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Abstract

The world is becoming strongly dependent on computers, and on distributed
communication between computers. As a result of this, communication
security is important, sometimes critically so, to many day-to-day activities.
Finding strategies for discovering attacks against security protocols and for
proving security protocols correct is an important area of research.

An increasingly popular technique that is used to simplify the design of
security protocols is to rely on a secure transport layer to protect messages on
the network, and to provide protection against attackers. In order to make
the right decision about which secure transport layer protocols to use, and
to compare and contrast different secure transport protocols, it is important
that we have a good understanding of the properties that they can provide.
To do this, we require a means to specify these properties precisely.

The aim of this thesis is to improve our understanding of the security
guarantees that can be provided by secure transport protocols. We define
a framework in which one can capture security properties. We describe
a simulation relation over specifications based on the events performed by
honest agents. This simulation relation allows us to compare channels; it
also allows us to specify the same property in different ways, and to conclude
that the specifications are equivalent.

We describe a hierarchy of confidentiality, authentication, session and
stream properties. We present example protocols that we believe satisfy
these specifications, and we describe which properties we believe that the
various modes of TLS satisfy. We investigate the effects of chaining our
channel properties through a trusted third party, and we prove an invariance
theorem for the secure channel properties.

We describe how one can build abstract CSP models of the secure trans-
port protocol properties. We use these models to analyse two single sign-on
protocols for the internet that rely on SSL and TLS connections to function
securely. We present a new methodology for designing security protocols
which is based on our secure channel properties. This new approach to pro-
tocol design simplifies the design process and results in a simpler protocol.
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Chapter 1

Introduction

Computer and communication security is important, sometimes critically
so, to everyone. However, many people do not realise the role that security
protocols play in protecting their personal information, and many people
take security for granted. It is only when something goes wrong that we
begin to appreciate the need for reliable and verifiable security.

The world is becoming strongly dependent on computers, and on dis-
tributed communication between remote devices. Large amounts of money
are regularly moved between banks, merchants and customers electronically;
without suitable security procedures and policies it would be easy for a ma-
licious attacker to steal money, and to defraud these banks, merchants and
customers. Many companies collect and store vast amounts of information
about their customers; for example, a customer purchasing a life insurance
policy has to provide most of their personal details to the policy provider.
These personal details are precisely what an attacker needs to steal a per-
son’s identity, so businesses must be able to persuade their customers that
their personal information is kept securely. Businesses and governments
use email to send highly sensitive data over insecure networks; this sort of
communication is infeasible without security protocols to protect the confi-
dentiality and integrity of the data en-route. E-commerce is becoming more
and more widely used: many merchants trade solely online, and today’s
e-commerce customers are willing to spend large amounts of money on the
internet; without carefully designed security protocols the risks involved for
customers, merchants and banks would be too great.

All of these day-to-day activities, and many more, rely on security pro-
tocols in order to achieve authentication, confidentiality and data integrity
between remote computers communicating over distributed, and inherently
insecure networks. Finding strategies for discovering attacks against secu-
rity protocols and for proving security protocols correct is an extremely
important area of research.

When security researchers design security protocols, they take for
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granted the fact that they can build their protocol on top of a reliable
transport layer protocol. They do not concern themselves with routing is-
sues (how best to get a message from A to B), with technical details of
message transmission or reception, or with necessary details such as error
checking. Naturally, the security protocol is much simpler once these prop-
erties can be assumed of the transport layer.

An increasingly popular technique that is being used to simplify further
the design of security protocols is to rely on a secure transport layer to
protect messages on the network, and to provide some protection against
attackers; see e.g. [FRH+08, OAS05b, Vis06, WSF+03]. By depending on
a lower level protocol to provide a secure channel between hosts, a security
protocol can be designed in a more transparent way. This simplifies the de-
sign of the security architecture: the designer can use an off-the-shelf secure
transport protocol, such as TLS [DA99], to provide secrecy and authen-
tication guarantees; the architecture can then provide additional security
guarantees in a higher layer.

In such circumstances it is important to understand what is required
of the secure transport protocol, and, conversely, what services are pro-
vided by different protocols. TLS provides strong guarantees; however, it is
computationally-expensive, and so in some circumstances, a simpler proto-
col might suffice. On the other hand, unilateral TLS does not authenticate
the client to the server; if the client does not have a public-key certificate,
then authentication of the client must take place in the application layer. In
this case TLS might not provide all the security guarantees that are neces-
sary. In order to make the right decision about which secure transport layer
protocols to use, it is vitally important to have a good understanding of the
properties that they each provide. In order to do this, we require a means
to specify these properties precisely.

In 2003, Philippa Broadfoot and Gavin Lowe proposed a layered ap-
proach to designing and analysing security transactions [BL03]. With their
approach, a security transaction is layered over a lower-level secure transport
protocol. The properties of the transport protocol are specified formally, and
they can then be modelled abstractly.

There are several advantages to adopting this abstract layered approach.
It is traditional to abstract away the details of the lower levels in a protocol
analysis; we do not build an explicit model of TCP or IP when we analyse a
security protocol, we assume that there is a network capable of sending mes-
sages between agents. Similarly, security protocol designers do not design
their protocols to replicate the features of a reliable transport protocol. It
makes sense therefore to model the properties of the secure transport layer
abstractly rather than modelling the transport layer protocol itself; in order
to do this, we require a precise way of specifying these properties.

There are many secure transport protocols that provide the same or sim-
ilar properties. If two protocols provide the same properties, then one ought
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to be able to use them interchangeably. If one protocol is stronger than an-
other, then the stronger protocol can be used in any scenario instead of the
weaker one. If a particular application-layer security protocol requires cer-
tain properties from the secure transport protocol then any transport-layer
protocol that provides these properties can be used. In order to compare
and equate secure transport protocols in this way we require a framework
in which we can specify their properties.

The aim of this thesis, therefore, is to improve our understanding of the
security guarantees that can be provided by secure transport protocols. We
define a general framework in which one can capture security properties us-
ing CSP-style trace specifications, building on the work of Broadfoot and
Lowe [BL03]. We provide a simulation relation over secure transport pro-
tocol specifications based on the events performed by honest agents. This
simulation relation allows us to compare channels; if an architecture is cor-
rect when it uses a particular secure channel, it will still be correct when
it uses a stronger channel. Our formalism also allows us to specify the
same property in different ways, and to conclude that the specifications are
equivalent.

We describe a hierarchy of confidentiality, authentication, session and
stream properties. The session property groups messages into sessions by
specifying that all messages received in a single connection were sent in
a single connection; the stream property extends the session property by
specifying that messages are received in the same order as that in which
they were sent. We present example (single-message) protocols that we
believe satisfy these specifications, and we use the various modes of TLS
as a running example, and describe which properties that we believe they
satisfy. We use our simulation relation to justify some simplifications on the
model of the intruder, and to justify situations in which a weaker protocol
can be used instead of a stronger one.

We investigate the effects of chaining our confidentiality and authenti-
cation properties through a trusted third party (a proxy). We prove an
invariance theorem for the secure channel properties, and we prove that,
in some cases, two channels can be chained through a proxy to produce a
stronger channel.

We describe how one can build abstract models of the secure transport
protocol properties in Casper, and we use the simulation relation to prove
the soundness and completeness of these models. We show how these mod-
els can be used to analyse layered architectures; we study two single sign-on
protocols for the internet that rely on SSL and TLS connections to function
securely. Finally, we present a new methodology for designing security pro-
tocols which is based on our secure channel properties; we describe a single
sign-on protocol that was developed using these new techniques. This new
approach to protocol design simplifies the design process and results in a
simpler protocol.
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Thesis overview

This thesis is split into eight chapters. In the next chapter, we give an
overview of the necessary background material for the later chapters. We
describe what a security protocol is, how attacks against security protocols
can arise, and how they can be fixed. We outline the formal notation that
we use to define security protocols, and the symbolic encryption and active
intruder model that we use when we analyse security protocols. We then
describe some basic CSP notation, and give a brief overview of the traces
semantic model for CSP. We outline the CSP model of a security protocol,
developed by Lowe [Low96], and the method of using this model to look
for attacks against a protocol. We introduce the extension to this model
proposed (and implemented) by Broadfoot and Lowe [BL03]; we build upon
many of their ideas in the later chapters of this thesis. We next study sev-
eral different secure transport protocols, and discuss some of the properties
that they provide to higher layers. We conclude the chapter with a brief
consideration of alternative approaches for analysing and studying security
protocols, and for proving protocols correct.

In Chapter 3 we describe our research into specifying secure channel
properties. We first formalise our model of a set of honest agents who com-
municate over an insecure network. We then define several confidentiality
and authentication properties, and we investigate the ways in which they can
be combined. We identify several collapsing cases in which a combination
of the channel properties simulates (i.e. allows the same attacks as) another
combination. We enumerate all possible collapsing cases, and we define a hi-
erarchy of specifications of properties that do not collapse. These properties
are specified by placing restrictions on the activity of the intruder, and they
are formulated as trace specifications parameterised by the channel under
consideration. We discuss some of the points in the hierarchy in depth, and
give examples of simple (single-message) protocols that we believe imple-
ment them. We then describe several session and stream properties that are
independent of the confidential and authenticated properties.

In Chapter 4 we describe several useful results about secure channel prop-
erties. We first define a simulation relation based on the traces of systems as
they are seen by honest agents; this simulation relation examines the effect
of the intruder’s behaviour rather than the events that he performs. We use
this simulation relation to define an equivalence relation. We then use this
relation to prove the equivalence of alternative specifications of our authen-
tication properties; these alternative forms are more conducive to proving
properties about secure channels. We show that every combination of the
channel primitives introduced in Chapter 3 collapses uniquely to a point
in the hierarchy, and we prove that some combinations of events that the
intruder can perform can safely be blocked. We define a sufficient condition
of an application-layer protocol for a particular weaker channel to be used
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instead of a stronger one. Finally we compare our specification framework
and our channel properties to properties developed by other researchers.

In Chapter 5 we examine the possibilities for chaining secure channels.
We consider chaining channels in two different ways: firstly, though a set of
dedicated intermediaries (which we refer to as simple proxies), and secondly,
through a smaller, more general set of multiplexing proxies. We prove that in
both cases the secure channel properties from Chapter 3 are invariant under
chaining. We prove that the overall channel established through a proxy is
at least as strong as the greatest lower bound of channels to and from the
proxy, and we show that some combinations of channels can be chained to
provide a stronger overall channel. We conclude this chapter by comparing
our proxy results to similar results discovered by other researchers.

In Chapter 6 we present our abstract CSP models of the secure chan-
nel properties from Chapter 3. We first describe and characterise the ex-
isting Casper model [Low98], and we prove that it is equivalent to the net-
work we described in Chapter 3, modulo the application-layer protocol being
modelled. We then describe the new models that we have implemented in
Casper and we prove that they are equivalent to the formal channel prop-
erties, again, modulo the application-layer protocol being modelled. These
new models use the existing Casper structure, and so only small changes
were necessary to Casper. Lastly, we describe the syntax for using the new
channel models in a Casper protocol analysis.

In Chapter 7 we report on our analysis of two single sign-on proto-
cols for the internet. We first introduce the single sign-on paradigm, and
we describe the channel properties we use to model unilateral and bilat-
eral TLS connections. We then describe our model of the SAML Single
Sign-On protocols [OAS05b], and we describe several possible attacks that
we found when the protocol is not implemented precisely according to the
specification. Next we describe our model of the OpenID Authentication
protocols [FRH+08], and we describe a serious attack that is possible when
users choose insecure identities. We also describe several other attacks that
are possible when the protocol is not implemented exactly as described (and
sometimes implied) by the specification. Finally we present our own single
sign-on protocol that we designed to be as concise as possible. We discuss
the exact requirements of the secure transport layer, and we analyse this
protocol for attacks. This new design methodology (using the channel prop-
erties from Chapter 3) simplifies the design process, and results in a much
simpler protocol.

Finally, in Chapter 8 we conclude by summarising the contributions of
this thesis. We describe several possible extensions to the specification and
modelling work, and we discuss how this future work might be researched.
We discuss possible extensions to the channel properties themselves, and in-
teresting areas for studying the interactions between different secure chan-
nels. We describe some useful enhancements that could be made to the
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Casper channel models. One particularly interesting area for future research
would be to classify some of the existing secure transport protocols (de-
scribed in Chapter 2), and to prove which properties they satisfy.

Note Gavin Lowe and I presented joint author papers based on the work
in Chapter 3 at CSF’08 [DL08] and WITS’07 [DL07]. As a result of this,
some of the wording in this chapter was written by Gavin, but the work
was done by me with guidance from Gavin. The work in Chapter 5 was
presented at FCS-ARSPA-WITS’08 [Dil08].

6



Chapter 2

Background

In this chapter we present some background material that the research de-
scribed in this thesis builds upon. In the first section we introduce the notion
of a security protocol, and we present a simple example; we also outline the
abstract notation used to describe security protocols in the literature. In
Section 2.2 we describe the symbolic encryption model and the active in-
truder against whom protocols must be resistant; this model of an active
attacker is often attributed to Dolev and Yao [DY83].

In Section 2.3 we give a brief introduction to the language and trace
semantics of Communicating Sequential Processes (CSP). In Section 2.4 we
describe the CSP model of security protocols that was first presented by
Lowe [Low96], and which has been extended by several other researchers.
We use this model as the basis for the technical work presented in later chap-
ters. In 2003 Broadfoot and Lowe proposed an extension to the CSP model
to analyse layered protocols which assume the existence of a more secure
transport layer than the traditional Dolev-Yao style network [BL03]; we
describe this model in Section 2.5.

One of the main goals of this thesis is to extend the work of [BL03] by
providing a framework for specifying and analysing the properties of these
sorts of layered architectures. In Section 2.6 we describe several secure
transport layer protocols; these protocols are designed to establish secure
channels between remote devices over an insecure network.

In Section 2.7 we discuss alternative security protocol analysis tech-
niques. We give a description of other approaches to analysing and specifying
secure transport layer protocols in Chapter 4.

2.1 Security protocols

In this section we define what we mean by a security protocol. We give
a simple example, and show that although a protocol appears to be valid,
there may be subtle attacks against it.
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A security protocol is a predefined series of messages to be sent between
two or more agents in order to establish a secure communication link, or
to achieve a security-related goal over an insecure network. The messages
in the protocol typically use cryptographic primitives such as encryption,
cryptographic hash functions and digital signatures to achieve the goal of
the protocol, and the protocol should be resistant to disruption, even in the
presence of a dishonest intruder who is assumed to have control over every
point of the network.

A good example of a security protocol is the Needham-Schroeder Public-
Key Authentication protocol [NS78]. In this protocol two agents, A (the
initiator) and B (the responder), wish to authenticate one another; the
goal of this protocol is therefore to make sure that whenever A has been
running the protocol, supposedly with B, B was running the protocol with A,
and vice versa. In order to achieve their goal, both agents trust a third
party AS : the authentication server who informs them of each other’s public
keys in a reliable and verifiable manner.

The notation A→ B : m signifies that agent A sends message m to
agent B. The message m1,m2 is the concatenation of the messages m1

and m2, and we write {m}k to indicate that m is encrypted with the key k.
PK is a function that returns the public (encryption) key for any agent,
and SK returns the secret (signing) key. For any agent B, SK(B) and PK(B)
are inverse keys.

Message 1 A → AS : A,B
Message 2 AS→ A : {PK(B), B}SK(AS)

Message 3 A → B : {NA, A}PK(B)

Message 4 B → AS : B,A
Message 5 AS→ B : {PK(A), A}SK(AS)

Message 6 B → A : {NA, NB}PK(A)

Message 7 A → B : {NB}PK(B) .

A first requests B ’s public key from the server (Message 1), who signs B ’s
public key and B ’s identity then sends the signed message to A (Message 2).
This public key certificate is signed with the server’s secret key, so A can
verify that she has been given the correct key because she already knows AS’s
public key. Now that A knows B ’s public key, she chooses a nonce (a large
random number) and encrypts that and her identity with PK(B) and sends
them to B (Message 3). B is the only agent who knows SK(B), so he is the
only agent who can decrypt this message to learn NA. B requests A’s public
key certificate from AS (messages 4 and 5) and then chooses a different
nonce NB to encrypt and send back to A (along with A’s original nonce).
The last step of the protocol is for A to prove that she knows SK(A) by
sending B ’s nonce back to him, encrypted with his public key.

We simplify the protocol by assuming that A and B have previously run
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the protocol and so know each other’s public keys:1

Message 1 A → B : {NA, A}PK(B)

Message 2 B → A : {NA, NB}PK(A)

Message 3 A → B : {NB}PK(B) .

Because the nonces NA and NB are always encrypted with either A’s
public key or B ’s public key, apparently only A and B can learn them.
When A sends her nonce in Message 1, she knows that only B can decipher
it; when she receives Message 2 she believes that she can deduce that B
is running the protocol because he has included NA in a new message. In
order to authenticate herself to B (i.e. prove that she can decode something
encrypted with PK(A)) she sends B ’s nonce back to him in Message 3.

In the presence of an active intruder, this protocol does not achieve its
goal (stated above). The intruder can persuade B that he was running
the protocol with A, when A was actually running the protocol with the
intruder, I.

α.1 A→ I : {NA, A}PK(I)

β.1 IA → B : {NA, A}PK(B)

β.2 B → IA : {NA, NB}PK(A)

α.2 I → A : {NA, NB}PK(A)

α.3 A→ I : {NB}PK(I)

β.3 IA → B : {NB}PK(B) .

There are two runs of the protocol in this attack. In the first run (α)
the intruder, I, and A run the protocol normally. In the second run (β) the
intruder pretends to be A and runs the protocol with B. The first thing he
does is to replay A’s nonce from run α to B in run β. Then, when he receives
Message 2 (which he cannot decrypt) he relays it to A in run α. Because
he used the same nonce as A in the first message, A accepts this message as
part of run α, and returns the nonce NB to the intruder. The intruder can
now complete run β by encrypting NB with B ’s public key, and returning
it to him. This attack was discovered by Lowe [Low96].

The attack is possible because Message 2 does not contain B ’s identity,
so while the intruder cannot learn NA and NB from {NA, NB}PK(A), he can
hijack the entire message, and pass it on to A as a message that he (the
intruder) created. If the protocol directed the responder to include their
identity in Message 2 the intruder would not be able to hijack it, and would
not be able to perform this attack:

Message 1 A → B : {NA, A}PK(B)

Message 2 B → A : {NA, NB, B}PK(A)

Message 3 A → B : {NB}PK(B) .

1We also assume that the public keys have not been changed, or expired.
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2.2 The Dolev-Yao model

In this section we describe the formal model we use to model and analyse
security protocols; this model was first proposed by Dolev and Yao [DY83].

We treat encryption (and cryptography in general) as a perfect system:
we are not trying to detect flaws in security protocols that are due to at-
tacks against the cryptosystem in use. For this reason we model encryption
symbolically (in the style of Needham and Schroeder [NS78], and Dolev and
Yao [DY83]). We write {m}k to mean that the message m is encrypted with
the key k.

We consider two types of cryptographic key: symmetric keys are self-
inverse, while asymmetric keys are not. We assume that most agents possess
mutually inverse public and secret key pairs; the functions PK and SK return
the public key and secret key for any agent. We assume that every agent
knows the PK function (i.e. every agent knows every public key), but that
an agent’s secret key is only known to that agent.

We treat encryption and decryption as symbolic operations; encrypting
a message twice with the same symmetric key leaves the message unchanged;
encryption with an asymmetric key followed by encryption with the inverse
key also leaves the message unchanged. We note that while encryption and
decryption are inverse operations, they are not commutative. We assume
that ciphertexts contain enough redundancy that we can distinguish a valid
ciphertext from a random stream of bits. We also assume that encrypted
messages can only be decrypted with the inverse key to the key they were
originally encrypted with; trying to decrypt an encrypted message with any
other key results in garbage.

We model deductions over the message space with the ` relation: if the
message m can be deduced from the set of messages M we write M ` m.
Whether or not m can be deduced from M is decided by the following five
rules:

Membership m ∈M ⇒M ` m ;

Splitting M ` m1,m2 ⇒M ` m1 ∧M ` m2 ;

Concatenation M ` m1 ∧M ` m2 ⇒M ` m1,m2 ;

Encryption M ` m ∧M ` k ⇒M ` {m}k ;

Decryption M ` {m}k ∧M ` k−1 ⇒M ` m.

The deduction relation also satisfies the following two properties:

Monotonicity X ⊆ X ′ ⇒ {m | X ` m} ⊆ {m | X ′ ` m};

Transitivity X ` m ∧X ∪ {m} ` m′ ⇒ X ` m′.
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For example {k−1, {a, b,m}k} ` m, by one application of decryption and
one application of splitting. These rules capture the property that an
agent (including the intruder) can only encrypt or decrypt a message if he
possesses the requisite key.

This abstract model of cryptography is not the only approach taken by
security researchers; several researchers model encryption as an operation
over strings of bits (e.g. [BR95, Kra01, Can01, War05, BPW06]). In this
‘computational’ model encryption keys and messages are modelled as finite
bit strings, and the encryption and decryption functions transform plaintext
bit strings into ciphertext bit strings. Security results are given in terms of
the probability that the intruder can disrupt the goal of the protocol.

In [AR02] Abadi and Rogaway prove a soundness result for a symbolic
treatment of symmetric (shared-key) encryption. They establish that se-
crecy properties that can be proved in the symbolic world are true in the
computational world, and thus justify the use of a symbolic treatment of
encryption.

The Dolev-Yao model is based on a collection of honest agents who
communicate over a network. These honest agents only run the protocol in
question: they can perform multiple concurrent runs of the protocol, but
they do not deviate from the message flows described by the protocol.

We assume that the network over which the honest agents communicate
is under the control of a dishonest intruder who can overhear everything that
is sent on the network, block messages from being received, alter messages
in transit, and inject fake messages. The intruder can also use these abilities
to re-order and delay messages, and to replay old messages. The intruder’s
ability to create new messages is limited by the deduction rules described
above: he can only send or fake messages that he can deduce from what he
knew initially and what he has overheard.

We assume that the intruder’s initial knowledge includes all ‘public’ ma-
terial such as honest identities, public keys, hash functions, etc. We fre-
quently call on the honest agents to create fresh, random values (nonces);
we assume that the intruder cannot guess the values of these nonces, and
he can create his own. We formalise our interpretation of the honest agents,
the intruder and the network in Chapter 3.

2.3 CSP

CSP is a language for describing concurrent systems of communicating pro-
cesses; CSP was first introduced by Hoare in 1978 [Hoa78]. Since then,
Hoare, Roscoe and others have extended the language [Hoa85, Ros98], and
developed a collection of mathematical models which support the analysis
of systems described in CSP. In this section we give a brief introduction to
the CSP language and to the traces model (T ). We use this model, and the
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notation described in this section in Chapter 3 as our specification language
for secure channel properties. We also use some of the CSP notation and
the properties of the traces model for the proofs in Chapters 4 and 5, and
for describing the updated models in Chapter 6. For a full description of
CSP and of the traces model, see Roscoe’s book [Ros98].

A CSP process is described by the events it can perform. An event is an
atomic communication between processes; events may be simple (e.g. send)
or they may carry data (e.g. send.m). In the case of complex events we
consider the first part of the event to be the channel name; if c is a channel
then {| c |} is the set of events over c.

The process STOP is the process that cannot perform any events. The
process a→ P performs the event a and then behaves like the process P .
The input prefix c?x→ P (x) accepts any value x (of the correct type) on
the channel c (i.e. performs the event c.x) and then behaves like the pro-
cess P (x); the output prefix c!x→ P performs the event c.x (an output
event) and then behaves like the process P . The process P � Q (external
choice) can either behave as process P or as process Q; the indexed form of
external choice �i∈I Pi can behave as any of its arguments.

Processes can be combined with the parallel operator. The pro-
cess P ||

X

Q behaves like the processes P and Q acting concurrently with

the condition that they must synchronise on all events in X. In the special
case that X = {} we say that the processes are interleaved: they perform
events independently of one another; we write P |||Q.

A trace is a sequence of events that a CSP process might perform; for
example, 〈a1, a2, . . . , an〉 is the trace containing the events a1 to an in that
order; 〈〉 is the empty trace. If tr and tr′ are two finite traces then tr_tr′ is
their concatenation. We write tr′ 6 tr if tr′ is a prefix of tr. We write a in tr
if the event a occurs in the trace tr, and tr ↓ c is the sequence of data
communicated in tr over the channel (or set of channels) c. tr � c is the
sequence of events communicated in tr restricted to the set of events c. For
a channel c (or a set of events X) we write tr \ c (tr \X) for the trace tr
with the events on channel c (or the events in the set X) removed.

In the traces model T the semantics of a process P is defined as the set
of traces it can perform: traces(P ). For any process P , traces(P ) is non-
empty (it always contains the empty trace 〈〉) and prefix closed (i.e. if tr
is a trace of P then tr′ is also a trace of P for every tr′ 6 tr). In Chap-
ter 3 we give channel specifications as predicates over traces; a process P
satisfies a specification if all of its traces satisfy the specification. One CSP
process Q refines another process P (written P v Q) in the traces model if
every behaviour of Q is also a behaviour of P ; i.e. traces(Q) ⊆ traces(P ).
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2.4 CSP models of security protocols

The example in Section 2.1 shows how easy it is to design a protocol that
appears to be secure, but is in fact not secure because an active intruder
can attack it and disrupt the protocol goals. In this section we describe the
formalisation of the Dolev Yao model in CSP, and we describe Casper and
FDR, the tools that we use for finding attacks against security protocols.
Casper was initially developed by Lowe [Low98], but has since been extended
by several authors [RB99, HL01, BL03]. Casper automatically builds a CSP
model of a protocol from an abstract description, and constructs trace re-
finement properties that can be checked with FDR [FSE05]. If FDR finds
that one of these trace refinement properties does not hold it produces a
counterexample trace; Casper takes this counterexample and produces an
attack trace (similar to the one shown above).

