formal Systems (Europe) Ltd.,
3 Alfred St., Oxford OX1 3EH, UK.

13

its value. With this change, we have to re-define the sets αVARX and userB
as

αVARX = { readX .u.b, setX .u, toggleX .u | u ∈ USER, b ∈ BIT }
userB = { readY .B .b, readZ .B .b, setX .B , setY .B , toggleY .B

| b ∈ BIT }

Our system implementation has to be modified in one process:

VARX (x) = (readX .A!x → VARX (x))
2 (toggleX .A → VARX ((x + 1)mod2))
2 (toggleX .C → VARX ((x + 1)mod2))
2 (toggleX .D → VARX ((x + 1)mod2))
2 (if (x = 0)

then setX .B → VARX (1)
elseSTOP)

The complete system is composed in the same two steps as described in the
initial design, and the proof obligations are precisely the same. For the first
step, all conditions do indeed hold (since we have not changed VARY or
VARZ), which again establishes that VARYZ is secure.

The final composition, however, does not preserve security. It is not
possible to meet any of the obligations for the second step. This is the case
because user B may find the event setX .B refused after either A or C has
toggled X , and thus either can interfere with B .

The security breach is caught by our conditions as follows. For condition
(2.) for instance, we require the process

RUNuserAC ||| VARX (0)

to be deterministic. It is not, however, since after (for example) trace
〈toggleX .A〉 the event setX .B may be accepted or refused in a non-deterministic
fashion. Thus neither LINDuserBD(VARX (0)) nor LINDuserBD(SYSTEM)
holds, the latter because process

RUNuserAC ||| SYSTEM

may accept or refuse setX .B after (e.g.) trace 〈toggleZ .D , toggleX .C 〉.
We note that none of the other pre-conditions for the composition holds,

since the processes

RUNuserABC ||| VARX (0)
RUNuserAB ||| VARX (0)
RUNuserA ||| VARX (0)

14

are non-deterministic for the same reasons.

5 Conclusions

We have seen both how security properties can be used to decompose pro-
cesses, and how security properties are preserved under parallel composition.

It is satisfying to see that the historically important property of sep-
arability can be characterised using our abstraction mechanisms, but the
reader should also note the limitations we pointed out on the soundness of
separability as a security specification. Only in the context of deterministic
systems do independence and invariance collapse down to the same predi-
cate and thus either condition (or separability) may be used to prove lack
of information-flow.

Since the determinism-based independence conditions are the most sat-
isfactory definitions of absence of flow, we have concentrated on their com-
positional properties, though similar studies (and doubtless similar results)
could be obtained for others. We have shown a number of laws which pre-
serve event independence under parallel composition. These compositional
properties have a two-fold relevance in computer security. Firstly, they allow
to place emphasis – if so desired – on the functional properties of system
components without sacrificing security concerns. Secondly, they provide
the key to formal or automatic verification since the security of the whole
system follows from that of its parts.

It is worth noting that, as discussed in [RWW94] and [Ros95], conditions
based on determinism map well onto existing model-checking technology.
The examples presented in the previous section have all been verified (or
shown insecure) using the tool FDR, which has the capability of handling
much larger examples than this one. Of course the existence of composition
laws like ours should extend the range of systems which come within the
reach of tools like FDR.

References

[All91] P. G. Allen. “A Comparison of Non-interference and Non-
deducibility using CSP”, Proc. 1991 IEEE Computer Security
Workshop, pp 43-54. IEEE Computer Society Press 1991.

15

[Bur89] R. Burnham. The Specification of Security in Distributed Com-
puting Systems, Oxford University MSc Thesis, 1989.

[Gra92] J. Graham-Cumming. The Formal Development of Secure Sys-
tems, Oxford University DPhil Thesis, 1992.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes, Prentice
Hall 1985.

[Jac90] J. Jacob. “Separability and the Detection of Hidden Channels”,
Information Processing Letters 34(1990) 27–29.

[Ros95] A. W. Roscoe. “CSP and Determinism in Security Modelling”, to
appear in Proc. 1995 IEEE Symposium on Security and Privacy.

[RWW94] A. W. Roscoe, J. C. P. Woodcock, L. Wulf. “Non-interference
through Determinism”, Proc. Third European Symposium on Re-
search in Computer Security (ESORICS-94), Springer LNCS 875.

[Rus81] J. M. Rushby. “The Design and Verification of Secure Systems”,
ACM Operating Systems Rev. 15(5).

[Rya91] P. Y. A. Ryan. “A CSP Formulation of Non-interference”, Cipher,
pp 19-27. IEEE Computer Society Press, 1991.

A CSP Summary

The following provides a brief summary of the CSP notation as used in this
paper; further details may be found in [Hoa85].

A.1 Trace Notation

〈e〉 trace containing (only) event e
s t̂ concatenation of traces s and t

s |\ X s restricted to events in set X

16

A.2 Processes

αP alphabet (possible events) of process P
(P)0 possible initial events of P
P/t process P after it has engaged in trace t
P ‖

A
Q parallel composition with synchronisation (only) on A

P ||| Q parallel interleaving (without synchronisation)
P u Q internal (non-deterministic) choice between P and Q
P 2 Q external (deterministic) choice between P and Q

Two special processes are STOP and RUN . Process STOP never engages
in any event. RUNA is always willing to contribute an event from set A:

RUNA = a : A → RUNA

A.3 Semantic Model

In the failures-divergences model, each process P is determined by its failure
set, fails(P), and its divergence set, divs(P).

• each failure is a pair (s,X) where s is a finite trace of the process and
X is a set of events which it may refuse after s, and

• each divergence is a finite trace on which the process can perform an
infinite sequence of internal actions.

The events initially refused by P are denoted refs(P). Two processes are
regarded as equal in the model if they agree in their failures and divergences.

A process P is deterministic if and only if (1) it is free of divergence;
and (2) it satisfies

(tr , {a}) ∈ fails(P) ⇒ tr 〈̂a〉 6∈ traces(P)

for all traces tr , that is, there never is a choice between accepting and
refusing an event.

17