The system that Casper builds comprises:

• A process for each honest agent; these processes follow the steps in
the protocol and are parameterised by the values (nonces, keys, etc.)
they introduce in the protocol run. Several copies of each honest agent
can be run sequentially or concurrently in order to model that agent
running the protocol more than once, or with more than one agent at
a time;

• A process for the intruder; this process is built of two parts: one part
that can say anything the intruder knows, and the other that builds
upon his knowledge by deducing new messages from what he knew
initially (this is specified in the Casper input script) and from what he
hears the honest agents saying. Because the intruder can say anything
he knows he can take part in protocol runs just as the honest agents
do.

The system is put together in two steps: first a process is built that
interleaves all the honest agent processes; this process is then run in parallel
(synchronising on all events) with the intruder process. The intruder hears
every message that the honest agents send, and decides whether or not to
let an agent receive a message that is sent to him. The intruder process can
modify messages before they are received, and can fake messages so that
honest agents receive messages that were not sent to them by other honest
agents. We also allow the intruder to assume legitimate identities (which
the honest agents cannot distinguish from other honest agents) and to take
part in protocol runs using these identities. For a more complete description
of the CSP model see [RSG+01].

The final stage in building the CSP system is to write trace refinement
properties that the model checker FDR [FSE05] can check to look for attacks
against the specified goals of the protocol. The Casper user specifies one or
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more secrecy or authentication specifications and an actual system (i.e. the
configuration of honest agents and the intruder’s initial knowledge) in the
Casper script. If FDR fails to find traces that invalidate the property it
does not mean that the protocol is secure: it just implies that there are no
attacks against the particular (limited) system being tested.

The authentication properties that Casper can check are described
in [Low97] and [Low98] and include:

Aliveness whenever A (acting as initiator) completes a run of the protocol,
apparently with responder B, then B has previously been running the
protocol;

Weak agreement whenever A (acting as initiator) completes a run of the
protocol, apparently with responder B, then B has previously been
running the protocol, apparently with A;

Non-injective agreement on ds whenever A (acting as initiator) com-
pletes a run of the protocol, apparently with responder B, then B has
previously been running the protocol, apparently with A, and B was
acting as responder in his run, and the two agents agree on the set of
data values ds;

Agreement on ds non-injective agreement on ds holds, and every run of A
(acting as initiator), apparently with responder B, corresponds to a
unique run of B (acting as responder), apparently with A.

The confidentiality properties supported by Casper are of the form: A
thinks that na is a secret that can only be known to himself and B; a
counterexample to these specifications is a trace that results in the intruder
learning the secret value na.

Lowe and other researchers have extended the Casper model in order to
analyse larger systems, and to draw stronger conclusions from a Casper anal-
ysis:

• Roscoe and Broadfoot used data independence techniques to simulate
a system where agents can use an infinite supply of nonces, keys, etc.
with a finite CSP model [RB99]. These systems allow a finite check in
FDR to verify protocols in which the agents can perform an unbounded
number of sequential runs, and a fixed number of concurrent runs.
Roscoe, Broadfoot and Lowe extended these techniques, and build
automated support for them into Casper [BLR00].

• Hui and Lowe built automated support for their simplifying transfor-
mations into Casper [HL01]; these are simplifying transformations that
have the property of preserving insecurities. A verification of a simpli-
fied protocol is also a verification of the original protocol; any attacks
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that are possible against the original protocol are also possible against
the simplified protocol.

• Broadfoot and Lowe adapted the Casper model to analyse layered ar-
chitectures in an abstract way [BL03]; we describe this work in more
detail in the next section.

Lowe also proved that, subject to some conditions on the protocol being
studied, the verification of a protocol running in a particular small system
can be extended to a proof of the security of the protocol in a larger sys-
tem [Low99].

2.5 A layered approach

In [BL03] Broadfoot and Lowe describe an adaptation to the CSP model
of security protocols to model, abstractly, some of the properties we might
desire a secure transport layer to provide. Any secure transport layer will,
necessarily, limit the activity the intruder can perform. Introducing channels
with properties which limit the intruder’s capabilities means changing the
model of our systems. Rather than modelling the transport layer concretely,
Broadfoot and Lowe abstract away from the details, and model the services
it provides. The limitations they place on the intruder are such that exactly
the traces corresponding to application-layer entities communicating on a
transport layer with the specified properties are allowed by the model.

Broadfoot and Lowe specify two types of secure channel; the specifi-
cations below are drawn directly from [BL03]. These properties can be
expressed in terms of the channel primitives developed in Chapter 3, and
so can be compared directly with the channels in our hierarchy; we discuss
how this can be done in Chapter 4.

Authentication and integrity requirements Within each session be-
tween A and B, the messages accepted by the transport layer of B (and so
passed to the application layer) as coming from A are a prefix of those sent
by A intended for B :2

∀A,B ∈ Honest; s ∈ Session · tr ↓ receive.B.A.s 6 tr ↓ send.A.B.s .

This definition is a very strong form of authentication and integrity. If
an honest agent B receives message m in session s, purportedly from A, he
can be sure that it was originally sent by A, that A intended it for him, and,
moreover, that the session A sent the message in is the same as the session
in which B received the message. If all of the channels in the model satisfy
this property, the intruder can only delay messages (re-ordering is prevented

2Honest is the set of honest agents; Session is the set of (shared) session identifiers.
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by the prefix condition), and send messages from his own identities. These
channels are modelled in CSP by placing a buffer on the output channel
of each honest agent, and connecting the buffer’s output directly to the
intended recipient’s input channel. The intruder overhears everything that
is sent into the buffer, and controls whether the buffer outputs or not. The
intruder cannot remove messages from the buffer, nor can he change the
message order inside it, or add messages to it.

Secrecy requirements An agent B can receive message m from the in-
truder only if that message can be produced from the intruder’s initial knowl-
edge (IIK ) and those messages that previously have been deliberately sent
to him:3

∀B ∈ Honest; I ∈ Dishonest; s ∈ Session;m ∈ Message; tr′ ∈ Trace ·
tr′_〈receive.B.I.s.m〉 6 tr ⇒ IIK ∪ sentToIntruder(tr′) ` m.

These channels prevent the intruder from overhearing messages sent be-
tween the honest agents; he can only learn from what the honest agents send
to him. These channels are modelled by a direct communication channel
between the honest agents; the intruder can add messages to this channel,
remove them from it, and re-order or replay messages sent on this channel,
but he cannot learn the content of these messages.

2.6 Secure transport protocols

In the previous section we described Broadfoot and Lowe’s strong authenti-
cation and confidentiality properties of secure transport layers. One of the
primary goals of this thesis is to provide a framework for specifying these
sorts of properties, and to come up with more general specifications of these
properties. In this section we describe five commonly used secure trans-
port layer protocols. We give an abstract overview of the protocols, and we
discuss some of the properties that they provide.

2.6.1 SSL and TLS

The Secure Sockets Layer (SSL) and Transport Layer Security (TLS) pro-
tocols were designed to provide secure communication channels between
networked devices in order to protect application-layer protocols. SSL was
developed by Netscape, and version 3.0, which fixed several flaws in ver-
sion 2.0, was published in 1996 [FKK96]. In 1999 the IETF published the
TLS protocol [DA99], which is based on version 3.0 of SSL. TLS provides

3Dishonest is the set of dishonest identities: the identities the intruder can assume;
Message is the set of messages; the function sentToIntruder gives the set of messages sent
by honest agents to the intruder in a trace.
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support for unilateral or bilateral (mutual) authentication, and for a variety
of message authentication and encryption algorithms. In the rest of this
section we discuss the TLS protocol, and some of the security properties it
provides to application-layer protocols that use it.

The TLS protocol has two phases: the first phase, the handshake pro-
tocol, is used to authenticate one, or both, of the agents taking part in the
protocol, and to establish fresh secret keying material; the second stage, the
record layer protocol, uses the key material established in the first stage to
provide a confidential and authenticated communication link between the
two parties. The following abstract description of the TLS handshake pro-
tocol is based on the description given in [Pau99].

The TLS handshake protocol is run by a client and a server; the client
initiates the protocol by sending a message to the server which includes the
client’s identity, a session identifier, a fresh nonce and his set of preferences
for encryption and message authentication. In response, the server sends
a message containing the client’s session identifier, another fresh nonce, his
set of encryption and message authentication preferences (a subset of the
client’s preferences) and his public key certificate. The client then generates
the premaster secret (another nonce), encrypts this with the server’s public
key and sends it to the server. The client then calculates the master secret
from the premaster secret and both nonces. In order to prove his identity,
the server must decrypt the encrypted premaster secret to calculate the
master secret, and then prove that he knows the master secret.

The master secret is used to derive four new secrets: two of these are used
for keying MAC functions, and two are used for encryption. Different MAC
keys and encryption keys are used by the client and server when they send
messages in the record layer protocol. The handshake protocol concludes
with each agent calculating a hash of all the messages they have exchanged
so far, encrypting this hash with the newly established keys, and sending
the hash to the other agent. When the client receives the encrypted hash
from the server he knows that the server is who he says he is, because only
the server could have decrypted the premaster secret to learn the master
secret.

The client may, optionally, authenticate himself by sending his public
key certificate, and signing a hash of all the previous handshake messages
with his secret key. The server verifies the client’s identity by checking this
signature against the public key certificate the client sent, and by creating
the hash himself, and comparing it to the value that the client sent. The TLS
handshake protocol can therefore be run in unilateral mode (where only the
server’s identity is authenticated), or in bilateral mode (where both agents’
identities are authenticated). TLS also provides support for running the
handshake protocol in unauthenticated mode, and creating the premaster
secret with a Diffie-Hellman exchange [DH76]; however, anonymous Diffie-
Hellman exchanges are vulnerable to man-in-the-middle attacks [Res01], so
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unauthenticated TLS is not recommended.
The TLS handshake protocol authenticates one or both agents to one

another, and establishes fresh secrets that both parties have contributed
entropy to; these secrets are the client-write MAC secret, the client en-
cryption key, the server-write MAC secret and the server encryption key.
The application-layer message m is sent in the record layer protocol
as {m,hwk(seqNo,m)}ek, where wk is the relevant write MAC secret (client
or server), hwk is the HMAC function [KBC97] using key data wk, and ek is
the relevant encryption key.

The encryption with the client or server encryption key protects the con-
fidentiality of the message, and also binds the message to the current session
(so that messages from one session cannot be replayed in another); because
the client and the server use different encryption keys, the encryption key
used also identifies the sender of the message. The encrypted component of
the transport-layer message includes a keyed hash of the application-layer
message and a sequence number. The hash protects the integrity of the
message, and the sequence number prevents an intruder from removing or
re-ordering messages in the stream of messages sent by either party without
the message recipient detecting the change.

In Chapter 3 we describe which of our channel properties we believe that
SSL and TLS provide. In Chapter 7 we study some application-layer proto-
cols that rely on TLS and SSL connections to achieve their goals correctly
and securely.

2.6.2 SSH Transport Layer protocol

The Secure Shell (SSH) protocol [YL06a] was designed to provide a secure
replacement for insecure remote login shells such as telnet, rlogin and rsh
which all send information, including authentication credentials such as the
user’s password, in the clear. The first version of SSH (SSH-1) was developed
by Ylönen in 1995; at the end of 1995 Ylönen founded SSH Communications
Security to market and develop SSH, and in 1996 SSH-2 was released. In
2006 the SSH-2 protocol was published as a series of RFCs [YL06a].

The SSH protocol has three major components: the transport layer han-
dles initial key exchange, and authentication of the server to the client; the
user authentication layer runs on top of the transport layer, and handles
authentication of the client to the server by a number of possible methods
(e.g. password or authentication of the user’s public key certificate); the
connection layer establishes channels on top of the SSH transport layer. A
single SSH transport layer connection can support multiple channels. In the
rest of this section we describe the SSH transport layer and the services it
provides to the SSH user authentication and connection layers.

The SSH transport layer [YL06b] has similar functionality to unilateral
TLS: it provides strong encryption, server authentication, message integrity
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protection, and it establishes a secure session that prevents messages from
being replayed or dropped. The SSH transport layer is based on two pro-
tocols: a key exchange protocol and the Binary Packet Protocol; the roles
of these two protocols are comparable to the TLS handshake protocol and
record layer.

The key exchange protocol is initiated by the client, and establishes a
shared secret K, and an exchange hash H. The client starts the protocol
by sending a fresh nonce and a set of preferences (for encryption, MAC
and compression algorithms) to the server; the server then sends a fresh
nonce and his set of preferences to the client. Both agents follow the same
procedure to determine which algorithms to use, and then carry out a Diffie-
Hellman exchange [DH76] to establish the shared secret.

The client and the server choose two secret values x and y; the client
calculates e = gx mod p and the server calculates f = gy mod p, where p
is a large safe prime (i.e. a prime number p such that p = 2q + 1 and q
is also prime), and g is a generator for an order q subgroup of the
field Z/pZ [YL06b]. The client then sends e to the server.

The server calculates the shared secret and the exchange hash. The
shared secret K is the value established by the Diffie-Hellman exchange
(i.e. K = gxy mod p); the exchange hash H is the hash value of the client’s
identity, the server’s identity, the first two protocol messages (including both
nonces), the server’s public key certificate, the values e and f from the Diffie-
Hellman exchange, and the secret K. The server signs the exchange hash
with his secret key, and sends the signed hash, his value f and his public
key certificate to the client.

The client calculates the shared secret and the exchange hash indepen-
dently, and then verifies the server’s signature on the exchange hash. The
client and server have now established a shared secret (K) and the exchange
hash (H), and the server has been authenticated to the client. They both
use these values to calculate six secret values: a different initialization vec-
tor (IV), MAC key and encryption key for communication in both directions
(client to server and server to client). The exchange hash is then used as
the session identifier.

SSH application-layer messages are carried by the Binary Packet Pro-
tocol. This protocol uses symmetric-key encryption in Cipher Block
Chaining (CBC) mode and message authentication using HMAC to pro-
vide a confidential and authenticated stream of packets in both direc-
tions. An application-layer message m is sent as the transport-layer mes-
sage {m,n}ek, hwk(m,n, seqNo), where n is a nonce (random padding), ek is
the appropriate symmetric encryption key, hwk is the HMAC function using
key data wk and seqNo is an implicit sequence number. Sequence numbers
start at 0, and are incremented with every packet; the sequence numbers
in different directions are different. Further, the initialization vector for
packet Pi is the final block from the encrypted block Pi−1.
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The SSH transport layer specification document [YL06b] claims that
the Binary Packet Protocol establishes an authenticated and confidential
stream of messages in each direction. However, in 2004, Bellare et al. showed
that the encryption method used by SSH is not secure [BKN04]. They
describe an attack against the transport layer protocol whereby an active
intruder can have his guess of a previously encrypted message confirmed by
interacting with the protocol. They suggest three alternative ways of fixing
the encryption scheme, but these fixes do not change the general message
construction.

2.6.3 WEP and WPA

IEEE 802.11b, 802.11g and 802.11n are a set of standards for wireless (radio)
communication between computers. As part of the original specification for
wireless networks, the 802.11 working group specified a secure-transport
layer protocol (Wired Equivalent Privacy – WEP) which was designed to
protect the confidentiality of application-layer communication over a wireless
network [LAN07].

An 802.11 wireless network does not, by default, contain any security
measures to protect the communications over the transport layer. An in-
truder can overhear all communication between all agents (by listening to
all radio traffic), he can inject and send his own messages, and he can, to
some extent, block the local radio receivers of devices communicating on the
network to prevent messages from being received. A secure-transport layer
protocol is therefore absolutely vital if the wireless network is to be used for
secure communication.

The following description of the WEP protocol is based on the descrip-
tion given in [BGW01]. WEP uses a secret key k, which is shared by all
legitimate agents who communicate over the wireless network, and a random
initialization vector v to generate a keystream (using the RC4 algorithm)
to encrypt each application-layer message (i.e. each packet of data) before
it is sent on the network. In order to send the message m to agent B, the
agent A sends the following transport-layer message:

v, ((m, c(m))⊕RC4(v, k))

where c is an unkeyed integrity checksum function (this is implemented as
a 32-bit cyclic redundancy check [PB61]).

This encryption mechanism is designed to keep the application-layer mes-
sage (m) confidential, and to protect its integrity (by means of the integrity
checksum). However, several attacks against the protocol have been discov-
ered (see e.g. [BGW01, Wal00, SIR02]); these attacks are due to the short
initialization vector (24-bits), which inevitably leads to keystream reuse.

WEP also specifies an authentication protocol which is designed to au-
thenticate agents (requesters) to a wireless access point (the responder) by
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proving that they know the secret key. The authentication protocol pro-
ceeds as follows: when an agent wishes to authenticate himself to the access
point, the access point issues a plaintext challenge (a nonce) to the agent.
The agent encrypts the challenge using the WEP encryption algorithm, and
sends the encrypted message back to the access point.

However, as described in [BGW01], an attacker in possession of a plain-
text/ciphertext pair of length l can fake a properly encrypted WEP message
of length l without knowing the secret key. Once the intruder has observed
a legitimate authentication sequence, he learns the plaintext challenge (the
nonce), and the ciphertext sent by the agent in response to the challenge.
He can use these to derive the keystream used to encrypt the response,
and hence to respond to authentication requests without knowing the secret
key k.

In light of the attacks against WEP that prevent it from reliably pro-
viding confidentiality, authentication and data integrity, the 802.11 working
group published an amendment (802.11i) to the standard specifying new
security mechanisms. During the development of the new security mech-
anisms the Wi-Fi Alliance created the Wi-Fi Protected Access protocol
(WPA) [Wi-03], which was designed to replace WEP, and which implements
most of the 802.11i standard.

802.11i addresses all the known vulnerabilities of WEP by adding mu-
tual authentication between clients and the access point using 802.1X access
control [LAN01] with Extensible Authentication Protocol (EAP) authenti-
cation [ABV+04]; and by using the CCMP (Counter Mode with Cipher
Block Chaining Message Authentication Code Protocol) AES-based encryp-
tion algorithm to provide message integrity checks, and unique keys for every
encrypted message.

802.11i supports two modes of operation: in enterprise mode a separate
authentication server is used to authenticate the user, and to establish a
secure Pairwise Master Key (PMK); in home mode a pre-shared key is used
to authenticate the user to the access point, and the PMK is derived from
the pre-shared key. The enterprise mode supports several methods for EAP
authentication: each method is designed to authenticate the user who wishes
to join the wireless network (the supplicant) to the access point (via an
authentication server), and vice versa. For example, EAP-TLS establishes
a bilateral TLS connection between the supplicant and the authentication
server; PEAP (Protected EAP) and EAP-TTLS (Tunneled TLS) establish
a unilateral TLS (or SSL) connection from the authentication server to the
supplicant, and then use MS-CHAPv2 to authenticate the supplicant over
the secure channel (using a password).

Once the supplicant and the authentication server have authenticated
one another and established a new secret PMK, the supplicant and the access
point (the authenticator) run the 4-Way Handshake Protocol; this protocol
is used to generate a fresh Pairwise Transient Key (PTK) for the new session,
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and a Group Temporal Key (this is used to decrypt and encrypt multicast
and broadcast network traffic). The new PTK is now used with CCMP
to encrypt all messages exchanged in the session. CCMP combines Cipher
Block Chaining Mode with Counter Mode to provide message integrity and
privacy; in 2002 Jonsson proved the security of CCMP [Jon02].

The improved security mechanisms of 802.11i establish a strong secure
transport layer for securing wireless networks. Mutual authentication of the
supplicant and the authenticator is achieved using an EAP method, and then
a new session is established between the two devices. The confidentiality
and integrity of messages within the session is guaranteed by the AES-
based CCMP encryption; the intruder cannot inject fake messages without
knowing the PMK or the PTK.

2.6.4 IP Security

SSL and TLS were designed to provide secure communication channels by
establishing connections on top of TCP connections. The Internet Protocol
Security (IPsec) protocols [KS05] were designed to operate at the level of
IP connections, and thus provide a lower-level secure transport layer. While
applications must be designed specifically to use SSL or TLS connections,
IPsec can be used invisibly as the services it provides can protect all protocols
that can be carried over IP (including IP itself and TCP).

IPsec is a flexible, and configurable architecture that may be used to pro-
vide some of the following services: access control, connectionless message
integrity, data origin authentication, detection and rejection of message re-
plays and confidentiality [KS05]. Most of these security services are provided
by two different protocols:

• The Authentication Header (AH) protocol [Ken05a] offers message
integrity, authentication of the message sender and, optionally, replay
protection;

• The Encapsulating Security Protocol (ESP) [Ken05b] offers the same
services as AH, but it also offers confidentiality.

IPsec also specifies an automated key management protocol (the Internet
Key Exchange (IKE) protocol [Kau05]) for establishing keys for use in the
AH and ESP protocols. Since the services offered by AH are also offered by
ESP, we focus only on IKE and ESP in the rest of this section. IPsec can
operate in two modes:

• In transport mode only the IP payload is protected; this mode is used
for host-to-host connections, as the usual IP routing methods are used.
Transport mode provides protection for transport and application layer
messages, but not for the IP layer headers.
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• In tunnel mode the complete IP packet is protected; in this mode the
IP packet must then be transported in a new IP packet for routing
to work. Tunnel mode can be used for network-to-network, host-to-
network and host-to-host connections.

An IPsec implementation uses a local Security Policy Database (SPD) to
perform one of three actions to every packet sent through the host machine’s
IP interface: packets may be protected by the IPsec mechanisms, discarded,
or they may bypass the IPsec mechanisms. The SPD provides a way to
specify which security protocol should be used (AH or ESP), which options
of that protocol to use, which mode to operate in (transport or tunnel), and
which cryptographic algorithms to use for every packet that is protected by
IPsec.

In the rest of this section we give a brief overview of the IKE and ESP
protocols, and we summarise the security properties they provide. The
Internet Key Exchange protocol is used in IPsec to establish Security As-
sociations (SAs), and for mutual authentication of the parties running the
protocol. A Security Association is a set of encryption and MAC algorithms
together with shared secret information for use in those algorithms; a dif-
ferent SA is established for each direction of an IPsec channel.

The IKE protocol initiator sends a message to the responder containing
his security association preferences (i.e. the list of encryption and MAC
algorithms that he supports), a fresh nonce, and a Diffie-Hellman value.
The responder sends back a similar message containing his choice of the
suggested preferences, another fresh nonce, and his Diffie-Hellman value.
Both parties can now compute SKEYSEED: a value derived from the nonces
and the Diffie-Hellman secret by a pseudo random function. SKEYSEED is
used later in the protocol for the derivation of secret keying material.

The next stage in IKE is for the initiator and the responder to authenti-
cate one another. The initiator signs the entire contents of the responder’s
first message and the responder’s nonce, and sends this in an encrypted
message with his identity and his public key certificate. This message is
encrypted using the negotiated encryption algorithm, and a key derived
from SKEYSEED; the message is also protected with a cryptographic hash
function which is keyed using material derived from SKEYSEED. The re-
sponder authenticates his identity by sending a similarly constructed mes-
sage to the initiator.

The authentication messages described above are also used to establish
the first child SA; the key material for this SA is generated by iterated
application of a pseudo random function to SKEYSEED, both nonces, and
the Diffie-Hellman value. At any stage after establishing this initial child SA
the agents can establish new child SAs, or they can rekey an existing SA
by sending new nonces and new Diffie-Hellman values encrypted under the
existing SA keys. The IKE protocol may use EAP methods (as described in
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Section 2.6.3) to authenticate one or both parties (rather than using public
key certificates and message signatures).

Once the IKE has been run to establish an initial SA and child SA,
the agents can send and receive IP packets that are protected by the En-
capsulating Security Protocol. A message m is encoded as the following
ESP packet: sa, seqNo,EK(m,n), h(sa, seqNo,EK(m), n) where sa identifies
the Security Association in use, seqNo is the sequence number of the packet
(sequence numbers start at zero and are incremented with every packet),
EK(m) is the encrypted message (the encryption algorithm and encryption
keys are defined by the Security Association), n is random padding, and h
is the keyed MAC function defined by the Security Association.

In tunnel mode the ESP packet payload (the message m) is an entire IP
packet (including all headers such as sender and destination); in transport
mode the payload is just the IP packet payload (i.e. the transport-layer or
application-layer message). The ESP protocol provides message confiden-
tiality and integrity (via the encryption and MAC); data origin authentica-
tion (i.e. sender authentication) is provided indirectly by the keys used for
the MAC and encryption, and the anti-replay and in-order delivery proper-
ties are provided by the authenticated sequence numbers.

2.7 Alternative methods

The CSP model described in Section 2.4 is not the only method that re-
searchers are using to find attacks against security protocols, or to prove
security protocols correct. In this section we give a brief overview of some
of the alternative methods that have been developed.

2.7.1 Rank functions

Steve Schneider has developed an alternative CSP-based approach to prov-
ing that protocols satisfy security properties when any number of agents
can run them concurrently any number of times [Sch98, SD05]. Schneider’s
approach uses a similar Dolev-Yao style CSP model to those compiled by
Casper, but rather than checking the state space with FDR, Schneider proves
authentication and secrecy properties for the processes. In order to prove
these properties Schneider assigns a rank to each message (and signal) that
can be generated by the honest agents and the intruder.

In Schneider’s formalism the honest agents perform signal events at key
points in the protocol. The signal initdone.a.b.na event is performed af-
ter a protocol run by the initiator a, apparently with responder b, using
nonce na; the signal respgo.b.a.na is performed by the responder b during a
protocol run apparently initiated by a using nonce na. Schneider specifies
non-injective agreement on the nonce na by requiring that any occurrence
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of initdone.a.b.na in any trace of the network must be preceded by some oc-
currence of respgo.b.a.na (written initdone.a.b.na precedes respgo.b.a.na).

Schneider shows that proving respgo.b.a.na precedes initdone.a.b.na is
equivalent to proving that when the honest agent b is prevented from per-
forming the respgo event, the honest agent a cannot perform the initdone
event. In order to prove that this is the case Schneider finds a rank func-
tion ρ that assigns a rank to all the messages and signals that can occur in
the system, such that ρ assigns a non-positive rank to the initdone event. By
proving that only messages and signals with a strictly positive rank can oc-
cur in the restricted system Schneider proves that the initdone event cannot
occur when the respgo event is blocked.

Theorem 2.7.1 (Rank function theorem). If ρ (a rank function on the
messages and signals in the system) is such that:

1. ∀m ∈ IIK · ρ(m) > 0 ;

2. ∀S ⊆ Message · (ρ(S) > 0 ∧ S ` m)⇒ ρ(m) > 0 ;

3. ρ(b) 6 0 ;

4. ∀i · (USERi ||
{a}

STOP) sat ρ(tr � rec) > 0⇒ ρ(tr) > 0 ;

then (|||i USERi) ||
{|trans,rec|}

ENEMY(IIK) sat a precedes b.

The rank function theorem is the fundamental underpinning of Schnei-
der’s approach. Condition 1 in the theorem states that all the messages
the intruder initially knows have positive rank; Condition 2 states that the
intruder cannot introduce messages of non-positive rank if he only hears
messages of positive rank. These two conditions can be proved indepen-
dently, and do not depend on the protocol under consideration. Condition 3
states that ρ assigns a non-positive rank to the message (or signal) we wish
to show cannot happen. Condition 4 is entirely dependent upon the proto-
col in question, and so it is this condition that must be proved when a new
protocol is analysed; the condition says that the honest agents cannot intro-
duce messages of non-positive rank if they only receive messages of positive
rank.

Proving that Condition 4 holds involves a case analysis of each stage of
the protocol for each agent. When trying to prove this one obtains con-
straints for the rank function ρ. If the proof of Condition 4 fails (i.e. if
contradictory constraints on ρ are found), then one can conclude that there
can be no possible rank function for the protocol; in this case, one can often
find an attack against the protocol.

Finding the constraints by trying to prove that Condition 4 holds is the
most illustrative way to discover a suitable rank function. However, Heather
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and Schneider have developed a decision procedure for finding a suitable
rank function if one exists, or for showing that a rank function does not
exist (which, almost invariably, implies the existence of an attack against the
protocol) [HS05]. The decision procedure works by partitioning the infinite
message space into a finite number of equivalence classes, and repeatedly
applying the protocol steps and message generation rules (the ` relation)
to the equivalence classes, starting from the intruder’s initial knowledge.
The RankAnalyser tool [Hea05] generates rank functions automatically by
following this decision procedure.

Schneider and others have developed extensions to the rank function
approach in order to model more general security protocols and to prove
more general properties. Alternative cryptographic algorithms (for example
Vernam encryption) can be incorporated into the model by specifying their
algebraic properties [Sch02]. Temporal rank functions are a generalisation of
rank functions, and have a more general rank function theorem; they allow
one to analyse secrecy properties which involve messages only needing to
have positive rank during a certain period of time [DS04].

Dutertre and Schneider have used the PVS theorem prover [COR+95]
to provide automated support to the rank function method [DS97]. Using a
semantics embedding of CSP they specify the network model in PVS, and
then use specialised PVS rewrite rules and proof commands to conduct the
proofs of authentication theorems using user-specified rank functions.

2.7.2 BAN logic

Burrows, Abadi and Needham developed the BAN logic to prove that proto-
cols achieve specified authentication goals, to discover the assumptions they
rely upon, and to discover whether they do anything unnecessary [BAN90].
The logic was not designed to reason about secrecy, or authentication of
untrusted principals. The logic defines several constructs to reason about
the facts that agents believe, the facts that they say and see (i.e. that other
agents send to them), and the facts that they control (i.e. those that other
agents trust them to produce). The logic specifies several rules for evolution
of belief; for example, if P believes that k is a key that P and Q can use
for communication, and P sees X encrypted with k (from some agent other
than P), then P should believe that Q said X.

The first step in analysing a protocol with the BAN logic is to convert
the protocol messages into formulae in the logic; this is referred to as ideal-
isation. For example, the message A→ B : {A,KAB}KBS

may tell B (who
knows KBS) that KAB is a good key to use to communicate with A. In
this case, the idealised message would be the encryption with KBS of the
statement in the logic that K is a good key for A and B to communicate
with: A→ B : {A KAB←→ B}KBS

. Once the protocol has been idealised, the
next step is to annotate it with formulae about the agents’ belief before the
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first message, and after every message. The beliefs before the first message
are usually fairly standard (e.g. the shared keys that agents possess, fresh
nonces that agents will introduce, and assumptions about trust between
agents). The final step in a protocol analysis is to prove that certain conclu-
sions hold at the end of the protocol run. The authors do not define what
they mean by authentication, but they give some examples of conclusions
that ought to hold after a protocol run; e.g.:

A believes A k←→ B ∧ B believes A k←→ B .

The BAN logic can be very useful for finding weaknesses in protocols,
or for discovering redundancies in the protocol messages. However, the
assumption that all parties are honest is one of the major weaknesses of the
approach. In [BAN90] the authors prove that after a run of the original
Needham-Schroeder public key authentication protocol each agent believes
that the nonces are shared secrets (that no-one else could know). However,
we know that this is not the case when an active intruder can disrupt the
messages the agents send.

2.7.3 NRL Protocol Analyzer

The NRL Protocol Analyzer [Mea94, Mea96b] is a protocol verification tool,
written in Prolog, that models protocols as interactions between a set of state
machines. The Analyzer uses proof techniques for state machines and for
formal languages, coupled with an exhaustive backwards search to prove that
user specified insecure states are unreachable. The NRL Protocol Analyzer
is effective at finding flaws in security protocols and at proving that protocols
satisfy security guarantees (specified as unreachability results for insecure
states).

The NRL Protocol Analyzer is based on the Dolev-Yao term rewriting
system [DY83]. The intruder’s goal is to manipulate the algebraic system
(the protocol) to learn words that he does not know (e.g. encryption keys) or
to convince a principal that a certain word has properties that it does not.
To prove that a protocol is secure one first specifies the intruder’s goals,
and then proves that they are impossible. It is often necessary to prove
reachability results: for example, a key establishment algorithm should be
able to reach a state in which the two users running the protocol share a key.
To specify states such as this the state machines store local state variables
to represent the knowledge of the principals.

In order to use the Analyzer one must specify the protocol under con-
sideration in terms of the words in use (user names, nonces, cryptographic
keys, etc.), the intruder’s initial knowledge, and the behaviour of the state
machines that represent the users running the protocol. Once a protocol
has been specified in this way the user interacts with the Analyzer by in-
putting a state; the Analyzer then returns a description of the states that
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may immediately precede it. The Analyzer uses rules to discard from the
output states that are unreachable; there are some standard rules (such as
the rule to ignore a state where the intruder learns a word before it has
been generated), but the user can also specify rules to discard states that
he knows to be unreachable.

The Analyzer also uses formal languages to limit the search space. One
of the most common causes of infinite loops in the Analyzer is searching
for unbounded sets of words to determine whether the intruder can learn
a particular word. The user can specify context-free formal languages, and
the Analyzer can then prove whether or not the language is reachable. If
during a protocol analysis the Analyzer must discover whether the intruder
can learn a word belonging to an unreachable language then the search can
be terminated before entering an infinite loop.

The Analyzer’s backwards search can proceed in two ways. In automatic
mode the Analyzer uses unreachability results entered by the user and cer-
tain heuristics to narrow the search, but fully explores the pre-image of the
returned states. In manual mode the user chooses subsets of the states for
the Analyzer to explore. A full protocol analysis is usually conducted using
both modes; if an automatic search produces a search tree that is too bushy,
the user can switch to manual mode, undo part of the tree, and query it
manually before switching back to automatic mode.

The NRL Protocol Analyzer has successfully been used to find new at-
tacks against protocols [Mea92] such as the Simmons Selective Broadcast
Protocol [Sim85], and to reproduce well-known attacks [Mea96a] such as
Lowe’s attack against the Needham-Schroeder Public-Key protocol. The
Analyzer has also been used to find weaknesses or ambiguities in protocol
specifications (e.g. the original Internet Key Exchange protocol) [Mea99].

2.7.4 Inductive analysis

Paulson’s inductive approach [Pau98] combines features from model checkers
such as Casper and the NRL Analyzer (it has a concrete notion of events)
and from belief logics such as BAN logic (guarantees are derived from each
message in the protocol).

In the inductive approach protocols are specified as a set of rules by
which honest agents may extend the current trace of events; these rules
define the set of all possible traces inductively. Events are either of the
form Says A B X when agent A sends the message X to B, or Notes A X
when agent A stores the message X, though the model could be extended to
allow other kinds of events (such as an agent gaining a new long term key).
Any agent may respond to any prior event any number of times (but the
honest agents only respond to events addressed to them), so in this model
agents may participate in many runs concurrently.

Theorems are proved by induction over the set of possible traces; in
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order to prove a theorem P one must prove that P holds for the empty
trace (P ([ ])), and that whenever P holds for a trace evs it also holds for
any extension of that trace ev#evs (P (evs)⇒ P (ev#evs)). In contrast
with the short proofs one can obtain in a belief logic, the inductive proofs
are often too long and detailed to be generated by hand; Paulson uses the
theorem prover Isabelle [Pau94] to generate proofs.

The intruder in Paulson’s model is specified independently of the pro-
tocol, and so most of the results about the intruder can be reused between
analyses. Paulson has a common body of rules for all protocols (e.g. there
is a rule governing what the intruder can say). As in the CSP model, the
intruder hears all network traffic and can send messages that he can deduce
from what he overhears. The intruder has control over an unspecified set of
compromised agents.

In order to verify a protocol one must first prove possibility theorems
(e.g. that the message formats agree, and the protocol can successfully be
completed). The proof of these theorems does not guarantee liveness prop-
erties of the protocol; just as in the CSP model, only safety properties can
be considered. The proof of theorems will often involve simplification by
the use of forwarding lemmas, rewrite rules and symbolic evaluation of the
sets of messages that the intruder can learn and send. After proving possi-
bility theorems one can prove secrecy theorems: these pertain to the set of
messages the intruder can obtain by analysis of the messages sent in traces
(e.g. if the intruder holds some session keys he cannot use them to reveal
others). Finally one must prove authenticity theorems for all parties in-
volved in the protocol; for example, it can be shown that the initiator in
the original Needham-Schroeder public key authentication protocol receives
a guarantee that the responder was running the protocol with him, but an
equivalent theorem cannot be proved for the responder (due to the attack
discovered by Lowe).

The inductive approach is good at proving protocols correct (i.e. prov-
ing that they satisfy authenticity or secrecy theorems) and also at finding
flaws in protocols (these are usually discovered when the proof of a theorem
fails). Paulson has used his approach to prove authentication and secrecy
results for the TLS handshake protocol [Pau99]; Paulson and Bella extended
the method to include timestamps, and to prove authentication and secrecy
properties for Kerberos [BP97]; and Paulson et al. have used the inductive
method to verify the Purchase protocol of the Secure Electronic Transac-
tion suite of protocols [BMP06]. In Chapter 4 we describe how Bella et
al. adapted the inductive approach to prove properties about second-level
security protocols: security protocols that rely on an underlying security
protocol in order to achieve their goals.
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2.7.5 Strand spaces

The strand space approach to proving security protocols correct was devel-
oped by Guttman et al. at MITRE in 1998 [FHG99b]. A strand space is a set
of strands, each of which is a sequence of events that a single principal may
engage in. A strand is therefore a sequence of message transmissions and
receptions, with values of keys, nonces, and other data items given explicitly.
Each legitimate strand represents one run in a protocol by one party.

Guttman et al. define several penetrator strands: sequences of message
transmissions and receptions that model basic capabilities of the intruder
(e.g. receiving a key and a message encrypted with that key, and sending
the decrypted message; or receiving two messages and sending their con-
catenation). This explicit model of the possible behaviours of the intruder
allows the authors to develop general theories that bound his abilities; these
theories can be applied to any protocol under consideration.

In the strand spaces approach the standard Dolev-Yao assumption of free
encryption is made. Strand spaces are not full (i.e. do not contain all possible
strands); fresh values (such as nonces, encryption keys) are established by
including only one originating strand for each item. Unguessable values are
modelled by ensuring that no penetrator strands contain the value unless
the intruder previously received it.

A partial order, consisting of two kinds of edges, is introduced on the
space:

• Successive nodes of a strand are connected; this is a causal ordering
of the actions under the control of the principal in question. For
honest agents this corresponds to the order in which they send and
receive messages; for the intruder it represents causal constraints on
his behaviour;

• Message transmissions and subsequent receptions are linked.

A bundle is a portion of a strand space: it is a causally connected set
of nodes. Bundles must be well founded: there must be a unique trans-
mission node for each reception node (however there might be transmission
nodes without a corresponding reception node, or with more than one re-
ception node). For any strand corresponding to a given run of a principal
one constructs all possible bundles containing nodes of the strand; this set
of bundles encodes all possible interactions of the environment with that
principal in the given run of the protocol. Typically for a protocol to be
correct each bundle must contain one strand for each legitimate principal
apparently participating, all of which must agree on all of the data items in
use in that run.

To prove non-injective agreement (as in [Low97]) one must show that
whenever a bundle contains a strand representing a responder run, then it
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also contains a strand representing an initiator run with the same data val-
ues. To prove (injective) agreement, one must show that the initiator strand
is unique. A value x is secret in a bundle if regular strands (i.e. strands rep-
resenting honest agents’ runs) never emit it, and the intruder can never emit
it.

A proof of a security protocol in the strand space approach can give a
detailed insight into the reasons why the protocol is correct, and the as-
sumptions that are necessary for it to be correct. The proofs are simple and
informative, and are easily developed by hand; they identify exact conditions
under which a protocol can be relied upon.

Guttman et al. have used strand spaces to prove several general proper-
ties about security protocols. In [FHG99a] they define multi-protocol mixed
strand spaces, and show how one can use these to prove that a particular
security protocol can remain correct even when used in combination with
a range of other protocols; in [GF00b] they use mixed strand spaces to
prove a more general result: two protocols are independent (i.e. they both
remain correct if they are used together) if they use encryption in non-
overlapping ways (disjoint encryption). In [GF00a] Guttman and Fábrega
define the notion of authentication tests to simplify the proofs of authen-
tication properties. An authentication test is an inference that a regular
protocol participant may make when they transmit a message containing a
new value v, and later receive v in a cryptographically altered form. The
participant may conclude that some principal possessing the relevant key
has transformed the message containing v; in certain cases, this must be a
regular participant, not the penetrator.

In [GF05] Guttman and Fábrega define the notion of skeletons: a skele-
ton describes the shape of the regular nodes (the events performed by hon-
est agents) in a bundle (a causally well-founded subgraph of a collection of
nodes; it expresses a potential execution of a protocol). They then use the
notion of skeletons, and operations on them to show that a protocol execu-
tion involving many runs of the protocol roles, but only a small number of
nonces, can be collapsed to a smaller execution, and hence to show that if
there is a counterexample to a formula expressed in a first order language,
there is a counterexample using a limited number of runs of the protocol
roles.

Several other authors have used strand spaces to prove general proper-
ties of security protocols. For example, Heather et al. show that tagging
messages with an indication of their intended type prevents type-flaw at-
tacks [HLS03]; Malladi et al. show that tagging all encrypted components
in protocol messages with a session identifier and a component number can
prevent replay attacks against protocols [MAFH02].
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2.7.6 Spi calculus

The spi calculus was developed by Abadi and Gordon [AG99] to model
cryptographic security protocols in the pi calculus [Mil99]. The pi calculus
is a programming language for describing systems of independent parallel
processes. Processes in the pi calculus communicate by passing messages on
named channels. In contrast to CSP, where a process can only communicate
on a set of channels that is determined before computation, processes in the
pi calculus may only communicate on channels they are in the scope of, and
the scope of channels may evolve during computation. When a process sends
a restricted channel as a message to a process outside that channel’s scope,
the scope is extruded to embrace the receiving process. In the spi calculus
scope restriction and extrusion are used as the formal model of possession
and communication of secrets.

Security guarantees are expressed as equivalences between processes in
the eyes of an arbitrary environment. A protocol keeps X secret if the
protocol when run with X is indistinguishable from the protocol when run
with X ′ for any X ′. Because the environment is arbitrary, it is not neces-
sary to model the intruder explicitly. The scoping rules of the pi calculus
guarantee that the intruder (i.e. the environment) cannot access channels
that are not explicitly given.

Authentication guarantees are proven by checking that the process run-
ning the protocol is equivalent to a ‘magical’ process that guarantees that
receivers receive the correct message (so the intruder cannot force them to
receive a different message from that sent by the sender). Both of these
equivalence checks are based on an equivalence relation defined as follows:

For any closed process P (i.e. a process with no free variables), P ex-
hibits β (written P ⇓ β) if, eventually, P will input or output on β. A test
on P is a pair (R, β) where R is another process (an arbitrary environ-
ment) and β is a channel name; P passes the test if and only if the parallel
composition P |R exhibits β. Then:

P v Q =̂ for any test (R, β) · (P |R) ⇓ β ⇒ (Q|R) ⇓ β
P ' Q =̂ P v Q and Q v P

This form of testing equivalence corresponds to partial, or safety, correctness.
All of the process communication and secrets could be modelled in the

pi calculus, but it is the extensions given in the spi calculus that make
this approach useful. The authors have given formal semantics for public
and shared key encryption, private key message signing and hashing. The
spi calculus model of cryptography makes the standard Dolev-Yao assump-
tions: an encrypted message can only be decrypted with the corresponding
key, encrypted messages do not reveal the key used for the encryption and
there is sufficient redundancy in encrypted messages so that decryption can
be verified.
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In Chapter 4 we describe Bugliesi and Focardi’s extension to the spi and
pi calculi to model secure channels by the properties that they provide to
protocols that use them [BF08].

2.7.7 SAT-based model checking

Armando and Compagna present a model checking technique that, given a
protocol description in a multi-set rewriting formalism and an integer k > 0,
builds a propositional formula whose models correspond to attacks against
the protocol that can be carried out in fewer than k steps [AC08]. Finding
these models, if they exist, and hence finding attacks against protocols is
solved by checking the propositional formula for satisfiability, and this can
be done efficiently with a SAT solver.

The multi-set rewriting formalist of [AC08] uses facts to describe the
states of the honest agents and the intruder, and rewrite rules to model the
behaviour of the honest agents and the intruder. The facts include ik(m),
the intruder knows message m; msg(j, s, r,m), agent s sent message m to
agent r at protocol step j; and state(j, s, r,ms, c), agent r is ready to exe-
cute stage j of the protocol in session c, and he knows the messages in ms.
The protocol is described by the rewrite rules for the honest agents.

The intruder in [AC08] is a Dolev-Yao style active attacker whose capa-
bilities (to overhear messages, deduce new messages and fake messages) are
modelled by rewrite rules. For example, the following rewrite rule models
the intruder faking a send of message m (which is message j of the protocol)
from agent a to agent b:

ik(m).ik(a).ik(b)
fakej(a,b,m)
−−−−−−−−→ ik(m).ik(a).ik(b).msg(j, a, b,m) .

This rule says that a set containing the facts ik(m), ik(a) and ik(b) can be
rewritten to a set containing these three facts, and the fact msg(j, a, b,m).

Security properties are specified in [AC08] by specifying bad states:
states in which the intruder can learn a message that the honest agents
believe is a secret, or states in which the intruder can disrupt the authen-
tication goals of the protocol. The authentication properties from [Low97]
are specified in [AC08] in terms of facts that represent the initiator begin-
ning a protocol run with value v of data item d (witness(a, b, d, v)), and
the responder accepting v at the end of a protocol run (wrequest(b, a, d, v)).
A non-injective agreement specification is tested by searching for a state in
which wrequest(b, a, d, v) holds, but the corresponding witness fact does
not hold.

Armando and Compagna’s SAT-based Model Checker (SATMC) starts
with a protocol insecurity problem and a protocol description (as described
above) and applies optimising techniques to simplify the problem. It then
generates a propositional formula that represents all possible attacks on the
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protocol of length at most i for all values of i, starting at 0, and stopping
when it reaches k (the bound specified by the user). The model checker
passes each of these propositional formulae to a SAT solver to check for
satisfiability. If the SAT solver finds that the formula corresponding to
length i is satisfiable, then an attack of length i exists against the protocol.
The model checker may discover that none of the formulae of length less
than k are satisfiable; in this case one may conclude that no attacks against
the protocol of length less than k are possible.

In Chapter 4 we describe a model for analysing security protocols that
rely on other security protocols (i.e. secure transport layers) in the formalism
of [AC08].

2.7.8 ProVerif

Blanchet’s ProVerif [Bla01, Bla02] is an automatic protocol verifier that
works by representing protocols as Horn clauses (Prolog rules). ProVerif
constructs an over-approximation of the protocol, and then checks whether
or not a fact can be determined from the protocol rules. The over-
approximation means that although the verifier always terminates, it may
sometimes give false attacks. Blanchet has built an automatic translator
from a restricted version of the pi calculus to the Prolog rules that define
the protocol and the intruder.

The Prolog rules that represent a protocol are built from terms (which
represent messages exchanged during a run of the protocol) and facts (which
represent facts about these messages). The protocol messages are built from
names and function applications; names are used to represent atomic values
(such as keys and nonces), and functions are used to build new terms (e.g. by
pairing messages, by encrypting messages, or by applying a hash function
to a message). The most important fact is the predicate attacker(m): the
attacker knows the message m. A rule of the form F1 ∧ . . . ∧ Fn → F means
that if all the facts F1, . . . , Fn are true then F is also true.

Cryptographic primitives are represented in ProVerif by two kinds of
functions: constructors appear in messages, and are used to build new terms
(e.g. the constructor sencrypt(m, k) represents the encryption of message m
with the symmetric key k); destructors are used to manipulate terms, and
are defined by equations of the form g(m1, . . . ,mn) = m (e.g. the destruc-
tor sdecrypt(sencrypt(m, k), k) = m represents decryption with the symmet-
ric key k).

Blanchet models a Dolev-Yao style attacker by encoding his abilities
in Prolog rules. For example, if f is a constructor of arity n then this
leads to the rule attacker(x1) ∧ . . . ∧ attacker(xn)→ attacker(f(x1, . . . , xn));
if g is a destructor defined by g(m1, . . . ,mn) = m then this leads to the
rule attacker(m1) ∧ . . . ∧ attacker(mn)→ attacker(m).

The protocol itself is represented by a series of sets of rules, one for each
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step of the protocol. If agent a sends message i in the protocol then the ith
set of rules contains rules that have as hypotheses the patterns of messages
received by a earlier in the protocol, and the pattern of the ith message
as the conclusion. This creates an over-approximation of the protocol; in
particular, freshness (e.g. of nonces) is modelled by letting new names be
functions of messages previously received in the protocol, so different values
are used per pair of agents rather than per session, and each step of the
protocol can be completed several times as long as the previous steps have
been completed at least once. This over-approximation means that ProVerif
can be more efficient, and can verify the protocol without limiting the num-
ber of runs of the protocol. However, it means that sometimes the verifier
returns false attacks: sequences of rule applications that do not correspond
to a real protocol run. The verifier can sometimes fail to terminate, but
Blanchet claims that it always terminates for a large class of ‘well-designed
protocols’ [Bla02].

ProVerif verifies secrecy properties by checking whether the attacker can
learn a particular value from observing runs of the protocol. In other words,
ProVerif checks whether attacker(m) can be derived from the rules that
define the protocol and the intruder. This is exactly the problem that is
usually solved by Prolog systems; however, Blanchet defines a new guided
search algorithm to solve this problem because other Prolog systems do not
terminate on this problem (there are rules for the attacker that lead to
considering more complex terms with an unbounded number of constructor
applications). ProVerif’s search algorithm is based on unification: when the
consequence of one rule unifies with one hypothesis of another (or the same)
rule a new rule can be created that corresponds to applying the first rule
and then the second one.

ProVerif can prove authentication protocols such as those defined by
Lowe [Low97]; these properties are specified by saying that one event can-
not happen unless another event happened first. In the case of non-injective
agreement the property is that the recipient’s end event cannot happen un-
less the initiator’s begin event happened earlier. These properties are verified
by determining whether a particular end event (corresponding to the exact
authentication property that is being checked) can be derived from the set of
rules that define the protocol and the intruder. If the end event is derivable
from the rules only when the corresponding begin event is contained in the
rules, then the protocol satisfies the authentication property.

Allamigeon and Blanchet have implemented an attack reconstruction
tool for ProVerif [AB05]. When ProVerif cannot prove a property the tool
tries to reconstruct an attack trace of the protocol by exploring a finite set
of traces; this exploration is guided by the set of rules that were used to
derive attacker(m).
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2.7.9 Other model checkers

In this section we have described several approaches to model checking
security protocols (Casper/FDR, the NRL Protocol Analyzer, SATMC,
ProVerif); however, there are many other systems for model checking se-
curity protocols.

Murϕ is a description language and a verifier for finite state concur-
rent systems [DDHY92]; it has been used to verify security protocols by
Mitchell et al. [MMS97]. To verify a protocol with Murϕ one must model it
in the Murϕ description language, and extend the model with descriptions
of the desired properties of the protocol; Murϕ then checks if all the reach-
able states of the model satisfy the given specification. If this is not the case
it will terminate with a trace leading to a state that does not satisfy the
specification.

Brutus [CJM00] is a model checker for verifying security protocols. A
security protocol is modelled in Brutus by specifying the messages that it
consists of (these are messages in a message space with a deduction relation
identical to `), and then building processes for each of the honest principals
in the protocol. These processes describe the message flow specified by the
protocol (i.e. the send and receive events), as well as special signal events;
these are used to mark when the agent begins and ends a run of the protocol.
Finally one specifies the properties that the security protocol should satisfy
in a first-order logic with a past-time operator. Brutus can then be used
to check the protocol satisfies the required properties, and if this is not the
case, Brutus will return a counterexample (i.e. an error trace).

There are also alternatives to the abstract layered approach proposed by
Broadfoot and Lowe. Hansen et al. use static analysis to verify Version 1.1
of the SAML single sign-on protocol [HSN05]. In order to conduct their
analysis they create explicit models of unilateral and bilateral TLS in a
variant of the pi calculus, and then build the model of the SAML protocol
on top. Hansen et al. actually model a slightly stronger protocol than TLS
because the analysis of a ‘true’ model of TLS threw up a false error, due
to an inability to tie the premaster secret to the verification of the client’s
certificate in a message sent from the client to the server. In Chapter 4 we
discuss several alternative approaches to specifying secure channels, and we
compare the properties that are specified in these other approaches to the
properties described in this thesis.
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Chapter 3

Specifying secure channels

In this chapter we present our hierarchy of authenticated and confidential
channels. We first formalise an abstract model of a layered network, and
relate it to a concrete network. We describe the sets of valid traces that our
abstract network accepts, and we provide a framework for specifying secure
channels. A secure channel specification is a trace-based specification that
restricts the set of valid traces.

In Section 3.2 we describe how we mark confidential channels in a system,
and define the properties of a confidential channel in terms of the relation
between the intruder’s knowledge in our abstract model (which is based on
removing his ability to listen on confidential channels) and the intruder’s
knowledge in the concrete model (which is based on deducing everything he
can from everything sent on the network).

In Section 3.3 we define the building blocks we use to create our hier-
archy. These building blocks progressively disallow different aspects of the
intruder’s behaviour, and can be combined to create different channels. Not
all combinations are different: in many cases, several different compositions
of the building blocks allow essentially the same behaviour (they simulate
one another); we collapse such cases, and reach a hierarchy of eleven secure
channels. In Section 3.4 we consider several of the secure channels from
the hierarchy in more detail, and relate them to real-world secure transport
protocols.

In Section 3.5 we consider channel specifications that tie different mes-
sages into a single connection. We specify a session property that binds
messages into a single session, and a stronger stream property that not only
ensures that messages are not moved from one session to another, but also
guarantees that the order messages are received in is the same as that in
which they were sent.

Finally, in Section 3.6 we conclude and summarise our findings.
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3.1 Channels, formally

In this section we formalise our model of an abstract network and its relation
to a concrete network. The abstract network is defined in terms of honest
agents, who send and receive messages, and an intruder, who has several
events he can use to manipulate the messages being passed on the network,
and who can also send and receive messages.

The channel specifications described in this thesis are based on traces of
CSP-style processes. This approach allows us to capture the channel prop-
erties in a fairly intuitive way (by talking about the events that the intruder
can perform, and the events that must precede another event), however,
we do not believe that these ideas are restricted to the world of CSP. The
channel properties and the means for comparing them could be described
in several other formalisms (e.g. spi-calculus, propositional logic), and the
results obtained could be directly compared with the results presented in
this thesis. Indeed, Kamil and Lowe have translated many of our channel
properties into the strand spaces formalism [KL08].

Our model reflects the traditional internet protocol stack, but we add
a new layer between the transport layer and the application layer: the se-
cure transport layer. The secure transport layer relies on the services of
the transport layer (to deliver messages from point to point), and provides
authentication and confidentiality services to the application layer. We ab-
stract all of the layers beneath the secure transport layer into a network
layer; see Figure 3.1. We describe how our secure channel specifications
should be interpreted in the context of our abstract network, and also in the
context of a concrete network.

The most commonly used transport layer protocol is probably the Trans-
mission Control Protocol [Ins81b]. TCP aims to provide a reliable, in-order
delivery of streams of bytes over an Internet Protocol (IP) [Ins81a] network.
However, because we assume that the intruder is in full control of the net-
work process, the reliability properties that TCP aims to provide cannot be
guaranteed. For security-critical internet applications (such as online bank-
ing) a TLS (or SSL) connection is usually established on top of the TCP
connection. This secure transport layer protocol makes certain guarantees
to the application protocol using it, and relies on the services of TCP in
order to function. In our terminology a TLS or SSL connection between two
agents running an application protocol is a channel.

Our model uses entities at two interfaces: between the application layer
and the secure transport layer, and between the secure transport layer and
the underlying network. The application layer is the layer in which agents
establish channels, and send and receive messages. The secure transport
layer contains protocol agents, which translate the higher level events into
lower level events (e.g. by encrypting or signing messages), and vice versa
(e.g. by decrypting messages or verifying signatures).
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Figure 3.1: The protocol stack in our abstract network.

Most of the events are at the interface between the application layer and
the secure transport layer, and describe the application layer data: these
events are enough to capture authentication guarantees. The model also uses
events at the interface between the secure transport layer and the underlying
network, which describe the network messages: these events are necessary
to capture confidentiality properties formally.

3.1.1 Describing a channel

We assume a non-empty set Identity of agent identities. Each identity is
either considered Honest (i.e. the agent follows the application-layer proto-
cols) or Dishonest (i.e. the agent is under the intruder’s control).

We also assume a non-empty set Role of roles in the application-layer
protocols (e.g. Needham-Schroeder Initiator, Yahalom Responder), ranged
over by Ri, Rj , etc. Each role in an application protocol exchanges a series
of messages with some of the other roles in the protocol. We assume that
the roles used by different protocols are distinct.

Definition 3.1.1. An Agent is an identity taking a role:

Agent =̂ Identity× Role .
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We use A, B, etc., to range over either Identity or Agent, as convenient.
We abuse notation by sometimes writing Honest for Honest × Role, and
similarly for Dishonest. We write R̂i for Identity×Ri.

A secure channel connects two agents, each playing a particular role.

Definition 3.1.2. A channel is an ordered pair of roles (Ri, Rj):

(Ri, Rj) ∈ Role× Role .

We write Ri → Rj for the channel (Ri, Rj) as this emphasises the differ-
ence between the sending and the receiving roles; in particular it highlights
the distinction between the channels Ri → Rj and Rj → Ri.1 Our specifica-
tions are given in terms of channels; the channels Ri → Rj and Rj → Ri may
satisfy different properties, but we will specify some symmetric properties.

We treat encryption formally, as described in Chapter 2. All messages are
drawn from the message space, Message. This is a non-empty set of symbols
which is built from basic types (such as identities, nonces and timestamps)
by operations such as concatenation and encryption. We assume a relation
` defined over this set: for X ⊆ Message, and m : Message, X ` m means
that m can be deduced from the set X. We assume that the relation `
satisfies the following two properties:

Monotonicity X ⊆ X ′ ⇒ {m | X ` m} ⊆ {m | X ′ ` m};

Transitivity X ` m ∧X ∪ {m} ` m′ ⇒ X ` m′.

Often in our examples we use the deduction rules from [RSG+01] (shown
in Chapter 2) which model Dolev-Yao style symbolic encryption: the in-
truder can only read messages he has the decryption keys for, and can only
create encrypted (or signed) messages when he knows the requisite keys.
However these rules can be modified to model commutable encryption, or
guessable values [Low04], or other encryption models as required; the results
in this thesis hold for any deduction relation that satisfies the two properties
above.

We assume that the intruder has some initial knowledge IIK ⊆ Message.
He may use this knowledge and messages he overhears on the network to gen-
erate new messages and facts. We restrict the intruder’s behaviour so that
he can only send messages that can be deduced from his initial knowledge
and what he has overheard.

The message space is partitioned into two sets: application-layer mes-
sages (MessageApp) and transport-layer messages (MessageTL). We assume
that there are no interactions between the messages of the two layers; in par-
ticular, when we give example transport-layer protocols we assume that the

1In the case that i = j the channels (Ri, Rj) and (Rj , Ri) are necessarily the same,
and satisfy the same properties.
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messages we describe could not be confused for application-layer messages.
We conjecture that a property similar to the disjoint encryption property
of [GF00b] is sufficient to ensure this.

The agents, including those under the intruder’s control, communicate
in sessions, distinguished locally by connection identifiers. A connection
identifier can be thought of as a handle to the communication channel: when
the protocol agent creates a new channel, a connection identifier is returned,
which the agent uses for all communication over that channel.

We use the following events, where m ranges over the set MessageApp of
application-layer messages.

send.(A,Ri).cA.(B,Rj).m: the agent (A,Ri) sends message m, intended for
agent (B,Rj), in a connection identified by A as cA.

receive.(B,Rj).cB.(A,Ri).m: the agent (B,Rj) receives message m, appar-
ently from agent (A,Ri), in a connection identified by B as cB.

fake.(A,Ri).(B,Rj).cB.m: the intruder fakes a send of message m to agent
(B,Rj) in connection cB; the intruder fakes the message with the
identity of honest agent (A,Ri); he may be injecting the message into
a pre-existing connnection, or causing B to start a new one. In order
to fake a message, the intruder must be able to choose the message
from those he knows.

hijack.(A,Ri).(A′, Ri).(B,Rj).(B′, Rj).cB′ .m: the intruder modifies a pre-
viously sent message m and changes the sender from (A,Ri)
to (A′, Ri), and the receiver from (B,Rj) to (B′, Rj) so that
B′ accepts it in connection cB′ ; we write this event as
hijack.(A,Ri)→(A′, Ri).(B,Rj)→(B′, Rj).cB′ .m to highlight its in-
tent.

The hijack event can be used by the intruder in four different ways:

• To replay a previously-sent message: the intruder either chooses an
existing connection or initialises a new one, and causes the recipient
to receive the message in that connection; we abbreviate the event and
write hijack.(A,Ri).(B,Rj).cB.m;

• To re-ascribe2 a message: the intruder changes the sender’s identity
and chooses a connection for the recipient to receive it in; we abbrevi-
ate the event and write hijack.(A,Ri)→(A′, Ri).(B,Rj).cB.m;3

2To ascribe means to attribute a text to a particular person; hence we use “re-ascribe”
to describe the intruder’s activity when he changes the identity of the sender of a message.

3The arrow notation resolves any possible ambiguity that might arise from abbreviating
the event in this manner.
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• To redirect a message: the intruder changes the identity of the recipient
and chooses a connection for the new recipient to receive it in; we
abbreviate the event and write hijack.(A,Ri).(B,Rj)→(B′, Rj).cB′ .m;

• To re-ascribe and redirect a message: the intruder changes both iden-
tities and chooses a connection for the new recipient to receive the
message in.

For example, if application layer message m from A to B is encoded as
the transport layer message:

A→ B : A, {m}PK(B) ,

where PK(B) is B’s public key, then a dishonest agent may re-ascribe this
message, replacing the identity A with an arbitrary other identity. On the
other hand, if m is encoded as:

A→ B : {{m}PK(B)}SK(A) ,

where SK(A) is A’s secret key, then the intruder can only re-ascribe it by
replacing the signature with his own: he can only do so with a dishonest
identity. Recall that the intruder can only fake messages that he knows,
so in both the above cases, the intruder could not have used a fake event,
except if he happened to know m.

Likewise, if m is encoded as:

A→ B : B, {m}SK(A) ,

then a dishonest agent may redirect this message, replacing the identity B
with an arbitrary other identity. On the other hand, if m is encoded as:

A→ B : {{m}SK(A)}PK(B) ,

then the intruder can redirect it only if he possesses SK(B): he can only
redirect messages sent to him. Note that the intruder could not have used
a fake event, because he cannot choose the value of m.

In Section 3.1.3 we show how these abstract events relate to the concrete
events in the transport layer; there is a picture of the events in Figure 3.2.
Under some circumstances the dishonest events may collapse (i.e. the be-
haviour of the intruder with one event can be simulated with another); we
explore these circumstances later in this chapter.

3.1.2 An abstract network

We now specify four rules that define the application-layer behaviour ac-
cepted by our networks. We are not yet trying to capture channel properties;
rather, we are defining some sanity conditions in order to remove artificial
and irrelevant behaviour from our networks.
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Figure 3.2: The concrete and abstract levels of the network.

1. The intruder never sends or fakes messages to himself, and never fakes
messages with a dishonest identity (as he can perform a send).

N1(tr) =̂
tr ↓ {| send.Dishonest.Connection.Dishonest,

fake.Agent.Dishonest, fake.Dishonest |} = 〈〉 .

2. The intruder can only hijack messages that were previously sent (not
faked).

N2(tr) =̂
∀A,A′, B,B′ : Agent; cB′ : Connection;m : MessageApp ·

hijack.A→A′.B→B′.cB′ .m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr .

3. In order to define the intruder’s capabilities, we require a means to
describe exactly what the intruder knows. In the next section we
define a function:

IntruderKnowsIIK : Trace→ P(MessageApp)
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such that IntruderKnowsIIK(tr) gives the set of messages that the
intruder knows (and so can send) after tr, assuming that his initial
knowledge is IIK. We limit the intruder’s actions in the application
layer: he can only send or fake messages that he knows.

N3,IIK(tr) =̂
∀I : Dishonest; cI : Connection;B : Honest; tr′ : Trace;m : MessageApp ·
tr′_〈send.I.cI .B.m〉 6 tr ⇒ m ∈ IntruderKnowsIIK(tr′) ∧
∀A,B : Honest; cB : Connection; tr′ : Trace;m : MessageApp ·
tr′_〈fake.A.B.cB.m〉 6 tr ⇒ m ∈ IntruderKnowsIIK(tr′) .

4. No agent may receive a message that was not previously sent, faked
or hijacked to them.

N4(tr) =̂
∀B : Honest; cB : Connection;A : Agent;m : MessageApp ·

receive.B.cB.A.m in tr ⇒ ∃A′, B′ : Agent; cA : Connection ·
send.A.cA.B.m in tr ∨
fake.A.B.cB.m in tr ∨
hijack.A′→A.B′→B.cB.m in tr .

These four rules give the basic properties that any network must satisfy.
The first three place basic restrictions on the intruder’s activity, and are
intended to represent a realistic view of the capabilities of a Dolev-Yao style
active attacker; the final rule captures the notion that a message can only
be received when there is some preceding activity that might have caused
it.

3.1.3 Relating the abstraction to a concrete network

We specify our channels as restrictions on the activity allowed in the appli-
cation layer. In order to relate our results to a concrete model, we show how
the application-layer events correspond to transport-layer events.

When an agent sends a message in the application layer (i.e. performs
a send event), their protocol agent creates a corresponding sendTL event in
the transport layer. The network then generates a receiveTL event for the
recipient (unless the intruder hijacks the message first), which causes the
recipient’s protocol agent to perform a receive event in the application layer.

We assume the existence of a partial, symbolic decoding function D
that transforms traces of transport-layer send and receive events on a single
connection into traces of application-layer send and receive events on that
connection:

D : (Agent×Agent)× Connection× Trace 7→ Trace ,
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such that:

∀A,B : Agent; cA : Connection; tr : Trace ·
D(A→B)(cA)(tr) ∈ {| send.A.cA.B, receive.A.cA.B |}∗ .

The decoding function gives the trace of application-layer events that would
result from undoing encryption, validating signatures and performing other
functions necessary for the implementation of the secure channel in use.

There is not necessarily a 1-1 relationship between application-layer
and transport-layer messages: some channels may have an initial key-
establishment phase, or may send several transport-layer messages for each
application-layer message, or aggregate several application-layer messages
into a single transport-layer message. However, the decoding function has
the following (prefix) property:

∀A : R̂i, B : R̂j : Agent; cA : Connection; tr, tr′ : Trace ·
tr′ 6 tr ⇒ D(A→B)(cA)(tr′) 6 D(A→B)(cA)(tr) .

Consider the example channel given earlier where the application-layer
message m from A to B is encoded as A, {m}PK(B). On this channel, D
simply encrypts each message that is sent and pairs it with the sender’s
identity, or removes the sender’s identity and decrypts each message that is
received:

D(A→B)(cA)(tr) =̂
〈f(e) | e in tr � {| sendTL.A.cA.B, receiveTL.A.cA.B |}〉 ,

where:

f(sendTL.A.cA.B.〈A, {m}PK(B)〉) = send.A.cA.B.m ,

f(receiveTL.A.cA.B.〈B, {m}PK(A)〉) = receive.B.cB.A.m .

This is a very simple example, but D can easily be defined for more compli-
cated secure channels such as TLS.

We specify two rules that define the formal relation between the abstract
and concrete events:

1. In every honest agent’s connection the decrypted stream of messages
that the protocol agent sends is a prefix of the messages sent by the
agent:

A1(tr) =̂
∀A : (Honest, Ri); cA : Connection;B : R̂j ·

(D(A→ B)(cA)(tr)) ↓ send.A.cA.B 6 tr ↓ send.A.cA.B .

In other words, the protocol agents faithfully translate the send events
performed by the honest agents into sendTL events. Furthermore, the
protocol agents must pass the messages on to the network in the same
order that they receive them from the agent;
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2. In every honest agent’s connection the stream of messages that the
agent receives is a prefix of the decrypted stream of messages received
by the protocol agent:

A2(tr) =̂
∀B : (Honest, Rj); cB : Connection;A : R̂i ·
tr ↓ receive.B.cB.A 6 (D(A→ B)(cB)(tr)) ↓ receive.B.cB.A .

In other words, the protocol agents faithfully translate the receiveTL

events into receive events. Furthermore, the protocol agents must pass
messages on to the agent in the same order that they receive them from
the network. This rule, and the previous one, ensure that the protocol
agents act honestly: they do not take messages from one connection,
and transmit them in another;

The examples above show that the sendTL events have the same type
as the send events (and likewise the receiveTL and receive events). The
examples also show that a getTL event takes the same form as the sendTL

event of the message being got, and the putTL event takes the form of the
receiveTL event it will cause to be generated.

The intruder has additional capabilities: as well as performing sendTL

or receiveTL events he can add transport-layer messages to the network
(putTL) or remove them from it (getTL). The events the intruder performs
in the application layer (send, receive, fake, and hijack) define his high-
level strategy; the transport-layer events define the implementation of that
strategy. For example, in order to hijack a message, the intruder will get
the transport layer message, modify it, and then put it back. The full trace
of a re-ascribing hijack on the example channel above is shown below:

tr =̂ 〈 send.A.cA.B.m, sendTL.A.cA.B.〈A, {m}PK(B)〉,
get.A.cA.B.〈A, {m}PK(B)〉,
hijack.A→A′.B.cB.m,
put.B.cB.A

′.〈A′, {m}PK(B)〉,
receiveTL.B.cB.A

′.〈A′, {m}PK(B)〉, receive.B.cB.A′.m 〉 .

We do not directly specify a formal relationship between the intruder’s
application-layer and transport-layer events, since the intruder is not forced
to follow the protocol. In general, however, we expect a hijack event to
be preceded by a getTL event and followed by a putTL event; similarly, we
expect a fake event to be followed by a putTL event.

3.1.4 Specifying channels

We specify channels by giving trace specifications. In order to prove that a
particular transport layer protocol really does satisfy a channel specification
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one would have to define a protocol agent, translating between application-
layer and transport-layer messages, and prove that all traces of the resulting
system satisfy the trace specification.

In the previous sections we formalised the relation between events in our
abstract and concrete networks. The rules N1–N4, A1 and A2 define a set
of traces that we refer to as valid system traces.

Definition 3.1.3 (Valid system traces). The set of valid system traces is
the (prefix-closed) set of traces composed of application-layer send, receive,
fake and hijack events, and transport-layer sendTL, receiveTL, putTL and
getTL events that satisfy properties N1–N4 and A1–A2.

ValidSystemTracesIIK =̂
{tr ∈ {|sendTL, receiveTL, putTL, getTL, send, receive, fake, hijack |}∗ |
∀tr′ 6 tr ·
N1(tr′) ∧N2(tr′) ∧N3,IIK(tr′) ∧N4(tr′) ∧ A1(tr′) ∧ A2(tr′)} .

Definition 3.1.4 (Channel specification). A channel specification is a pred-
icate over traces:

∀IIK ⊆ Message · ChannelSpec : ValidSystemTracesIIK → B .

Every channel specification we consider is built as the conjunction of
simpler properties of the form P (Ri → Rj), which talk about messages on
the channel Ri → Rj .

Definition 3.1.5. A channel specification has a natural interpretation: the
set of valid system traces that it accepts, assuming some value of the in-
truder’s initial knowledge:

tracesIIK(ChannelSpec) =
{tr ∈ ValidSystemTracesIIK | ∀tr′ 6 tr · ChannelSpec(tr′)} .

We omit the intruder’s initial knowledge when it is assumed to be constant,
or if a property or a definition should be interpreted independently of it.

We note that a channel specification P, built as a conjunction of simpler
properties Pk(Ri → Rj), is not necessarily a unique description of traces(P ).
Any channel specification Pk(Ri → Rj) necessarily holds for every trace
in traces(P ), but if it turns out that Q(Ri → Rj)(tr) holds for every trace tr
in traces(P ), it does not necessarily follow that Q is one of the Pk.

We also note that if we have two channel specifications P and Q such that
P ⇒ Q, then a channel that satisfies P can be used anywhere a channel that
satisfies Q can be used and, in this case, traces(P ) ⊆ traces(Q). In Section
3.3 we see some pairs of channels that are not equivalent as predicates, but
which simulate one another; we collapse such pairs.
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3.2 Confidential channels

In this section we specify confidential channels in our framework. Confiden-
tial channels are specified in terms of the intruder’s knowledge after observ-
ing (and interacting with) a valid system trace. The confidential channel
specification uses the transport-layer events as well as the application-layer
events.

A confidential channel should protect the confidentiality of any message
sent on it from all but the intended recipient. For example, a confidential
channel to B can be implemented by encoding the application layer mes-
sage m as the transport layer message {m}PK(B). We identify confidential
channels by tagging them with the label C (e.g. writing C(Ri → Rj)). The
notion of confidentiality we consider is that of Dolev and Yao [DY83]: the
intruder can only decrypt messages when he possesses the decryption key;
we do not attempt to capture any other definition of confidentiality (such
as indistinguishability).

The IntruderKnows function is then defined so that the intruder only
learns messages that are sent on non-confidential channels, or that are sent
to him:

IntruderKnowsIIK : Trace→ P(MessageApp)
IntruderKnowsIIK(tr) =̂
{m | (IIK ∪ SentToIntruder(tr) ∪ SentOnNonConfidential(tr)) ` m} .

IIK ⊆ Message is the intruder’s initial knowledge. SentToIntruder gives the
set of messages sent by honest agents to dishonest agents:

SentToIntruder : Trace→ P(MessageApp)
SentToIntruder(tr) =̂
{m | ∃A : Agent; cA : Connection; I : Dishonest · send.A.cA.I.m in tr} .

SentOnNonConfidential gives the set of messages sent between agents on
non-confidential channels:

SentOnNonConfidential : Trace→ P(MessageApp)
SentOnNonConfidential(tr) =̂
{m | ∃Ri, Rj : Role · ¬C(Ri → Rj) ∧

∃A : R̂i; cA : Connection;B : R̂j · send.A.cA.B.m in tr} .

We give channel specifications that tag some channels as being confiden-
tial in this way. When we consider these specifications we examine their
traces (as defined in Section 3.1); the traces of the specification clearly de-
pend on which channels are confidential, but they also depend on the in-
truder’s initial knowledge. As we increase the set of messages the intruder
knows initially, we increase the number of deductions he can make, and so
we increase the number of messages he can send. When we claim that a
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secure transport layer is confidential, we usually make that claim subject to
a restriction on the intruder’s initial knowledge (usually that the intruder’s
initial knowledge does not contain the honest agents’ secret keys).

We specify confidential channels by requiring that the IntruderKnows(tr)
function does indeed capture what the intruder would know after the
trace tr. The messages the intruder knows after observing a trace are those
that can be deduced from his initial knowledge and the messages sent on
the network:

IntruderKnowsTL,IIK : Trace→ P(Message)
IntruderKnowsTL,IIK(tr) =̂
{m | {m′ | ∃A,B : Agent; cA : Connection · sendTL.A.cA.B.m

′ in tr} ∪
IIK ` m} .

The confidential channels must protect the confidentiality of the mes-
sages sent on them. In other words, although the intruder can see the
transport layer messages that are sent on the network, he ought not to be
able to deduce the application layer messages within them. For any imple-
mentation of a confidential channel, ChannelImp, the intruder should gain
exactly the same knowledge by listening to the transport-layer messages as
he does by listening to the application-layer messages.

∀IIK ⊆ Message; tr ∈ tracesIIK(ChannelImp) ·
IntruderKnowsTL,IIK(tr) ∩MessageApp = IntruderKnowsIIK(tr) .

3.3 Authenticated channels

In this section we describe our authenticated channel specifications. Un-
like the confidential channel property, the specifications for these channels
only refer to the application-layer events. These properties are specified by
defining several building blocks; these building blocks progressively block
the intruder’s behaviour. The building blocks in this section, and the confi-
dential property from the previous section are combined to construct more
complex properties: these are the channel specifications.

We specify authenticated channels by describing the relationship between
the receive and send events performed by the agents at either end of the
channel. In particular, we specify under what circumstances an agent may
perform a particular receive event. Our specifications are trace-based (and
hence are safety properties4 [Ros98]).

We are building a hierarchy of channels, so we need a bottom element:
the standard Dolev-Yao network model used by many protocol analyses (this
is captured by statements N1–N4 in Section 3.1).

4They identify the traces that the network cannot perform, but cannot force it to
perform any events at all; this is one of the reasons that none of our channels guarantee
that a message will be received.
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There are two dishonest events the intruder can perform: faking and
hijacking. As the examples in Section 3.1 show, with some transport proto-
cols the latter can only be performed using dishonest identities. We specify
our channels by placing restrictions on when he can perform these events.
The restrictions below are the building blocks that we use to construct more
interesting properties.

Definition 3.3.1 (No-faking). If NF(Ri → Rj) then the intruder cannot
fake messages on the channel:

NF(Ri → Rj)(tr) =̂ tr ↓ {| fake.R̂i.R̂j |} = 〈〉 .

Definition 3.3.2 (No-re-ascribing). If NRA(Ri → Rj) then the intruder
cannot change the sender’s identity when he hijacks messages:

NRA(Ri → Rj)(tr) =̂
tr ↓ {| hijack.A→A′.B→B′ | A,A′ : R̂i;B,B′ : R̂j ·A 6= A′ |} = 〈〉 .

Definition 3.3.3 (No-honest-re-ascribing). If NRA−(Ri → Rj) then the
intruder can only change the sender’s identity to a dishonest identity when
he hijacks messages:

NRA−(Ri → Rj)(tr) =̂
tr ↓ {| hijack.A→A′.B→B′ | A,A′ : R̂i;B,B′ : R̂j ·

A 6= A′ ∧Honest(A′) |} = 〈〉 .

Definition 3.3.4 (No-redirecting). If NR(Ri → Rj) then the intruder can-
not redirect messages:

NR(Ri → Rj)(tr) =̂
tr ↓ {| hijack.A→A′.B→B′ | A,A′ : R̂i;B,B′ : R̂j ·B 6= B′ |} = 〈〉 .

Definition 3.3.5 (No-honest-redirecting). If NR−(Ri → Rj) then the in-
truder cannot redirect messages that were sent to honest agents:

NR−(Ri → Rj)(tr) =̂
tr ↓ {| hijack.A→A′.B→B′ | A,A′ : R̂i;B,B′ : R̂j ·

B 6= B′ ∧Honest(B) |} = 〈〉 .

All of the above specifications work by blocking events; when we specify
this we do not mean that the intruder cannot generate the application-
layer fake and hijack events on the channels. What we intend is that when
the intruder generates such events, he will either be unable to modify the
transport-layer messages in order to generate the necessary putTL events, or
the honest protocol agents will reject the messages. Any behaviour of the
system where the events are generated but then rejected can be simulated by
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a behaviour where the events are not created. The simplest way to specify
these properties is to ban the events.

An alternative to Definitions 3.3.1–3.3.5 would be to give eighteen vari-
ants of N4,5 and to apply them to channels, rather than the entire network.
By specifying one of the properties above, we limit the possibilities of the
single N4 rule. We discuss our choice of approach to the specifications, and
discuss some refinements and extensions to these building blocks in Sec-
tion 4.6. In the next section we will combine these building blocks to form
more interesting properties.

The intruder can use a hijack event to cause an honest agent to receive a
message in a particular connection without changing either of the identities
associated with the message. This activity is not blocked by any of the
properties above. In particular, the intruder can cause an agent to receive
a message more times than it is sent, i.e. to replay a message. We do not
specify a no-replaying property in the building blocks because we do not
wish to consider it independently; this is for two reasons:

• Replaying is fundamentally different to re-ascribing and redirecting.
Without some preventative mechanism built into the channel, mes-
sages can be replayed simply by replaying the transport-layer (or lower-
layer) messages. In order to re-ascribe or to redirect a message the
intruder will typically have to modify the transport-layer message;

• It is, typically, expensive to implement a channel that prevents re-
playing. For example, adding authenticated, unique serial numbers
to individual messages requires the message recipient to remember all
the serial numbers they have seen previously in order to detect replays.
However, there are other properties one can implement that provide
no-replaying at little, or no, extra cost (for example, stream channels
prevent replaying – see Section 3.5).

In Section 3.5 we describe channel properties that bind messages into
sessions: these channels specify that a message cannot be replayed outside
a particular connection. However, these channels do not prevent messages
from being replayed within the session. We also give session properties
that indirectly prevent replaying, and properties that provide a stronger
guarantee (e.g. that messages are received in the same order that they were
sent). In later sections we do not always explicitly state that a message may
have been replayed, but we do not block this possibility either.

3.3.1 Combining the building blocks

We now consider how the building blocks can be combined. They are not
independent, since no-re-ascribing implies no-honest-re-ascribing, and like-

5There are two possibilities for no-faking, three possibilities for no-re-ascribing and
three possibilities for no-redirecting.
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wise for no-redirecting. Further, not all combinations are fundamentally
different; certain pairs of combinations allow essentially the same intruder
behaviours: each simulates the other. We therefore collapse such combina-
tions.

Collapse1: Non-confidential channels that allow faking but which sat-
isfy one of the forms of no-re-ascribing or no-redirecting simu-
late the bottom channel; the intruder can learn messages and fake
them to effect a message re-ascribe or redirect. For example, the
trace 〈send.A.cA.B.m, fake.A.B′.cB′ .m〉 simulates a redirection of m
from B to B′.

Collapse2: Any re-ascribable channel that prevents faking simulates a re-
ascribable channel that allows faking: the intruder can send messages
with his own identity and then re-ascribe them; this activity simulates
a fake; e.g. 〈send.I.cI .B.m, hijack.I→A.B.cB.m〉.

Collapse3: Non-confidential channels that satisfy NF ∧NRA simulate non-
confidential channels that satisfy NF ∧NRA−; the intruder can always
learn messages and then send them with his own identity to simulate
a dishonest re-ascribe; e.g. 〈send.A.B.cB.m, send.I.cI .B.m〉.

Collapse4: Confidential channels that do not satisfy NR− or NR simulate
non-confidential channels because the intruder can redirect messages
sent on them to himself, and so learn the messages.

Collapse5: Confidential, fakeable channels that satisfy NR simulate
confidential, fakeable channels that satisfy NR−; the intruder
learns messages that are sent to him, and so can fake them;
e.g. 〈send.A.cA.I.m, fake.A.B.cB.m〉.

After taking these collapsing cases into consideration we arrive at a hi-
erarchy of four non-confidential and seven confidential channels, shown in
Figure 3.3 (where several cases collapse to one, the figure gives the weakest
specification in each case). In Figure 3.4 we give simple example transport
protocols that we believe satisfy each of the properties; we explain the names
in the right-hand column when we discuss these combinations in Section 3.4.
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Figure 3.3: The hierarchy of secure channels.
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3.4 Some interesting authenticated channels

In the previous sections we introduced a set of building blocks for creating
authenticated channel specifications. These building blocks can be combined
with the confidential channel specification in eleven different ways. The
eleven channels created by these combinations are arranged into a hierarchy
(shown in Figure 3.3) where the specifications of lower channels are implied
by the specifications of higher channels. In the next chapter we introduce a
simulation relation that compares the honest traces of channel specifications;
we show that the simulation relation establishes the same hierarchy of these
channel properties as implication of their specifications. In this section we
examine some of the channels in more detail, and describe which of these
properties we believe are satisfied by the secure transport layers described
in Chapter 2.

3.4.1 Sender authentication

When an agent B receives a message, purportedly from A, he might ask
whether he can be sure that A really sent the message. In other words: at
some point in the past, did A send that message to someone, not necessar-
ily B? This condition is certainly not met by a fake.A or a hijack.A′→ A
event: we want to guarantee the existence of a send.A event for the mes-
sage, sometime in the past. However, we should not discount the possibility
that A sent a message that the intruder redirected.

Definition 3.4.1 (Sender authentication). The channel Ri → Rj provides
sender authentication if NF(Ri → Rj) ∧NRA(Ri → Rj).

An obvious way to implement this property is for agents to sign mes-
sages they send with their secret key: {m}SK(A). The signature does not
contain the intended recipient’s identity, so a channel implemented in this
way is redirectable. The intruder cannot fake messages on this channel,
nor re-ascribe messages sent by other agents so that they appear to have
been sent by A, because he does not know A’s secret key. He can, however,
learn the message, sign it himself and then send it using his own identity
(note that this is a send rather that a re-ascribe); as noted above (collaps-
ing case Collapse3), any non-confidential channel that satisfies NF ∧NRA
simulates a non-confidential channel that satisfies NF ∧NRA−.

With unilateral TLS (i.e. the standard web model), the client is not
authenticated to the server. The channel from the server to the client
provides authentication of the server’s identity, but as the client’s iden-
tity is not verified, this channel is redirectable (the messages may be re-
ceived by someone other than the agent the server intended them for)
and hence does not satisfy confidentiality. We believe this channel satis-
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fies StrongStream ∧NF ∧NRA.6

3.4.2 Intent

When agents sign messages with their secret key, their intent might not be
preserved: the intruder can redirect their messages to whomever he likes. We
now specify a channel that provides a guarantee of (the original sender’s) in-
tent: whenever B receives a message, he knows that the agent who originally
sent it intended him to receive it. On these channels we forbid redirection
(as this would allow the intruder to change the recipient’s identity), but we
allow faking and re-ascribing.

Definition 3.4.2 (Intent). The channel Ri → Rj provides a guarantee of
intent if NR(Ri → Rj).

The easiest way to design a channel that provides a guarantee of intent
is to encrypt messages with the intended recipient’s public key. We have al-
ready used this method as the most obvious implementation of a confidential
channel.

Recall that non-confidential, non-redirectable, fakeable channels simu-
late message redirection by learning messages and faking them (collapsing
case Collapse1). We therefore always combine intent with confidentiality
or non-fakeability. Further, fakeable, confidential channels that satisfy NR
can simulate fakeable, confidential channels that satisfy NR−, because the
intruder learns messages that are sent to him, and so can fake them to
‘redirect’ them to another agent (collapsing case Collapse5).

With unilateral TLS, the channel from the client to the server provides
a guarantee of the sender’s (the client’s) intent, as the client must have ver-
ified the server’s identity; however it does not provide authentication of the
client’s identity. We believe this channel satisfies StrongStream ∧ C ∧NR.

3.4.3 Strong authentication

Strong authentication is the combination of the previous two properties:
whenever B receives a message from A, A previously sent that message to
B. By analogy with [Low97], we often refer to sender authentication as weak
authentication, and (strong) authentication as authentication.

Definition 3.4.3 (Strong authentication). The channel Ri → Rj provides
strong authentication if NF(Ri → Rj) ∧NRA(Ri → Rj) ∧NR(Ri → Rj).

We can achieve strong authentication by encoding m as {B,m}SK(A).
The intruder cannot change the recipient’s identity while maintaining A’s
signature, so this channel is unredirectable; he cannot fake messages on this

6StrongStream is a session property and is defined in Section 3.5.
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channel because he does not know A’s secret key; and he cannot re-ascribe
messages so that they appear to have been sent by an honest agent. (As with
sender authentication, he can learn the message and sign it himself; again
this is not a re-ascribe.) This channel guarantees that when B receives a
message from A, then previously A sent it to B.

We believe that bilateral TLS establishes an authenti-
cated stream in each direction, and so both channels satisfy
StrongStream ∧ C ∧NF ∧NRA ∧NR. Such a channel is equivalent to
the authenticated channels of Broadfoot and Lowe [BL03] (see Section 4.6
for more details).

We note that neither {{m}SK(A)}PK(B) nor {{m}PK(B)}SK(A) provides
strong authentication; the former can be redirected when B is dishonest, and
the latter re-ascribed with a dishonest identity; they satisfy, respectively,
C ∧NF ∧NRA ∧NR− and C ∧NF ∧NRA− ∧NR. By concatenating the
recipient’s identity and the sender’s identity to the message in the above
channels we do create strong authentication channels; e.g.:

{{B,m}SK(A)}PK(B) ,

{{A,m}PK(B)}SK(A) .

3.4.4 Credit and responsibility

In [Aba98], Abadi highlighted two different facets of authentication. When
an agent B receives a message m from an authenticated agent A, he could
interpret it in two different ways:

• He might attribute credit for the message m to A; for example, if B
is running a competition, and m is an entry to the competition, he
would give credit for that entry to A;

• He might believe that the message is supported by A’s authority, and
so assign responsibility for it to A; for example, if m is a request to
delete a file, then his decision will depend on whether or not A has the
authority to delete the file.

Abadi argued that these two interpretations of authentication are not
the same, and that protocol designers tend not to state which form of au-
thentication their protocols provide: in many cases protocols will offer one,
but not the other.

Definition 3.4.4 (Credit). The channel Ri → Rj can be used to give credit
if C(Ri → Rj) ∧NRA(Ri → Rj) ∧NR−(Ri → Rj).

The intruder can fake messages on these channels, but in doing so he only
gives another agent credit for his messages.
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Abadi gives the following example of a protocol suitable for assigning
credit:

A→ B : {A,K}PK(B), {m}K .

When B receives this message he knows that he can give credit for m to
the person who encrypted the key k; however he cannot be sure that it
was really A who did this. So while the intruder can fake messages on this
channel, he will only be giving credit to someone else, rather than claiming
it for himself.

Definition 3.4.5 (Responsibility). The channel Ri → Rj can be used to
assign responsibility if NF(Ri → Rj) ∧NRA−(Ri → Rj) ∧NR−(Ri → Rj).

The only attack the intruder could perform on such a channel would be to
overhear a message, or to claim it as his own. In the latter case, he will
either not have the authority required for the message (as in the example
of a fileserver and a delete message), or he will be accepting the blame for
something. The example given for an authenticated channel would be a
suitable implementation of this channel.

In some circumstances, one might wish to strengthen such a channel
so that it also provides intent (i.e. NF ∧NRA− ∧NR), to ensure that the
correct agent assigns the responsibility.

3.4.5 Guaranteed Knowledge

Both of the previous channels (credit and responsibility) provide a further
property: they guarantee that the apparent sender of a message knew the
content of the message. This is important for these channels as an agent
should not be able to claim credit for a message that he does not know, and
no agent should claim responsibility for a message that he does not know.

Fakeable channels cannot provide this property: if the intruder can fake
messages with another agent’s identity, he can send messages that they have
no chance of knowing. Further, if the intruder can re-ascribe a message to an
honest agent then the channel cannot provide guaranteed knowledge. If the
intruder can re-ascribe a message to himself (i.e. to a dishonest agent) then
the channel can only provide guaranteed knowledge if it is non-confidential.

Definition 3.4.6 (Guaranteed Knowledge). The channel Ri → Rj provides
a guarantee that the apparent sender of a message knew the message if
NF(Ri → Rj) ∧NRA−(Ri → Rj) ∧ (C(Ri → Rj)⇒ NRA(Ri → Rj)).

It is interesting to note that if channel specification P provides guaran-
teed knowledge and channel Q is stronger than P , then it does not follow
that Q provides guaranteed knowledge. For example, NF ∧NRA− ∧NR
provides guaranteed knowledge, but C ∧NF ∧NRA− ∧NR does not (the
intruder can re-ascribe an honest agent’s message to himself, but he cannot
know the message because the channel is confidential).
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3.5 Session and stream channels

The properties described earlier in this chapter allow us to specify chan-
nels that provide guarantees for individual messages. In practice it is often
necessary to group together different messages that were sent in the same
connection into a single session; application-layer protocols frequently rely
on secure transport protocols to bind messages together in this way. In this
section we consider six properties relating different messages in the same
connection; they can be combined with the properties of Figure 3.3.

Given a trace tr we might ask whether it is feasible that the event
send.A.cA.B.m is responsible for the event receive.B′.cB′ .A′.m; i.e. if the first
event had not happened, the second might not have. Certainly if A = A′

and B = B′ then it is quite possible that the first event is the cause of the
second. If either of these equalities fail there must be a hijack event between
the two events in order for the first to be responsible for the second.

Responsibletr(send.A.cA.B.m, receive.B′.cB′ .A′.m) =̂
∃tr′, tr′′ : Trace · tr′_〈send.A.cA.B.m〉_tr′′_〈receive.B′.cB′ .A′.m〉 6 tr ∧

(A = A′ ∧B = B′) ∨
(hijack.A→A′.B→B′.cB′ .m in tr′′) .

The hijack event is only defined when the roles played by the new sender
and receiver are the same as those played by the old: a hijacked message
cannot be taken from one type of channel and put on another. In order
for it to be feasible that a particular send event is responsible for a receive
event we assume, implicitly, that the roles of the new and the old sender are
the same, and likewise for the receivers; this assumption is hidden in the
formulation of the property above in the agents in the events (recall that an
agent is a pair: an identity and a role, and that R̂i stands for Agent×Ri).

We note that in a valid system trace, for any particular receive event
there may be more than one send event such that Responsibletr holds. In
particular, any system trace tr induces a relation Rtr (receives-from) over
the set of connection identifiers in that system: cBRtrcA if all of the mes-
sages received in the connection cB could feasibly have been sent in the
connection cA.

We need to be careful about the way we deal with connections that re-
ceive faked messages. The fake event is an abstraction of the activity that
the intruder performs when he fakes messages: he creates a new protocol
agent with a false identity, and then uses that protocol agent to establish con-
nections to other agents. He then uses these connections to fake messages.
We partition Connection into honest and intruder connection identifiers. An
honest agent’s connection that receives faked messages is related to every
intruder connection.
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cBRtrcA =̂
∀A′, B : Agent ·
∃A,B′ : Agent · ∀m : MessageApp · receive.B.cB.A′.m in tr ⇒

Responsibletr(send.A.cA.B′.m, receive.B.cB.A′.m) ∨
cA ∈ IntruderConnection ∧ ∀m : MessageApp; tr′ : Trace ·
tr′_〈receive.B.cB.A′.m〉 6 tr ⇒ fake.A′.B.cB.m in tr′ .

The connection cB is related to every connection that could feasibly have
sent (or faked) all of the messages that are received in cB; if no messages
are received in cB a relation is established to every other connection.

It is not hard to formulate valid system traces that induce non-functional
relations for connections that receive at least one message.7 For example,
if two agents send sequences of messages that share a common subsequence
that is received by another agent:

tr =̂ 〈send.A.cA.B.m, send.A.c′A.B.m, receive.B.cB.A.m〉 .

In this example trace, A sends a message to B in two different connections
(cA and c′A), and B receives one copy of that message in the connection cB;
hence cBRtrcA and cBRtrc

′
A.

For such traces there are different ways of interpreting the events and of
resolving the non-determinism in the relation. Each of these interpretations
is represented by a maximal functional refinement of Rtr.

Definition 3.5.1 (Maximal functional refinement). A maximal functional
refinement of the relation Rtr is any relation R′ that:

1. Is a subset of Rtr;

2. Has the same left-image as Rtr;

3. Is functional (where Rtr might not be).

We write R′�Rtr when R′ is a maximal functional refinement of Rtr. Note
that � is not necessarily reflexive, but if Rtr�Rtr then Rtr is functional
so has no proper refinements.

We can think of these refinements as possible ways of resolving the non-
determinism in Rtr.

In order to specify session and stream properties we place condi-
tions on the maximal functional refinements of the receives-from rela-
tion. We also restrict attention to a pair of roles (Ri, Rj) (i.e. we
restrict traces to events on the channels Ri → Rj and Rj → Ri) so

7Non-functional relations are always induced for connections that do not receive any
messages.
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that the relation refers only to the connection identifiers of agents
playing roles Ri and Rj ; we define Rtr � (Ri → Rj) = Rtr�Σ(Ri→Rj),
and Rtr � {Ri, Rj} =̂ Rtr�Σ(Ri→Rj)∪Σ(Rj→Ri), where:

Σ(Ri → Rj) = {| send.R̂i.Connection.R̂j , receive.R̂j .Connection.R̂i,

fake.R̂i.R̂j , hijack.R̂i→R̂i.R̂j→R̂j |} .

3.5.1 Session channels

Consider the example implementation of a secure channel that satis-
fies C ∧NR− given in Figure 3.4:

A→ B : {m}PK(B), A .

There is nothing in the transport layer message to distinguish this message
from one sent by A to B in a different connection. It is clear that if A
does send two messages to B in different connections, the system will accept
traces in which B receives them in a single connection. Further, since the
intruder can fake messages on this channel, it is possible that B receives a
mix of messages from A and from the intruder in the same session:

tr =̂ 〈send.A.cA.B.m1, receive.B.cB.A.m1,
fake.A.B.cB.m2, receive.B.cB.A.m2〉 .

If A’s protocol agent included a fresh nonce with the first message that A
sent to B, and then sent that nonce with each subsequent message then, as
long as that nonce remains secret, neither of the attacks above are possible:

A→ B : {nA,m}PK(B), A .

The messages that A sends are bound together by the nonce, so B’s proto-
col agent knows that each message it receives from A was sent in a single
connection, and so will ensure that B receives them in a single connection.
It is impossible for the intruder to inject messages into the connection as he
does not know the nonce. In order to fake messages the intruder must bind
them together with a single nonce; in this case they can be thought of as
coming from a single dishonest connection.

This modification allows us to use this transport layer protocol to estab-
lish sessions: all of the messages sent in a single connection will be received in
a single connection, and the intruder cannot inject messages into the session.
The intruder can still remove and re-order messages within the session.

Definition 3.5.2 (Session). A channel Ri → Rj is a session channel if the
relation Rtr � (Ri → Rj) is left-total:

Session(Ri → Rj)(tr) =̂
∀cB : Connection · ∃cA : Connection · (cB, cA) ∈ Rtr � (Ri → Rj) .
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If Rtr � (Ri → Rj) is left-total then each of its maximal functional
refinements is also left-total because they all have the same domain as
Rtr � (Ri → Rj).

The transport layer protocol described above has the unfortunate prop-
erty that the intruder can replay messages from old sessions, and cause B
to believe that A wishes to start a new session with him. This is an attack
against the injectivity of the transport protocol. Similar attacks are possible
against other transport protocols in which, for example, one session is played
to two different agents. The next property prevents this sort of attack.

Definition 3.5.3 (Injective Session). A channel Ri → Rj is an injective
session channel if it is a session channel and there exists an injective maximal
functional refinement R′ of the relation Rtr � (Ri → Rj):

InjectiveSession(Ri → Rj)(tr) =̂
Session(Ri → Rj)(tr) ∧
∃R′�Rtr � (Ri → Rj) ·
∀cA, cB, cB′ : Connection · cBR′cA ∧ cB′R′cA ⇒ cB = cB′ .

The security parameters of a TLS connection are used to protect the
integrity of every record layer message. This integrity check, and the secrecy
of the security parameters ensures that TLS is a session channel. The agents
calculate the security parameters together in the handshake, so they both
know they have contributed to the values of the security parameters, and so
they are communicating in a new session. In order to replay a TLS session
the intruder would have to be able to choose the security parameters to
match those of the old session. TLS therefore establishes injective sessions.

The TLS handshake protocol ensures that the connections held by the
client and server are bound together in a single session. However, it is not the
case that every injective session channel achieves this; consider the following
trace (illustrated in Figure 3.5):

tr =̂ 〈send.A.cA.B.m1, receive.B.cB.A.m1,
send.B.c′B.A.m2, receive.A.cA.B.m2,
send.A.c′A.B.m3, receive.B.c′B.A.m3,
send.B.cB.A.m4, receive.A.c′A.B.m4〉 .

This trace satisfies the injective session property: each connection receives
messages from exactly one other connection. However, the connections have
been interleaved in such a way that the message A receives in cA is not in
response to the message she sent in cA.
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Definition 3.5.4 (Strong Session). A channel Ri → Rj is a strong ses-
sion channel if the channels Ri → Rj and Rj → Ri are session channels
and there exists a symmetric maximal functional refinement R′ of the rela-
tion Rtr � {Ri, Rj}:

StrongSession(Ri → Rj)(tr) =̂
Session(Ri → Rj)(tr) ∧ Session(Rj → Ri)(tr) ∧
∃R′�Rtr � {Ri, Rj} · ∀cA, cB : Connection · cBR′cA ⇒ cAR′cB .

The strong session property ensures that the sort of session interleaving and
de-coupling, as shown above, cannot happen.

A strong session also ensures injectivity: if cBR′cA and cB′R′cA
then, because the relation is symmetric, cAR′cB and cAR′cB′ and so,
because the relation is functional, cB = cB′ . This symmetry also en-
sures that StrongSession(Ri → Rj)⇔ StrongSession(Rj → Ri). It does
not make much sense to talk about Ri → Rj as a strong session chan-
nel without Rj → Ri also being a strong session channel, so we write
StrongSession(Ri ↔ Rj).

3.5.2 Stream channels

The record layer of TLS also includes sequence numbers. Every time an
agent sends a message in a TLS connection their protocol agent increases
the sequence number that is sent with the message. The sequence number
is authenticated by the usual TLS integrity protection, so the recipient of a
TLS stream can be sure that he has not missed any messages, nor received
messages in any order other than that intended by the sender.

TLS therefore provides a stronger guarantee than the strong session
property: the stream of messages an agent receives is a prefix of the stream
of messages sent by the other agent in the session. This property prevents
the intruder from permuting the order in which messages are received, or
inserting or removing messages from a session. However, the intruder can
terminate a stream at any point.

We define stream channels by altering the definition of the receives-from
relation Rtr to form the stream-receives-from relation: Str. cBStrcA if the
stream of messages received in cB is a prefix of the stream of messages sent
in cA. In other words, every message that is received in cB was previously
sent in cA in the same order, and, subject to termination of the stream,
every message sent in cA is received in cB. Stream, injective stream and
strong stream channels are defined in the same way as the session channels
using Str in place of Rtr.
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cBStrcA =̂
∀A′, B : Agent ·
∃A,B′ : Agent · tr ↓ receive.B.cB.A′ 6 tr ↓ send.A.cA.B′ ∧
∀m : MessageApp · receive.B.cB.A′.m in tr ⇒

Responsibletr(send.A.cA.B′.m, receive.B.cB.A′.m) ∨
cA ∈ IntruderConnection ∧ tr ↓ receive.B.cB.A′ 6 tr ↓ fake.A′.B.cB .

Definition 3.5.5 (Stream). A channel Ri → Rj is a stream channel if the
relation Str � (Ri → Rj) is left-total:

Stream(Ri → Rj)(tr) =̂
∀cB : Connection · ∃cA : Connection · (cB, cA) ∈ Str � (Ri → Rj) .

Definition 3.5.6 (Injective Stream). A channel Ri → Rj is an injective
stream channel if it is a stream channel and there exists an injective maximal
functional refinement S ′ of the relation Str � (Ri → Rj):

InjectiveStream(Ri → Rj)(tr) =̂
Stream(Ri → Rj)(tr) ∧
∃S ′�Str � (Ri → Rj) ·
∀cA, cB, cB′ : Connection · cBS ′cA ∧ cB′S ′cA ⇒ cB = cB′ .

Definition 3.5.7 (Strong Stream). A channel Ri → Rj is a strong stream
channel if the channels Ri → Rj and Rj → Ri are stream channels and
there exists a symmetric maximal functional refinement S ′ of the rela-
tion Str � {Ri, Rj}:

StrongStream(Ri → Rj)(tr) =̂
Stream(Ri → Rj)(tr) ∧ Stream(Rj → Ri)(tr) ∧
∃S ′�Str � {Ri, Rj} · ∀cA, cB : Connection · cBS ′cA ⇒ cAS ′cB .

We believe that TLS (in unilateral and bilateral mode) establishes strong
stream channels [KL08].

It is clear that the stream-receives-from relation is a subset of the
receives-from relation (i.e. that cBStrcA ⇒ cBRtrcA), hence each of the
stream channels is simulated by the equivalent session channel. The simu-
lation relations between the session and stream properties are shown in the
session channel hierarchy in Figure 3.7.

We believe that each of the channels in Figure 3.3 except the bottom one
can be strengthened to give a session property by including a session iden-
tifier in the transport-layer message. However, this must be done with care;
for example, the channel that sends messages as {{m}SK(A)}PK(B) cannot
be strengthened to a session channel by including a session identifier outside
the sender’s signature ({{m}SK(A), cA}PK(B)), as this would allow the in-
truder to take messages from two different sessions between A and himself,
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and combine them into a new session between A and some other honest
agent. Instead, the session identifier must be bound to the application-layer
message: {{m, cA}SK(A)}PK(B).

Some of the channels can be further strengthened to give a strong session
property. We also believe that any session channel can be strengthened
to give a stream property, and any injective or strong session channel can
be strengthened to give an injective or strong stream property by binding
authenticated sequence numbers to every message, as in TLS.

3.5.3 Synchronised stream channels

A stream channel provides a guarantee to the message recipient that they
are receiving messages in the correct order, and that they have not missed
any. However, the intruder can delay a stream of messages indefinitely,
so the recipient cannot be sure that they have received all of the sender’s
messages.

The most obvious way to strengthen the stream properties is to restrict
the intruder’s capability to delay messages. We define the n-restricted-
stream-receives-from relation: Sn

tr. cBSn
trcA if the stream of messages re-

ceived in cB is a prefix of the stream of messages sent in cA, and there are at
most n messages that were sent in cA that have not yet been received in cB.

cBSn
trcA =̂
∀A′, B : Agent ·
∃A,B′ : Agent · tr ↓ receive.B.cB.A′ 6 tr ↓ send.A.cA.B′ ∧
tr ↓ {| send.A.cA.B′ |} − tr ↓ {| receive.B.cB.A′ |} 6 n ∧
∀m : MessageApp · receive.B.cB.A′.m in tr ⇒

Responsibletr(send.A.cA.B′.m, receive.B.cB.A′.m) ∨
cA ∈ IntruderConnection ∧ tr ↓ receive.B.cB.A′ 6 tr ↓ fake.A′.B.cB ∧
tr ↓ {| fake.A′.B.cB |} − tr ↓ {| receive.B.cB.A′ |} 6 n .

S1
tr is the relation established by a channel that only allows the intruder

to delay a stream by one message. The message sender cannot send their
next message until all of the previous messages have been received; this
sort of property could be implemented by the receiver sending an authen-
ticated acknowledgement of every message. We define the synchronised
stream properties SyncStream, InjectiveSyncStream and StrongSyncStream
analogously to the stream properties using S1

tr in place of Str.

Definition 3.5.8 (Synchronised Stream). A channel Ri → Rj is a synchro-
nised stream channel if the relation S1

tr � (Ri → Rj) is left-total:

SyncStream(Ri → Rj)(tr) =̂
∀cB : Connection · ∃cA : Connection · (cB, cA) ∈ S1

tr � (Ri → Rj) .
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Definition 3.5.9 (Injective Synchronised Stream). A channel Ri → Rj is an
injective synchronised stream channel if it is a synchronised stream chan-
nel and there exists an injective maximal functional refinement S ′ of the
relation S1

tr � (Ri → Rj):

InjectiveSyncStream(Ri → Rj)(tr) =̂
SyncStream(Ri → Rj)(tr) ∧
∃S ′�S1

tr � (Ri → Rj) ·
∀cA, cB, cB′ : Connection · cBS ′cA ∧ cB′S ′cA ⇒ cB = cB′ .

Definition 3.5.10 (Strong Synchronised Stream). A channel Ri → Rj is a
strong synchronised stream channel if the channels Ri → Rj and Rj → Ri

are synchronised stream channels and there exists a symmetric maximal
functional refinement S ′ of the relation S1

tr � {Ri, Rj}:

StrongSyncStream(Ri → Rj)(tr) =̂
SyncStream(Ri → Rj)(tr) ∧ SyncStream(Rj → Ri)(tr) ∧
∃S ′�S1

tr � {Ri, Rj} · ∀cA, cB : Connection · cBS ′cA ⇒ cAS ′cB .

3.5.4 Mutual stream channels

A strong stream channel or a strong synchronised stream channel between
two agents establishes an unpermutable stream of messages in each direction.
However, because the intruder can delay each of the streams separately, the
agents participating in the session may have different views of the overall
stream of messages that they have exchanged. For example, consider the
following trace (shown diagrammatically in Figure 3.6 and in trace form
below):

tr =̂ 〈 send.A.cA.B.m1, send.B.cB.A.m2, receive.A.cA.B.m2,
send.A.cA.B.m3, receive.B.cB.A.m1, send.B.cB.A.m4,
receive.A.cA.B.m4, receive.B.cB.A.m3 〉 .

In this trace agent A believes that the stream of messages she exchanged
with agent B was 〈m1,m2,m3,m4〉 while agent B believes that it was
〈m2,m1,m4,m3〉.

We define stronger mutual stream channels by extending the definitions
of the strong stream and strong synchronised stream properties.

Definition 3.5.11 (Mutual Stream). The channels Ri → Rj and Rj → Ri

form a mutual stream channel if the channels Ri → Rj and Rj → Ri are
strong stream channels and, between the time that an agent playing role Ri

(or Rj) sends a message and the agent playing role Rj (or Ri) receives that
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Figure 3.6: The agents A and B have different views of the overall stream
of messages they have exchanged.

message, the receiving agent cannot send messages:

MutualStream(Ri ↔ Rj)(tr) =̂
Stream(Ri → Rj)(tr) ∧ Stream(Rj → Ri)(tr) ∧
∃S ′�Str � {Ri, Rj} · ∀cA, cB : Connection ·
cBS ′cA ⇒ cAS ′cB ∧
∀A,A′ : R̂i;B,B′ : R̂j ;m : MessageApp; tr′, tr′′ : Trace ·

(cBS ′cA ∧ tr′_〈send.A.cA.B′.m〉_tr′′ 6 tr ∧
tr′′ � receive.B.cB.A′.m = 〈〉)⇒ tr′′ ↓ send.B.cB.A′ = 〈〉 ∧

(cAS ′cB ∧ tr′_〈send.B.cB.A′.m〉_tr′′ 6 tr ∧
tr′′ � receive.A.cA.B′.m = 〈〉)⇒ tr′′ ↓ send.A.cA.B′ = 〈〉 .

Definition 3.5.12 (Mutual Synchronised Stream). The channels Ri → Rj

and Rj → Ri form a mutual synchronised stream channel if the channels
Ri → Rj and Rj → Ri are strong synchronised stream channels and, be-
tween the time that an agent playing role Ri (or Rj) sends a message and
the agent playing role Rj (or Ri) receives that message, the receiving agent
cannot send messages:

SyncMutualStream(Ri ↔ Rj)(tr) =̂
SyncStream(Ri → Rj)(tr) ∧ SyncStream(Rj → Ri)(tr) ∧
∃S ′�S1

tr � {Ri, Rj} · ∀cA, cB : Connection ·
cBS ′cA ⇒ cAS ′cB ∧
∀A,A′ : R̂i;B,B′ : R̂j ;m : MessageApp; tr′, tr′′ : Trace ·

(cBS ′cA ∧ tr′_〈send.A.cA.B′.m〉_tr′′ 6 tr ∧
tr′′ � receive.B.cB.A′.m = 〈〉)⇒ tr′′ ↓ send.B.cB.A′ = 〈〉 ∧

(cAS ′cB ∧ tr′_〈send.B.cB.A′.m〉_tr′′ 6 tr ∧
tr′′ � receive.A.cA.B′.m = 〈〉)⇒ tr′′ ↓ send.A.cA.B′ = 〈〉 .
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The mutual stream properties prevent both agents from trying to send
messages at the same time; in order to send a message an agent must wait
until they have received all the messages sent by the other agent. This prop-
erty ensures that the two agents’ views of the stream of messages exchanged
in the session are the same.8 This property could be implemented by the
agents sharing sequence numbers (i.e. rather than having different sequence
numbers, as in TLS, the channel could have a single shared sequence num-
ber). This property could also be implemented by the agents passing a token
between one another: only the agent currently holding the token can send
messages.

A mutual synchronised stream channel guarantees that both agents have
the same view of the stream of messages they have exchanged, and it also
guarantees that there is at most one message in the mutual stream that
has been sent but not received. However, it allows the sending agent to
send one or more messages without waiting for a response. Our final stream
channel prevents this: it insists that the agents take turns to send and receive
messages.

Definition 3.5.13 (Alternating Stream). The channels Ri → Rj

and Rj → Ri form an alternating stream channel if the channels Ri → Rj

and Rj → Ri are strong synchronised stream channels and the agents
playing roles Ri and Rj take turns to send and receive messages:

AltStream(Ri ↔ Rj)(tr) =̂
SyncStream(Ri → Rj)(tr) ∧ SyncStream(Rj → Ri)(tr) ∧
∃S ′�S1

tr � {Ri, Rj} · ∀cA, cB : Connection·
cBS ′cA ⇒ cAS ′cB ∧
∀A,A′ : R̂i;B,B′ : R̂j ;m : MessageApp; tr′, tr′′ : Trace ·

(cBS ′cA ∧ tr′_〈send.A.cA.B′.m〉_tr′′ 6 tr ∧
tr′′ � receive.B.cB.A′.m = 〈〉)⇒ tr′′ ↓ send.B.cB.A′ = 〈〉 ∧

(cBS ′cA ∧ tr′_〈receive.B.cB.A′.m〉_tr′′ 6 tr ∧
tr′′ � send.B.cB.A′.m = 〈〉)⇒ tr′′ ↓ send.A.cA.B′ = 〈〉 ∧

(cAS ′cB ∧ tr′_〈send.B.cB.A′.m〉_tr′′ 6 tr ∧
tr′′ � receive.A.cA.B′.m = 〈〉)⇒ tr′′ ↓ send.A.cA.B′ = 〈〉 ∧

(cAS ′cB ∧ tr′_〈receive.A.cA.B′.m〉_tr′′ 6 tr ∧
tr′′ � send.A.cA.B′.m = 〈〉)⇒ tr′′ ↓ send.B.cB.A′ = 〈〉 .

An alternating stream channel could be implemented in a similar way to
the mutual stream properties by passing a token between the agents; in this
case the token has a strict alternating semantic and can be passed implicitly
with each message. This property is often enforced at the application layer
by the sorts of protocols that we study where agents only send one message
at a time, and do not send their next message until they receive a response.

8This is subject to the restriction that the intruder may have delayed or blocked the
stream, so one agent’s view of the stream may be a prefix of the other agent’s view.
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These strong stream properties share some similarities with other au-
thors’ definitions of authentication properties. A suitably authenticated al-
ternating stream channel only allows message flows that satisfy Bellare and
Rogaway’s definition of matching conversations [BR93], while the slightly
weaker mutual stream property conforms with Bird et al.’s notion of match-
ing histories [BGH+91]. The property of matching runs defined by Diffie,
Oorschott and Weiner [DOW92] corresponds with the symmetric stream
property, but the synchronised symmetric stream and the mutual and al-
ternating stream properties are stronger than matching runs. For example,
the following trace has matching runs for agents A and B, but it does not
satisfy any of these stream properties:

tr =̂ 〈send.A.cA.B.m1, send.A.cA.B.m2, send.B.cB.A.m3,
receive.A.cA.B.m3, receive.B.cB.A.m1, receive.B.cB.A.m2〉 .

The hierarchy of session channels is shown in Figure 3.7.

3.6 Conclusions

In this chapter we have presented a hierarchy of secure channel properties.
We described a system comprising a set of agents communicating over an
insecure network which is controlled by a Dolev-Yao style active intruder.
The honest agents can send and receive messages, while the intruder can
send, receive, fake and hijack messages. The intruder can use these events
to inject new messages into the network and to re-ascribe, redirect and replay
existing messages.

The intruder is constrained only by rules that prevent him from perform-
ing impossible events: he can only hijack messages that have already been
sent, and he can only send and fake messages that he knows. We defined the
set of ValidSystemTraces: the set of all possible traces that the honest agents
and the intruder can perform, and we defined a channel specification as a
predicate over ValidSystemTraces under some initial value of the intruder’s
knowledge (IIK).

We specified confidential channels that prevent the intruder from over-
hearing messages, and we described a necessary condition for a secure trans-
port protocol to establish confidential channels: the intruder must only be
able to learn messages that were sent to him, or that were sent on non-
confidential channels.

We described several dishonest events that the intruder can perform
(e.g. honest re-ascribing), and we presented security specifications that pre-
vent the intruder from performing these events. We investigated the com-
binations of these specifications and we found that several of them collapse:
they allow behaviours that simulate events that they block. We presented
five collapsing rules, and, having taken these rules into account, we described
a hierarchy of eleven confidential and authenticated channel specifications.
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We described several of these specifications in more detail, and in every
case we presented a simple protocol that satisfies the specification. We have
not proved that these protocols satisfy the specifications, however, for these
simple examples the proofs appear to be straightforward.

We also investigated channel specifications that group several messages
together into a session. We specified injective and symmetric forms of the
session property (which respectively prevent sessions from being replayed
and prevent sessions from being interleaved). We described even stronger
guarantees that secure channels can provide such as the stream property
(that messages are received in the same order that they were sent), the
synchronised stream property (that the intruder can only delay a small finite
number of messages) and the mutual stream property (that the two agents
communicating in a symmetric session have the same view of the messages
they have exchanged).
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Figure 3.7: The session and stream channel hierarchy.
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Chapter 4

Using secure channels

In Chapter 3 we defined a framework for specifying secure channel prop-
erties; we set out a hierarchy of 11 confidential and authenticated channel
properties, and a hierarchy of 13 independent session and stream properties.
In this chapter we describe several useful results about the secure channel
properties and the hierarchy.

In Section 4.1 we define a simulation relation on specifications of secure
channels. The relation is based on the traces of specifications as they are
viewed by the honest agents; it examines the results of the intruder’s be-
haviour, and ignores the differences in the way that these results can be
achieved. We use the simulation relation to define an equivalence relation.
The simulation relation generalises the implication of specifications prop-
erty that the hierarchy is based on; if one channel is above another in the
hierarchy then the lower channel simulates (allows more attacks than) the
higher channel.

In Section 4.2 we use the equivalence relation defined in Section 4.1 to
prove the equivalence of an alternative form for each of our channel spec-
ifications. Rather than blocking the intruder’s behaviour, the alternative
form of each specification describes the necessary behaviour that must pre-
cede a receive event. The alternative forms of channel specifications are
useful for proving properties of our systems, and also provide a different,
and informative, perspective on the specifications.

In Section 4.3 we show that every point in the lattice of combinations
of the building blocks is either a channel in the hierarchy, or collapses to a
unique point in the hierarchy.

In Section 4.4 we prove that some combinations of events that the in-
truder performs can safely be blocked. The set of honest traces of a channel
specification when we block these sets of events is equal to the set of honest
traces when we do not block the events. We use the propositions in this
section in Chapters 5 and 6 to simplify the proofs. In Section 4.5 we define
a sufficient condition on an application-layer security protocol for strong ses-
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sion channels to be used instead of strong stream channels. Any application-
layer protocol that satisfies this condition also enforces the mutual stream
property when strong session channels are used. We use this property again
in Chapter 6 to show that protocols can be modelled in Casper using session
channels instead of stream channels without introducing false attacks.

In Section 4.6 we discuss alternative approaches to specifying secure
channels, and several pieces of related work, and finally, in Section 4.7 we
conclude and summarise our findings.

4.1 Simulation

In order to compare the relative strengths of different channels, we need to
compare the effect they have on the intruder’s capabilities. In particular,
we want to check that when the intruder can perform a dishonest activity
in two different ways the resulting channels are equivalent. In this section
we present a simulation relation that compares channel specifications by
comparing the honest agents’ views of them. We justify this definition, and
use it to establish an equivalence relation (simulation in both directions).

Process simulation is usually defined in terms of a simulation relation
between the states of processes. However, we use the term simulation to
mean something different: we want to capture the notion that one channel
allows the same attacks as another. If specification P simulates specifica-
tion Q, then P allows every attack that Q allows; in other words, P is no
more secure than Q.

The usual preorder defined on processes over the traces model of CSP is
trace refinement; process P is refined by process Q if every behaviour of Q
is also a behaviour of P :

P vT Q =̂ traces(Q) ⊆ traces(P ) .

Trace refinement on our systems would capture too much information for
the simulation relation discussed above. For example, a channel on which
the intruder cannot perform the fake event, but can hijack and re-ascribe
his own messages should certainly simulate a nearly identical channel on
which the intruder can fake messages. However, there are traces that the
latter specification accepts that the former does not (e.g. any trace that
contains a fake event). In order to draw the correct conclusion about these
two specifications we need to look at the results of the intruder’s behaviour,
and not the way in which he performs it. The following two partial traces
have the same result: agent B receives a message from agent A that A did
not send:

tr1 =̂ 〈fake.A.B.cB.m, receive.B.cB.A.m〉 ,
tr2 =̂ 〈send.I.cI .B.m, hijack.I→A.B.cB.m, receive.B.cB.A.m〉 .
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This example shows that we cannot just compare the traces of two sys-
tems; rather, we must compare the honest agents’ views of the traces. In tr1,
and tr2 the honest agent B ’s perspective is the same: he has received a mes-
sage (m) from agent A. We are not concerned that, according to the honest
agent A, B should not have received the message, because in both systems
A’s perspective is the same: nothing happened.

This way of looking at a system shares much with Roscoe’s intensional
specifications [Ros96]: the intensional specification of a protocol only looks
at the events performed by the honest agents, and ignores those performed
by the intruder. By examining only the events performed by the honest
agents, we abstract away from the intruder’s behaviour: we only see the
effect of the events that the intruder performs. We use the honest traces
of a system in a different way to the intensional specification: we com-
pare the honest agents’ versions of events in two different systems, both
of which might allow the intruder to perform some dishonest activity, and
test whether the activity of one system is a subset of that in the other.
We believe that the intensional specification of a security protocol can be
expressed using our simulation relation; we describe how this can be done
after we introduce the relation.

Definition 4.1.1. The honest agents’ view of a trace is the restriction of
that trace to the application-layer send and receive events that the honest
agents perform:

HonestTrace(tr) =̂ tr � {| send.Honest, receive.Honest |} .

The honest agents’ view of a channel specification is their view of the traces
of that specification:

HonestTracesIIK(ChannelSpec) =̂
{HonestTrace(tr) | tr ∈ tracesIIK(ChannelSpec)} .

Definition 4.1.2 (Simulation). The channel specification ChannelSpec1

simulates ChannelSpec2 if, for all possible values of the intruder’s initial
knowledge, every trace of the second specification corresponds to a trace of
the first specification that appears the same to the honest agents:

∀IIK ⊆ Message ·
HonestTracesIIK(ChannelSpec2) ⊆ HonestTracesIIK(ChannelSpec1) .

When one specification simulates another we write:

ChannelSpec1 4 ChannelSpec2 .

The definition of simulation can also be thought of in the following way:
for all CSP processes SYSTEM1 and SYSTEM2 that satisfy ChannelSpec1

and ChannelSpec2 (respectively):

SYSTEM1 \X vT SYSTEM2 \X ,
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where:
X = Σ \ {| send.Honest, receive.Honest |} .

If Spec1 4 Spec2 we claim that the intruder can perform any attack on
the first specification that he can on the second (i.e. the first specification
is no more secure than the second). This is clearly true for those attacks
that can be detected by looking at the honest traces. If this were not the
case, then there would be a trace of the second specification that did not
have a counterpart in the first. The result is not so clear for attacks that
cannot immediately be detected by looking at the honest traces; in partic-
ular, in order to detect attacks against confidentiality we must examine the
intruder’s knowledge after traces of the specifications. We expect that if
there is a fact f that the intruder can learn under a specification (either by
performing a legitimate protocol run with another agent, or by learning a
secret), then he should be able to learn that fact in any specification that
simulates the first.

Lemma 4.1.3. If tr1 � {| send.Honest |} = tr2 � {| send.Honest |}, for traces
tr1 and tr2 of two channel specifications ChannelSpec1 and ChannelSpec2

under some sets of initial knowledge IIK1 and IIK2 such that IIK2 ⊆ IIK1,
then IntruderKnowsIIK2(tr2) ⊆ IntruderKnowsIIK1(tr1).

Proof. First we restate the definition of IntruderKnows:

IntruderKnowsIIK(tr) =̂
{m | (IIK ∪ SentToIntruder(tr) ∪ SentOnNonConfidential(tr)) ` m} .

We note that the IntruderKnows function only depends on the intruder’s
initial knowledge, and on the send events in a trace. It is clear that, given
IIK, the result of the function can only depend on tr � {| send |}, so we
must show that it only depends on the send events performed by the honest
agents.

SentToIntruder cannot depend on the send events performed by the in-
truder, as the intruder never sends messages to himself (N1). If, under some
initial knowledge IIK, tr = tr′_〈send.(I,Ri).cI .(A,Rj).m〉 for dishonest I,
honest A and a non-confidential channel Ri → Rj , then it must be that
m ∈ IntruderKnowsIIK(tr′) because the intruder can only send messages
he knows (N3), so certainly m ∈ IntruderKnowsIIK(tr) (as the function is
monotonic). So SentOnNonConfidential cannot depend on the send events
performed by the intruder. Hence, if:

tr1 � {| send.Honest |} = tr2 � {| send.Honest |} ,

then:
SentToIntruder(tr2) ∪ SentOnNonConfidential(tr2) =

SentToIntruder(tr1) ∪ SentOnNonConfidential(tr1) .
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Therefore, since IIK2 ⊆ IIK1:

IIK2 ∪ SentToIntruder(tr2) ∪ SentOnNonConfidential(tr2) ⊆
IIK1 ∪ SentToIntruder(tr1) ∪ SentOnNonConfidential(tr1) .

The result follows from the monotonicity of the ` relation.

Corollary 4.1.4. If ChannelSpec1 4 ChannelSpec2 then:

∀IIK1, IIK2 ⊆ Message · IIK2 ⊆ IIK1·
∀tr2 ∈ tracesIIK2(ChannelSpec2) · ∃tr1 ∈ tracesIIK1(ChannelSpec1) ·

HonestTrace(tr2) = HonestTrace(tr1) ∧
IntruderKnows(tr2) ⊆ IntruderKnows(tr1) .

We define our equivalence relation as simulation in both directions.

Definition 4.1.5 (Equivalence). Channel specifications ChannelSpec1 and
ChannelSpec2 are equivalent if they simulate each other:

∀IIK ⊆ Message ·
HonestTracesIIK(ChannelSpec1) = HonestTracesIIK(ChannelSpec2) .

We write ChannelSpec1
∼= ChannelSpec2.

Lemma 4.1.6. ∼= is an equivalence relation.

The intruder has exactly the same capabilities in any two equivalent
systems: he can perform the same attacks in both, and there is no fact
that he can learn in one but not in the other. We use the simulation and
equivalence relations presented in this section later when we demonstrate
alternative formulations of our channel specifications, and when we prove
results about networks of secure channels.

We claimed earlier that the intensional specification of a security protocol
can be captured by our simulation relation. The intensional specification of a
security protocol is the requirement that when two or more regular agents1

run the protocol in the presence of an active attacker, the messages are
exchanged in the order specified by the protocol, and the regular agents
agree on all of the values in all of the messages in every possible trace. This
is the requirement that:

SPEC 4 SYSTEM ,

where SYSTEM is a CSP process in which the regular agents run the pro-
tocol in the presence of the intruder, and SPEC is a CSP process that only
allows runs of the protocol according to the protocol’s design. We con-
jecture that SPEC can be modelled by requiring every pair of agents who
communicate in the protocol to do so over the top channel in our hierarchy.

1The regular agents are the honest agents who participate in the protocol directly;
trusted third parties, such as servers, are not regular.
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4.2 Alternative channel specifications

We specified our channels by blocking the dishonest events that the intruder
can perform. Specifying the channels in this way gives a simple set of defini-
tions; once the intruder’s initial powers are understood, it is easy to see the
restrictions that are created by blocking, or limiting, his use of one of the
dishonest events. However, the specifications are not particularly useful for
proving properties about systems. In this section we give alternative formu-
lations for our channel specifications; these alternatives state exactly which
events must have occurred before an honest agent can receive a message,
and are more conducive to proving properties about our networks.

Network rule (N4) states the necessary events that must have happened
before an honest agent can receive a message; we restate this condition below
(just for the channel Ri → Rj , rather than for the whole network) as it forms
the base from which we derive alternative specifications for our channels:

N4(Ri → Rj)(tr) =̂
∀B : (Honest, Rj); cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
fake.A.B.cB.m in tr ∨
∃A′ : R̂i;B′ : R̂j · hijack.A′→A.B′→B.cB.m in tr .

When an honest agent B receives message m, apparently from agent A,
then either A really sent that message to B, the intruder faked the message
or the intruder has hijacked a message and caused B to receive it from A.
In the latter case the intruder may have changed the sender’s identity, the
receiver’s identity, or both identities; he may also just have replayed the mes-
sage (i.e. changed neither of the identities). None of our basic authentication
channels prevent messages from being replayed, but the strongest channel
(C ∧NF ∧NRA ∧NR) prevents all other hijack events, so this channel sat-
isfies a stronger form of N4 in which the only possibility is that A really did
send the message to B:

StrongAuth(Ri → Rj)(tr) =̂
∀B : (Honest, Rj); cB : Connection;A : (Agent, Ri);m : MessageApp ·

receive.B.cB.A.m in tr ⇒ ∃cA : Connection · send.A.cA.B.m in tr .

In this case, it was obvious how to form the alternative specification for
the channel: none of the dishonest events is allowed (except a replay), so
none of them could have been the cause of the receive event. We note that
this alternative form of the specification does not prevent the intruder from
performing dishonest events on the channel; however, any dishonest event
that he does perform cannot cause an honest agent to receive a message
that they would not otherwise have received (as there must also be a send
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event), but it does allow the intruder to replay a message so that an honest
agent receives it again, or in a different connection. We show that these
restrictions are equivalent (with respect to ∼=) below.

The alternative specification for any combination of the channel primi-
tives is formed as below:

• The alternative form of no-faking (NF ) is formed by removing the
fake.A.cA.B.m possibility from N4; if fake events are not allowed then
there must have been some other event that caused the receive event
to happen;

• The alternative form of no-re-ascribing (NRA) must not al-
low message re-ascribing: if the receive event was caused by
hijack.A′→A.cA.B

′→B.cB.m then A = A′;

• The alternative form of no-honest-re-ascribing (NRA−) must restrict
the possibilities for message re-ascribing: if the receive event was
caused by hijack.A′→A.B′→B.cB.m then A = A′ or A must be dis-
honest;

• The alternative form of no-redirecting (NR) must not al-
low message redirection: if the receive event was caused by
hijack.A′ →A.B′→B.cB.m then B′ = B;

• The alternative form of no-honest-redirecting (NR−) must restrict the
possibilities for messages redirection: if the receive event was caused
by hijack.A′→A.B′→B.cB.m then B′ = B or B′ must be dishonest.

We give the alternative forms for each of our channels (rather than just
specifying the alternative form of a specification as the conjunction of the
alternative forms of the primitives that make up the specification), because
the alternative forms of the primitives (as described above) do not conjoin
in the way that we require them to (we discuss this, and other possible
solutions to the problem in Section 4.6). The alternative form of each of the
specifications in our hierarchy is given in Appendix A.

One can prove that each of the alternative forms is equivalent to the
corresponding original specification. We demonstrate the proof technique
by showing the equivalence of the following channel specification:

(NF ∧NRA−)(Ri → Rj)(tr) =̂
tr ↓ {| fake.R̂i.R̂j ,

hijack.A→A′.R̂j→R̂j | A,A′ : R̂i ·A 6= A′ ∧Honest(A′) |} = 〈〉 ,
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and its alternative form:

SenderAuth(Ri → Rj)(tr) =̂
∀B : (Honest, Rj); cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
∃A′ : R̂i;B′ : R̂j · hijack.A′→A.B′→B.cB.m in tr ∧

Dishonest(A) ∨A = A′ .

Theorem 4.2.1. The following specifications are equivalent:

ChannelSpec1 = ChannelSpec ∧ SenderAuth(Ri → Rj)
ChannelSpec2 = ChannelSpec ∧ (NF ∧NRA−)(Ri → Rj)

where ChannelSpec is any channel specification.

Proof. First, we consider an honest trace of the second specification, and
show that it is also an honest trace of the first specification (in order to
establish ChannelSpec1 4 ChannelSpec2). Throughout this proof we assume
that the intruder’s initial knowledge is fixed (and hence we omit it from
the mathematics). Let tr2 ∈ HonestTraces(ChannelSpec2), and consider a
trace tr of that system that looks like tr2 to the honest agents, i.e.:

tr ∈ traces(ChannelSpec2) ∧HonestTrace(tr) = tr2 .

As both N4 and NF∧NRA− are satisfied on Ri → Rj by the second system,
they both hold for this trace:

N4(Ri → Rj)(tr) ∧ (NF ∧NRA−)(Ri → Rj)(tr) .

It is clear that SenderAuth(Ri → Rj)(tr) since:

(N4 ∧NF ∧NRA−)⇒ SenderAuth ,

and so because ChannelSpec1 and ChannelSpec2 imply identical constraints
on all the other channels, tr must also be accepted by the first specification.
Hence tr2 = HonestTrace(tr) ∈ HonestTraces(ChannelSpec1). Therefore:

HonestTraces(ChannelSpec2) ⊆ HonestTraces(ChannelSpec1) ,

and so ChannelSpec1 4 ChannelSpec2.
Conversely, we consider an honest trace of the first specifica-

tion, and show that it is also an honest trace of the second spec-
ification (in order to prove that ChannelSpec2 4 ChannelSpec1). Let
tr1 ∈ HonestTraces(ChannelSpec1), and consider a trace tr of that speci-
fication that looks like tr1 to the honest agents:

tr ∈ traces(ChannelSpec1) ∧HonestTrace(tr) = tr1 .
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If tr ∈ traces(ChannelSpec2) then the second specification accepts a trace
that looks like tr1 to the honest agents, so the result is immediate. Sup-
pose that this is not the case: it must be because of events on the chan-
nelRi → Rj that ChannelSpec2 does not accept tr, because the specifications
satisfy identical constraints on all the other channels. Further, since the only
channel specification that ChannelSpec2 includes that ChannelSpec1 does not
is (NF ∧NRA−)(Ri → Rj), it must be that ¬(NF ∧NRA−)(Ri → Rj)(tr).

Consider the trace formed by removing all of the fake events and honest-
re-ascribing hijack events on the channel Ri → Rj from the trace tr:

t̄r =̂ tr � Σ \ {| fake.R̂i.R̂j ,

hijack.A→A′.R̂j→R̂j | A,A′ : R̂i ·A 6= A′ ∧Honest(A′) |} .

We claim that t̄r is a trace of the second specification.
By removing events from tr we might have affected whether N4 holds on

the channel Ri → Rj for the trace t̄r; if a receive.B.cB.A.m event occurred in
tr because of a previous fake.A.B.cB.m or hijack.A′→A.B′→B.cB.m event,
then this receive event may now be unfounded. We show that this cannot
be the case. Suppose that there are traces tr′ and tr′′ such that:

tr′_〈fake.A.B.cB.m〉_tr′′_〈receive.B.cB.A.m〉 6 tr ,

or:

tr′_〈hijack.A′→A.B′→B.cB.m〉_tr′′_〈receive.B.cB.A.m〉 6 tr ,

where A 6= A′ and A is honest. Since SenderAuth(Ri → Rj)(tr), one of the
following events must occur in tr′_tr′′:

• send.A.cA.B.m (for some connection identifier cA);

• hijack.A′→A.B′→B.cB.m (for some agents A′ and B′ such that
A = A′ or A′ is dishonest).

This argument holds for every receive event on the channel Ri → Rj in t̄r,
and so it follows that N4(Ri → Rj) is satisfied by t̄r. Because ChannelSpec1

and ChannelSpec2 satisfy identical constraints on all the channels except
Ri → Rj , and we have ensured that NF(Ri → Rj) ∧NRA−(Ri → Rj)(t̄r),
t̄r must be accepted by the second specification.

Since we have only removed dishonest events from tr, it is clear
that HonestTrace(t̄r) = tr1. Hence tr1 ∈ HonestTraces(ChannelSpec2), and
therefore:

HonestTraces(ChannelSpec1) ⊆ HonestTraces(ChannelSpec2),

so ChannelSpec2 4 ChannelSpec1, and ChannelSpec1
∼= ChannelSpec2.
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In the second half of the proof of Theorem 4.2.1 we showed that we can
remove the dishonest events from a trace of a specification that satisfies the
SenderAuth property while maintaining the trace’s appearance to the honest
agents. For every dishonest event we removed there was already a send event,
or a different dishonest event in the trace that had the same effect. In fact,
it was this other event that caused the receive event, and not the event that
we removed. The alternative forms of the channel specifications allow the
intruder to generate events that have no discernible effect.

This could be seen as a weakness of the specifications, but we can think
of the concrete realisation of the redundant dishonest events in two ways:

1. The intruder gets a message from the network, and puts it back intact;

2. The intruder cannot generate a correctly formatted put event, so the
message is rejected by the recipient’s protocol agent.

The events do not contribute anything new to the trace in question, so it is
safe to remove them.

We assume that the specifications we consider allow all traces that satisfy
the conditions we impose on the channels. Of course, the high-level traces of
the honest agents’ events might be constrained further by the application-
layer protocols they are running, but the results still hold in the obvious
way.

We do not show any further proofs for the equivalence of channel speci-
fications and their alternative forms as they are similar to the proof shown
above. In every case the alternative specification is implied by N4 and the
original specification, so the first simulation is straightforward. Proving the
other simulation is always done in the same way: we consider an honest
trace of the first specification, and consider a trace that looks like that hon-
est trace. We show that we can remove any dishonest events from that trace
that preclude it from satisfying the second specification, without preventing
it from satisfying the network rules, and hence show that the honest trace
we originally considered is also an honest trace of the second specification.

In the statement of Theorem 4.2.1 we assume that all the channels (other
than Ri → Rj) in the two systems satisfy identical conditions. Once we have
shown the equivalence of the conditions applied to Ri → Rj , we can consider
a third specification that differs on a different channel, and prove that that
specification is equivalent to the second one. By chaining the proofs in this
way we can convert as many channel specifications to their alternative forms
as we need to.

4.3 Uniqueness of collapse

The secure channels hierarchy is built from four primitives: confidentiality,
no-faking, no-re-ascribing and no-redirecting. There are thirty-six different
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ways of combining these primitives; these combinations form a lattice. In
this section we prove that every point in the lattice is either a channel
specification in the channel hierarchy or it collapses (using the collapsing
rules Collapse1–Collapse5) to a unique point in the hierarchy.

We describe a point in the lattice by listing each of its components in
the order (C,NF,NRA,NR); e.g. the point (C,⊥,NRA,NR−) is the channel
C ∧NRA ∧NR−. In Chapter 3 we saw that several of the points in the
lattice collapse: they allow behaviour that simulates one of the properties
that they block. The lattice collapses to the eleven point hierarchy described
in Chapter 3.

Definition 4.3.1. Points in the lattice are compared component-wise:

(c1,nf1,nra1,nr1) 6 (c2,nf2,nra2,nr2)⇔
c1 6 c2 ∧ nf1 6 nf2 ∧ nra1 6 nra2 ∧ nr1 6 nr2 ,

where ⊥< C, ⊥< NF, ⊥< NRA− < NRA, and ⊥< NR− < NR.

The collapsing cases set out in Chapter 3 are described by five collapsing
rules. These collapsing cases can be rewritten as pattern matching rules:

Collapse1 =̂ (⊥, ⊥ , x , y ) ↓ (⊥, ⊥ , ⊥ , ⊥ ) ,
Collapse2 =̂ (x, NF, ⊥ , y ) ↓ (x, ⊥ , ⊥ , y ) ,
Collapse3 =̂ (⊥, NF, NRA, x ) ↓ (⊥, NF, NRA−, x ) ,
Collapse4 =̂ (C, x , y , ⊥ ) ↓ (⊥, x , y , ⊥ ) ,
Collapse5 =̂ (C, ⊥ , x , NR) ↓ (C, ⊥ , x , NR−) .

For example, rule Collapse4 matches any confidential point that allows redi-
recting; any points in the lattice that match this pattern are collapsed to a
non-confidential point with the other components remaining unchanged.

Definition 4.3.2. For any point (c,nf,nra,nr) in the full lattice, we define
↓ (c,nf,nra,nr) to be the collapsed form of the point. This is the point we
reach by continually applying the collapsing rules until we reach a point that
cannot be collapsed further.

Proposition 4.3.3. The collapsed form of every point in the full lattice is
unique and well-defined.

Proof. With the exception of Collapse2 and Collapse4, the patterns for the
five rules above are disjoint. The point (C,NF,⊥,⊥) matches the patterns
of both Collapse2 and Collapse4, so we examine what happens when we
apply Collapse2 first, and when we apply Collapse4 first:2

(C,NF,⊥,⊥) ↓2 (C,⊥,⊥,⊥) ↓4 (⊥,⊥,⊥,⊥) ,
(C,NF,⊥,⊥) ↓4 (⊥,NF,⊥,⊥) ↓2 (⊥,⊥,⊥,⊥) .

2We use ↓i as shorthand for applying collapsing rule Collapsei.
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The order in which Collapse2 and Collapse4 are applied makes no difference
to the resultant collapsed form; in every other case there is at most one rule
that can be applied (since the patterns for the rules are disjoint). Therefore
the sequence of collapsing rules that can be applied to any given point is
unique and well-defined, hence ↓ (c,nf,nra,nr) is unique and well-defined
for any point in the lattice.

We note that ↓ is monotonic with respect to the order on the lattice (6).

Lemma 4.3.4. For any point (c,nf,nra,nr) in the lattice,
↓ (c,nf,nra,nr) = (c′,nf ′,nra′,nr′) is the strongest channel such that:

(c′,nf ′,nra′,nr′) 6 (c,nf,nra,nr) .

Proof. The proof is a simple case analysis.

Proposition 4.3.5. For any two channels in the hierarchy
ChannelSpec1 = (c1,nf1,nra1,nr1) and ChannelSpec2 = (c2,nf2,nra2,nr2):

ChannelSpec1 4 ChannelSpec2 ⇔ (c1,nf1,nra1,nr1) 6 (c2,nf2,nra2,nr2) .

4.4 Safely blockable (simulating) activity

In this section we prove that there are some events, and some combinations
of events, that the intruder can perform that we can safely block. These
combinations of events have the same effect as other events (they simulate
them), so we can prevent the intruder from performing these events without
losing honest traces. We use the results in this section to simplify the proofs
in Chapters 5 and 6.

The intruder can hijack messages to change the identity of the mes-
sage sender. In Chapter 3 we defined a rule (N2) that says that before
the intruder can perform a hijack.A→A′.B→B′.cB′ .m event there must be
a send.A.cA.B.m event earlier in the trace. In the formulation of N2 we
do not require the original message sender A to be honest; in other words,
the intruder can send a message himself, and then hijack it to change the
sender’s identity. This behaviour simulates a fake event (both combinations
of events cause the honest agent B′ to receive a message from A′ that A′

did not send).

Proposition 4.4.1. We can safely block the intruder from hijacking his
own messages; i.e. for any channel specification ChannelSpec comprised of
properties from the hierarchy:

ChannelSpec ∼= ChannelSpec ∧ tr � {| hijack.Dishonest |} = 〈〉 .

84



Proof. The proof of this proposition relies on the fact that the blocked events
are equivalent to (i.e. have the same effect as) fake events. It is clear that
the simulation relation holds in one direction: if

ChannelSpec(tr) ∧ tr � {| hijack.Dishonest |} = 〈〉 ,

holds for a trace tr then ChannelSpec(tr) certainly holds.
In order to show the simulation relation in the other direction suppose

that ChannelSpec(tr), but tr � {| hijack.Dishonest |} 6= 〈〉. There must be
at least one hijack.A→A′.B→B′.cB′ .m event in tr where A is dishonest
and A′ is honest. Consider the trace t̄r where all such events are replaced
by fake.A′.B′.cB′ .m events.

We argue that t̄r is still a valid system trace. It is clear that N1, N2,
N4, A1 and A2 still hold for t̄r. It is straightforward to show that N3 holds
for t̄r: suppose that there exists some prefix of t̄r such that:

tr′_〈fake.A′.B′.cB′ .m〉 6 t̄r ,

where this is one of the new fake events, and A′ is honest. Since this fake
event replaced a hijack.A→A′.B→B′.cB′ .m event there must, by N2, be
a send.A.cA.B.m event in tr′. Since A is dishonest this implies that:

m ∈ IntruderKnowsIIK(tr′) ,

so the new fake event is well-founded, and N3(t̄r) holds.
We now argue by contradiction that ChannelSpec(t̄r) still holds. Suppose

that this is not the case: one of the new fake events must contradict one
of the channel specifications (from the hierarchy) in ChannelSpec. However,
every channel property that specifies no faking also specifies, at least, no-
honest-re-ascribing, so ChannelSpec(tr) does not hold. This contradicts our
initial assumption, and therefore ChannelSpec(t̄r) holds.

Since HonestTrace(tr) = HonestTrace(t̄r) we conclude that the simula-
tion relation:

ChannelSpec ∧ tr � {| hijack.Dishonest |} = 〈〉 4 ChannelSpec

holds, and hence the two specifications are equivalent.

The intruder can hijack a message to re-ascribe it to a dishonest agent
and to redirect it from a dishonest agent to an honest agent. However, if
the intruder redirects a message that was sent to him and re-ascribes it to
one of his own identities then he could easily send the message, rather than
performing a hijack event.

Proposition 4.4.2. We can safely block the intruder from re-ascribing mes-
sages to dishonest agents at the same time as redirecting messages from
dishonest agents; i.e. for any channel specification ChannelSpec:

ChannelSpec ∼= ChannelSpec ∧
tr � {| hijack.Honest→Dishonest.Dishonest→Honest |} = 〈〉 .
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Proof. As in the previous proof, the first simulation is easy to show because
the right hand side of the equivalence implies the left hand side. To show
the other simulation, and hence equivalence, suppose that for some trace tr
such that ChannelSpec(tr) holds there are honest agents A and B and a
dishonest agent I such that a ‘bad’ hijack event appears in tr:3

tr′_〈hijack.A→I.I→B.cB.m〉 6 tr .

Because the intruder can perform this hijack event, there must, by N2,
be a send.A.cA.I.m event earlier in the trace (i.e. in tr′); it follows
that m ∈ IntruderKnowsIIK(tr′). We consider the trace t̄r where all such
hijack events are replaced by appropriate send events (e.g. send.I.cI .B.m
events). Each of these new send events is well-founded (i.e. N3 still holds)
because the intruder knows each message; the other network rules are unaf-
fected by this change.

ChannelSpec is also unaffected by the change as none of the channel spec-
ifications restrict the intruder from sending messages with his own identity.
Hence ChannelSpec(t̄r) holds, HonestTrace(tr) = HonestTrace(t̄r) and the
simulation relation:

ChannelSpec ∧
tr � {| hijack.Honest→Dishonest.Dishonest→Honest |} = 〈〉 4

ChannelSpec

holds. The equivalence relation therefore holds.

On non-confidential channels the intruder can hijack messages to re-
ascribe them to himself. However, because these channels are not confiden-
tial, the intruder learns all messages that are sent on them. Rather than
re-ascribing messages to himself, the intruder can learn messages and send
them with his own identity.

Proposition 4.4.3. We can safely block the intruder from re-ascribing mes-
sages to dishonest agents on non-confidential channels; i.e. for any channel
specification ChannelSpec such that the channel Ri → Rj is not confidential
(i.e. C(Ri → Rj) does not hold):

ChannelSpec ∼= ChannelSpec ∧
tr � {| hijack.(Honest, Ri)→(Dishonest, Ri).R̂j→R̂j |} = 〈〉 .

Proof. As in the previous proofs, the first simulation is easy to show (the
right hand side of the equivalence implies the left hand side). To show
the other simulation, and hence equivalence, suppose that for some trace tr
such that ChannelSpec(tr) holds there is an honest agent A : R̂i, a dishonest

3There could be two dishonest agents I1 and I2, but the proof is the same with a single
dishonest identity.
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agent I : R̂i and agents B,B′ : R̂j such that a ‘bad’ hijack event appears
in tr:

tr′_〈hijack.A→I.B→B′.cB.m〉 6 tr .

The channel Ri → Rj is not confidential, so m ∈ IntruderKnows(tr′) (be-
cause there must be a send event in tr′ for the intruder to be able to perform
the hijack event). As before, we consider the trace t̄r where all such hijack
events are replaced by appropriate send events (e.g. send.I.cI .B′.m events).
Each of these new send events is well-founded (i.e. N3 still holds) because
the intruder knows each message; the other network rules are unaffected by
this change.

ChannelSpec is also unaffected by the change as none of the channel spec-
ifications restrict the intruder from sending messages with his own identity.
Hence ChannelSpec(t̄r) holds, HonestTrace(tr) = HonestTrace(t̄r) and the
simulation relation:

ChannelSpec ∧
tr � {| hijack.(Honest, Ri)→(Dishonest, Ri).R̂j→R̂j |} = 〈〉 4

ChannelSpec

holds. The equivalence relation therefore holds.

4.5 Using session channels instead of streams

For many of the sorts of protocols that we are interested in studying and
developing it is safe to use a session channel instead of a stream channel for
communication between pairs of agents. In this section we define a sufficient
condition on an application-layer protocol for session channels to be used in
place of stream channels without introducing attacks against the protocol.

We consider application-layer security protocols of the following form.

Definition 4.5.1. An application-layer security protocol P is described by
a triple (R,M, T ):

• R is the set of roles in the protocol (Ri, Rj , etc.);

• M is the set of messages in the protocol; each message is a pair of
the form (Msgl,M) where l ∈ N is the message number (or label),
and M ⊆ MessageApp is the message text;

• T is the ordered sequence of message transmissions in the protocol;
each message transmission is a triple (Rs, Rr,Msgl) where Rs is the
role of the message sender, Rr is the role of the message receiver and
l is the message number.
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Definition 4.5.2 (No speaking out of turn). An application-layer security
protocol satisfies no speaking out of turn if, between every pair of agents who
communicate in the protocol, there is never (at any stage in the protocol)
any doubt over whose turn it is to send the next message.

Proposition 4.5.3. Any application-layer security protocol that can be ex-
pressed in the notation of Definition 4.5.1 satisfies the no speaking out of
turn property.

This proposition is due to the fact that the message transmissions in T
have a well-defined order, so Msgi precedes Msgj if and only if i 6 j. If we
weaken Definition 4.5.1 so that T only has a partial order, or so that T
is a set of allowable sequences of message, the protocols do not necessarily
satisfy no speaking out of turn.

We now define a property that ensures that application-protocol mes-
sages within a session between two agents cannot be mixed up or re-ordered.

Definition 4.5.4 (Disjoint messages). An application-layer proto-
col P = (R,M, T ) has disjoint messages if the sets of possible values of
encrypted components of different messages are disjoint:4

∀(Msgi,Mi), (Msgj ,Mj) ∈M ·
∀mi ∈ EncryptedComponents(Mi);mj ∈ EncryptedComponents(Mj) ·
mi = mj ⇒ i = j .

This property may be gained by using a technique such as disjoint encryp-
tion [GF00b] for different messages, or by ensuring that the types of all
messages are distinct.

Proposition 4.5.5. For any application-layer security protocol with disjoint
messages that satisfies the no speaking out of turn property, the effect of a
mutual stream channel is enforced by the application-layer protocol when new
symmetric session channels are used for communication between every pair
of agents in every run of the protocol.

It is clear that an injective session channel is sufficient to enforce the
stream property since the messages of the protocol can only be delivered in
the order specified by the protocol description, and each message can only
be interpreted as the message it is intended to be (i.e. an early message could
not be replayed as a later one). Each agent does not send his next message
until he has received all the messages he expects to receive, and because the
message transmissions have a total order, the intruder cannot re-arrange the

4The encrypted components of a message are the outermost encrypted el-
ements of the message; for example, the encrypted components of the mes-
sage A,B, {A, {nA}PK(A), h(m)}SK(B), {B,m}PK(A) are {A, {nA}PK(A), h(m)}SK(B) and
{B,m}PK(A).
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order in which messages are delivered. Further, since the session channel is
injective, the intruder cannot replay old sessions. Because a new session is
established for every new run of the protocol, the intruder cannot replay
messages from old runs of the protocol.

The argument above proves that if a strong (symmetric) session channel
is used then the strong stream property is enforced, so it remains only to
show that the mutual stream property is enforced. The mutual stream
property just says that each agent’s view of the messages exchanged in a
symmetric session matches the other agent’s view. It is clear that this is
the case for these protocols since, if it were not, one agent would have sent
and received messages in an order other than that defined by the protocol
(i.e. the order on the message transmissions in T ).

In Chapter 6 we use the no speaking out of turn and disjoint messages
properties to argue that any application-layer security protocol may be mod-
elled in Casper with session channels instead of stream channels without false
attacks being introduced. We also build Casper models that include explicit
message numbers so that protocols that do not satisfy these properties can
still be analysed.

4.6 Related work

In this section we discuss how our approach to specifying secure channels
compares with that taken by other authors.

4.6.1 Broadfoot and Lowe

In [BL03], Broadfoot and Lowe specify a form of secrecy that is slightly
different to our confidential channel (C ∧NR−). We recall their definition
below (using the notation of this thesis):

Secrecy(tr) =̂
∀B : Honest; cB : Connection; I : Dishonest; tr′ : Trace;m : Message ·
tr′_〈receive.B.cB.I.m〉 6 tr ⇒ IIK ∪ SentToIntruder(tr′) ` m.

Note that under this definition, either every channel is confidential or no
channels are confidential.

Clearly Secrecy 64 C ∧NR−; consider the trace below where A and B
are honest and I is dishonest:

tr =̂ 〈send.A.cA.B.m, hijack.A→I.B.cB.m, receive.B.cB.I.m〉 .

Secrecy(tr) does not hold for tr since B received a message from I that I
does not know, but C(Role×Role)(tr) does because the intruder can
re-ascribe a message without learning it (or needing to learn it). The
honest projection of this trace is in HonestTracesIIK(C ∧NR−) but not
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in HonestTracesIIK(Secrecy), so the simulation relation certainly does not
hold.

The difference between our definition of confidentiality and that given
in [BL03] is that we allow the intruder to change the identities of the sender
and recipient of a message. In the model in which Broadfoot and Lowe’s
results should be interpreted, the intruder does not possess this capability
(he must intercept the message, learn it, and then resend or fake it), so
the definition from [BL03] ought to be compared to, and is equivalent to,
non-re-ascribable confidential channels (i.e. C ∧NRA ∧NR−).

It is easy to see that if every channel satisfies C ∧NRA ∧NR−, then any
message an honest agent receives from a dishonest agent must have been sent
to him by that dishonest agent (the intruder does not fake with dishonest
identities and he cannot re-ascribe messages). In order for the intruder to
have sent the message, he must have known it (N3), and since there are no
non-confidential channels, IntruderKnows(tr) = IIK ∪ SentToIntruder(tr).
Hence Secrecy holds.

If we extend the definition of the Secrecy property (above) to include
the pre-conditions when an honest agent receives a message from another
honest agent, then we get the following property:

Secrecy(tr) =̂
∀B : Honest; cB : Connection;A : Agent; tr′ : Trace;m : Message ·
tr′_〈receive.B.cB.I.m〉 6 tr ⇒
∃cA : Connection · send.A.cA.B.m in tr′ ∨
IIK ∪ SentToIntruder(tr′) ` m.

Either agent A (whether honest or not) sent the message to B, or the in-
truder knew the message (in order to fake it). It is clear that every honest
trace of the property above is also an honest trace of C ∧NRA ∧NR−, since
if a send.A.cA.B.m event does not appear in tr′ then the receive event must
have been caused by a fake event in tr′ (the hijack event is not available to
the intruder). Hence we conclude that Secrecy ∼= C ∧NRA ∧NR−.

Broadfoot and Lowe also specify a single form of authenticated channel,
which is equivalent to an authenticated stream channel.

∀A,B : Agent; cB : Connection · ∃cA : Connection ·
tr ↓ receive.B.cB.A 6 tr ↓ send.A.cA.B.

Initially, we attempted to specify our channels in the form of the se-
crecy property above: by listing the events that could have caused an agent
to receive a message, and not having explicit fake and hijack events. For
example, we devised an authentication specification:

∀B : R̂j ; cB : Connection;A : R̂i; tr′ : Trace;m : Message ·
tr′_〈receive.B.cB.A〉 6 tr ⇒
∃cA : Connection;B′ : R̂j · send.A.cA.B′ in tr′ ,

90



and a channel with guaranteed intent as:

∀B : R̂j ; cB : Connection;A : R̂i; tr′ : Trace;m : Message ·
tr′_〈receive.B.cB.A〉 6 tr ⇒
∃A′ : R̂i; cA′ : Connection · send.A′.cA′ .B in tr′.

Unfortunately, these sorts of specifications are too weak, and do not
combine in the way we expect them to. We expect that on an authen-
ticated channel with guaranteed intent (i.e. both of the above proper-
ties), a receive.B.cB.A.m event in a trace should guarantee the existence
of a send.A.cA.B.m event earlier in the trace. However, a channel that sat-
isfies the conjunction of the two properties above allows the following trace:

tr =̂ 〈send.A.cA.B′.m, send.A′.cA′ .B.m, receive.B.cB.A.m〉 .

It is clear that this should not be allowed by a channel with strong authenti-
cation: the intruder has seen two agents send the same message (or perhaps
sent one of them himself) and re-ascribed one, and redirected the other.

The reason that these specifications are too weak is best illustrated by
this analogy to logic:

(p ∨ q) ∧ (p ∨ r) 6≡ p ≡ (p ∨ q ∨ r) ∧ ¬q ∧ ¬r.

The specification we want for an authenticated channel can be thought
of as p: the statement that whenever B receives a message from A then
previously A sent that message to B. The formulation of this property on
the right is what we get by initially allowing all possibilities: that A sent
the message to someone else (q), or that someone else sent the message to
B (r), and then specifying ¬q and ¬r. The formulation of this property on
the left corresponds to the conjunction of the properties above.

We note that although these properties have a similar feel to the al-
ternative specifications from Section 4.2, the alternative specifications refer
to fake and hijack events, as well as to send events, and so the problem
mentioned above does not occur.

We decided to base our specifications on banning explicit events that the
intruder performed (the fake and hijack events), however we could equally
have altered our model so that each application layer message was given a
unique identifier when sent: the message could then be uniquely identified
in the specifications, and they would combine in the correct way. However,
had we done this, we might not have discovered the rich hierarchy of secure
channel properties presented in Chapter 3.

4.6.2 Empirical channels

Creese et al. have developed the notion of empirical channels, and adapted
the traditional attacker model for analysing protocols in order to study se-
curity protocols for pervasive computing [CGH+05]. They have a network
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model comprising traditional, high-bandwidth digital communications chan-
nels, and empirical, low-bandwidth and human-oriented, channels. The em-
pirical channels are used for non-traditional forms of communication, which
often seem necessary for applications in pervasive computing, such as two
humans comparing a code printed on each of their laptop screens, or a hu-
man entering a code on a printer’s keypad.

Over such channels, they specify any combination of the following re-
strictions on the intruder:

NS No spoofing: the attacker cannot spoof messages on this channel;

NOH No over-hearing: the attacker cannot overhear messages sent on this
channel;

NB No blocking: the attacker cannot block messages on this channel.

No spoofing corresponds to our definition of no-faking, although
Creese et al. allow two different models of this channel: one that allows
redirecting, and one that does not. No over-hearing corresponds to our
definition of confidential channels. We do not have an equivalent to the
no blocking channel, because on a traditional network, where the intruder
is assumed to be in control of all message flows, we do not see how this
anti-denial-of-service property could be realised; on the empirical channels
suggested in [CGH+05] (such as a human entering a number on a keypad),
it is easier to see how this would be possible.

Recently, Roscoe and Nguyen proposed several authentication protocols
for use in environments where empirical channels are available alongside a
traditional Dolev-Yao communication medium [RN06, RN08]. These proto-
cols are designed for cases where there is no public-key infrastructure, and no
secret information to bootstrap security from, so the human-mediated em-
pirical channels are used to secure the communications over the Dolev-Yao
network.

4.6.3 Security architectures using formal methods

Boyd [Boy93] defines two different types of channel in a security architecture
consisting of users and information about who trusts whom. In Boyd’s model
a channel is a relationship between two users; a channel between two users
is established when they share knowledge of a public key or a shared secret
(e.g. a symmetric key). Thus channels are established by utilising existing
keys, or propagating new keys between the two users wishing to communi-
cate; often the propagation is over existing channels between trusted users.
Boyd considers two types of cryptographic keys:

Confidentiality Only the intended user (or set of users) in possession of
the secret key can read the message;
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Authentication Only that user (or set of users) in possession of the secret
key can write the message.

Boyd’s channels can either be symmetric (in which case both users are
sure of the other’s identity) or not (in which case one user may be unsure
of the other’s identity). On a non-symmetric confidentiality channel, the
message receiver may be unaware of the sender’s identity: this is equivalent
to a confidential channel in our model (the justification given for this is
similar to ours: if A has a public key PK(A) known to all the users in
the system, then when she receives a message encrypted with PK(A) she
does not know who it is from, but she does know it was intended for her).
On a symmetric confidentiality channel the message sender is authenticated
to the receiver: this corresponds to an authenticated confidential channel.
A non-symmetric authentication channel is redirectable, while a symmetric
authentication channel is not. Boyd’s authentication is equivalent either to
a weakly authenticated channel or a strongly authenticated channel.

New channels can be established by transferring keys between users. For
example if there is an authentication channel from A to B (written A a−→ B)
and A sends a new public key (for which she knows the secret key) on this
channel, this will establish a confidentiality channel B c−→ A. Boyd proves
that this transfer correctly establishes a confidentiality channel, and also
proves that some other simple transfers establish new channels correctly.

Boyd’s channels can be directly compared with some of our channels,
but his reasons for specifying the channels are different to ours. Boyd spec-
ifies his channels to describe security architectures in terms of the secure
channels available; the model describes when new channels may be estab-
lished, and formalises some intuitively obvious results (for example that no
secure channels can be established between users who possess no secrets); we
specify channels in order to enrich our abstract layered model for protocol
analysis.

4.6.4 A calculus for secure channel establishment

In [MS94] Maurer and Schmid present a calculus of secure channel proper-
ties that allow them to classify and compare security protocols for estab-
lishing secure channels. Their channels are characterised by their direction,
the time of availability, and, most relevantly to us, their security properties.
The authors argue that cryptographic primitives (such as symmetric key dis-
tribution and encryption) can be interpreted as transformations for channel
security properties, and so cryptographic protocols are just combinations of
such transformations.

The main result of [MS94] is to determine necessary and sufficient re-
quirements for establishing a secure channel between every pair of users in
a network in terms of the channels available in the initial setup phase, and
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the trust relations between users and trusted authorities. However, it is
interesting to compare the secure channel properties defined by Maurer and
Schmid to our secure channel properties.

A communication channel is defined as a means for transporting mes-
sages from a source to a destination; the channel from agent A to agent B
is represented by the symbol A→ B. Maurer and Schmid define two basic
security properties for a channel:

• A channel is confidential if its output is exclusively available to a spec-
ified receiver; such a channel is denoted A→•B.

• A channel is authenticated if its input is exclusively available to a
specified sender; such a channel is denoted A •→ B.

A channel that provides both confidentiality and authenticity is de-
noted A •→•B.

The attacker in [MS94] cannot hijack messages in transit. A message
sent on an authenticated channel may be redirected because the output is
not restricted to a single specified recipient, but a confidential channel can-
not be redirected: the attacker must learn the message, and then send it on
a channel to the new recipient. The confidential channel is therefore simu-
lated by C ∧NR−; the simulation also holds in the other direction because
although the intruder cannot redirect messages that were sent to him, he
can learn them and fake them.

Similarly, a confidential channel can be re-ascribed because the input
is not restricted to a single specified sender, but an authenticated channel
cannot be re-ascribed: the intruder must learn the message, and send it on
a different channel (either an unauthenticated channel, or an authenticated
channel that is restricted to a dishonest agent). The attacker cannot fake on
an authenticated channel, so an authenticated channel is therefore simulated
by NF ∧NRA−. Again, the simulation holds the other way because although
the intruder cannot re-ascribe messages to himself, he can learn them and
send them himself.

A channel that provides confidentiality and authenticity is equivalent to
our top channel: C ∧NF ∧NRA ∧NR.

Maurer and Schmid point out that symmetric (shared) key encryption
naturally provides confidentiality, and can be adapted to provide authen-
tication; if the plaintext message includes sufficient redundancy (such as a
cryptographic hash of the message) to distinguish it from a random mes-
sage then the fact that a message is encrypted under a certain key proves
that the sender knows the key, and so authenticates the message sender.
If the redundancy is removed from the plaintext message then symmetric
key encryption can provide confidentiality without authentication. On the
other hand, public-key encryption, and public-key distribution systems can

94



be used to establish channels that provide authentication and confidentiality
independently, or together.

4.6.5 Language based secure communication

In [BF08] Bugliesi and Focardi develop a calculus of secure communication
based on high-level security abstractions. Their calculus, and the abstract
security properties are designed to ease the development and analysis of
security-sensitive applications, so in many ways, their work shares the same
goals as this thesis. The formalism of [BF08] is defined in the pi calcu-
lus [Mil99], where security is based on the notion of communication over
private channels.

In the variant of the pi calculus described in [BF08], an output of mes-
sage m originating from a and intended for b is denoted by b̄〈a : m〉; the
input of that communication by b is denoted by b(a : m).5 These channel
communications correspond to our send and receive events (though these
communications do not include connection identifiers). The high-level secu-
rity properties defined by Bugliesi and Focardi are as follows:

• b̄〈− : m〉 denotes a plain output (intended for b): this is a commu-
nication that has no security guarantees. An output of this form is
equivalent to a send on the bottom channel (⊥).

• b̄〈a : m〉 denotes an authenticated output which provides the message
recipient with a guarantee of the origin of the message. As in [MS94],
the adversary cannot hijack messages in transit, and so an output
of this form is simulated by a send event on a channel that satis-
fies NF ∧NRA−.

• b̄〈− : m〉• denotes a secret output: only the intended recipient can
learn the high-level message m. Again, the adversary cannot hijack
messages in transit, so an output of this form is simulated by a send
event on a channel that satisfies C ∧NR−.

• b̄〈a : m〉• denotes a secret and authenticated output: this combines
the guarantees of the authentic and secret modes, and is equivalent to
a send event on a channel that satisfies C ∧NF ∧NRA ∧NR.

The most notable difference between our channel properties and the
security properties defined in [BF08] is that their authenticated channel
prevents messages from being replayed, whereas none of our channels prevent
message replays. The authentication property from [BF08] is designed to
capture the notion that every time you receive a message from a then a
sent that message to you; there is an injective correspondence between the

5We have altered the syntax from [BF08] slightly in order to ease the comparison with
our channel properties.
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message outputs and message inputs. The authentication property defined
in this thesis is designed to capture the notion that if, at any time, you
receive a message from a then a previously sent that message.

The formalism in [BF08] is split into two layers; the high-level com-
munications (described above) are run on top of a low-level network, over
which the adversary is given full control. At the network level the adver-
sary can intercept communications, and forward or replay messages that
he has intercepted. The adversary can forward all messages, but he can
only replay unauthenticated communications. The network-level primitives
include the network-level view of the message payload for every communica-
tion. On confidential channels the intruder can only learn the network-level
view of the message, while on non-confidential channels the intruder learns
the network-level view of the message as well as the high-level message pay-
load itself.

Bugliesi and Focardi give a compositional formulation of the semantics
of their networks which is based on labelled transitions. They then define
several bisimilarity and observational equivalence relations; these are used to
prove secrecy and authentication properties (e.g. secret outputs guarantee
the privacy of the payload). Finally, the authors claim that their high-
level security primitives can be implemented by time-variant signatures (for
authentication) and randomised public-key encryption (for confidentiality).

4.6.6 LTL model checking for security protocols

In [ACC07] Armando et al. propose a general model for security protocols
that uses LTL to specify complex security properties of a more secure system
than the standard Dolev-Yao model. Their model is based on the formal-
ism of [CDL+99], and uses set-rewriting to specify the transition system
associated with the execution on several concurrent runs of the protocol.

The honest agents and the intruder communicate over channels; the
channels are usually named according to the identities of the agents at ei-
ther end, but in the standard model any agent can send or receive a mes-
sage on any channel. The fact sent(rs, a, b,m, c) indicates that agent rs,
pretending to be agent a, has sent message m on channel c to agent b. The
fact rcvd(b, a,m, c) indicates that message m (supposedly sent by agent a)
has been received on the channel c by agent b. The set-rewriting rules for
the honest agents include rules such as the following one (which models the
reception of a message by an honest agent):

sent(rs, a, b,m, c)
receive(b,a,rs,m,c)
−−−−−−−−−−−−−→ rcvd(b, a,m, c).ak(b,m) .

After receiving message m, agent b knows it (ak(b,m)).
The intruder is given three basic capabilities (as well as the capability

to send and receive messages): he can fake messages that he knows; inter-
cept (block) messages sent by honest agents on any channel and learn the
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messages; and overhear messages sent by honest agents on any channel and
learn the messages.

As in many other models, on the standard network the intruder cannot
hijack messages in transit, he must overhear (or intercept) them, and then
fake a new message. Armando et al. specify three channel properties.

A channel c is confidential to a set of agents AS if its output is exclusive
to agents in that set: G∀(rcvd(b, a,m, c)⇒ b ∈ AS). On the confidential
channel (c,AS), only agents in the set AS can learn messages sent on the
channel, so a confidential channel prevents the intruder from intercepting
and overhearing messages, though he can still send (or fake) messages on
such a channel. A confidential channel is certainly simulated by C ∧NR−,
but it actually provides something much stronger: the intruder can only
replay messages on a channel if he can overhear or intercept them, so this
channel prevents replaying.

Because the channel is not directional, this property also provides a
symmetric session property if the set AS is a pair of agents. For example,
the confidential channel (c, {a, b}) is a symmetric session channel between a
and b, and satisfies C ∧NR− in both directions. Armando et al. also specify
a weakly confidential channel: this is the same as the confidential channel
property except that the intruder can store previously sent messages and
replay them, even though he cannot learn them.

The third channel specified in [ACC07] is a resilient channel; a channel
is resilient if it is normally operational but an attacker can delay messages
by an arbitrary, but finite, amount of time. We do not have a property like
this for the same reason that we do not have a no-blocking property: on the
sorts of networks that we are interested in, we do not see how the property
could be implemented.

Although they only specify three properties in [ACC07], the formalism is
suitably flexible to allow many more properties to be specified. In [ACC+08]
Armando et al. specify another confidentiality property, and two authenti-
cation properties designed specifically for capturing the services provided
by SSL/TLS.

A channel provides weak confidentiality if its output is exclusively avail-
able to a single, unknown receiver; if a state contains a rcvd(b, a,m, c) fact
then in all successor states the rcvd facts on channel c must have a as the
recipient. This captures a weaker notion of confidentiality than C ∧NR−:
the intruder can learn the messages on the channel, but only if he receives
all messages on the channel. He cannot overhear messages that are being
received by an honest agent.

A channel provides authentication if its input is exclusively available to
a single agent who is sending messages using his own identity, and a channel
provides weak authentication if its input is exclusively available to a single
agent who many not be sending messages using his own identity. These
three channels all provide the session property, but they are not symmetric
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(as the channels in [ACC07] are). A unilateral TLS connection is modelled
by a pair of channels, one of which is weakly confidential, and the other
is weakly authentic, and the agent sending messages in one channel is the
agent receiving messages in the other.

4.6.7 Verifying second-level security protocols

Bella et al. have extended the inductive approach to verifying security pro-
tocols [Pau98] to verify second-level security protocols: security protocols
that rely on an underlying security protocol to achieve their goals [BLP03].
Bella et al. extend the inductive approach by modelling the properties of
the underlying security protocol abstractly, and then performing a standard
inductive analysis on the second-level security protocol. In this respect their
approach is similar to ours; however, we specify a great many more possible
properties for the underlying secure transport protocol.

The inductive approach models security protocols as a set of rules
by which honest agents may extend the trace of events. These rules
involve events such as Says A B X (agent A sends the message X to
agent B); Gets B X (agent B receives the message X from the network);
and Notes A X (agent A stores the message X). Under the standard model
the Dolev-Yao intruder overhears all Says events, and can cause agents to
perform Gets events by faking Says events.

Bella et al. specify three properties that the underlying security protocol
can provide to the second-level security protocol:

Authentication In the original approach message reception was modelled
with a Says A′ B X event, but the message recipient could not use
the value of the sender’s identity A′ because it could not verify it. In
their new model of authenticated channels the sender’s identity A of
a Says A B X event cannot be altered once the event appears in a
trace, and so the message recipient can use, and rely on, the sender’s
identity. The intruder can still send messages with his own identity,
but he cannot fake messages, nor can he re-ascribe them.

Confidentiality The intruder cannot overhear messages sent on confiden-
tial channels. Bella et al. use the Notes B {|A,B,X|} event to model
the confidential transmission (from A to B) of the message X. We
note that because the intruder cannot generate Notes events, the con-
fidential channel is also authenticated. Because the honest agents can
respond to prior events in the trace as many times as they wish, the
model of this channel allows messages to be replayed.

Guaranteed delivery A channel that guarantees message delivery is mod-
elled by the message sender causing the intended recipient to the re-
ceive the message. We do not specify a channel property like this, be-
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cause we do not think that it is reasonable to expect a secure transport-
layer protocol running on a traditional network to achieve it. Bella et
al. suggest that this property can be achieved by the message sender
repeatedly sending the message until he receives an authenticated ac-
knowledgement; we claim that this property is provided by a symmet-
ric stream channel when the message sender receives a response from
the message recipient, and on the synchronised stream channels when
the message sender can send his second message.

4.6.8 Key-exchange protocols and secure channels

Canetti and Krawczyk analyse the use of key-exchange protocols as mecha-
nisms for establishing secret keys in order to build secure channels [CK01].
Their work is set in the formalism of the unauthenticated-links model (UM)
and the authenticated-links model (AM) of [BCK98].

In the UM, the adversary is assumed to be in full control of the network:
he can generate, inject and modify messages, and he can decide whether or
not to deliver messages. In the AM the adversary can only deliver messages
faithfully (i.e. he cannot fake, re-ascribe or redirect messages); he can, how-
ever, re-order messages, or fail to deliver them. The AM corresponds to a
network in which all channels satisfy NF ∧NRA ∧NR.

The authors formalise the notion of session-key security (SK-security);
a key-exchange protocol is said to be SK-secure if:

1. Whenever two parties complete matching sessions of the protocol they
output the same key;

2. The probability that the adversary can correctly distinguish a ran-
dom key from the session-key established in any test session is not
significantly greater than a half.

The authors prove that an SK-secure protocol in the AM can be trans-
formed into an SK-secure protocol in the UM by applying a suitable per-
fectly authenticated message-transmission protocol to every message flow in
the original protocol.

Canetti and Krawczyk prove that an SK-secure key-exchange protocol
can be combined with a MAC function that is secure against chosen-message
attacks and a symmetric encryption function that is secure against chosen-
plaintext attacks to produce a secure channel protocol that is both secret
and authenticated.

They define secrecy as an indistinguishability property: in any session
the adversary can choose two messages, one of which an uncompromised
party will send over the secure channel; the adversary must not have odds
significantly greater than fifty-fifty of guessing which message was sent.

The authentication property is that of the AM: messages must be deliv-
ered faithfully. Further, messages cannot be replayed (though they can be
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re-ordered), and sessions are established symmetrically. Such a secure chan-
nel fits in between a symmetric session and symmetric stream channel that
satisfies C ∧NF ∧NRA ∧NR (though of course the notion of confidentiality
in [CK01] is different to our (formal) notion).

In [CK02] the authors re-cast their definitions in the Universally Com-
posable framework to show that they can be composed with an arbitrary
application protocol, and run concurrently with other protocols.

4.7 Conclusions

In this chapter we formalised our notion of simulation of channel specifi-
cations in terms of the honest agents’ views of the valid system traces. By
hiding the intruder’s events, and only examining the events that he can cause
the honest agents to perform, we make the intruder’s activity abstract; this
allows us to compare channel specifications, even when the model of the
intruder is different. Our simulation relation can be expressed in terms of
CSP process simulation after hiding the events performed by the intruder.
We used our simulation relation to define an equivalence relation (mutual
simulation).

We used this equivalence relation to prove the equivalence of alterna-
tive forms of our channel specifications. Rather than blocking the intruder’s
events, these alternative forms state the possible events that could precede
a receive event, and require that one of them does. The alternative specifi-
cations are more conducive to proving properties about the secure channel
properties. We illustrated the proof technique for showing the equivalence
of a channel property expressed in terms of blocking the intruder’s events
and its alternative form.

We showed that every possible combination of the channel primitives (the
specifications that block the individual intruder events) is either a point in
the channel hierarchy, or collapses to a unique point in the hierarchy. We
also showed that we could safely block some combinations of the intruder’s
events (e.g. hijacking messages sent by himself) because they simulate other
events; by blocking these combinations of events we reduce the set of valid
system traces and so we can simplify proofs about channel specifications.

We specified a sufficient condition for safely substituting session channels
for stream channels in an implementation of an application-layer protocol.
For any application-layer protocol that satisfies no speaking out of turn and
disjoint messages, session channels can be used instead of stream channels
(that satisfy the same authentication and confidentiality properties) without
introducing attacks to that protocol.

Finally, we compared our channel properties and our framework for spec-
ifying channel properties to the approach taken by other researchers, and to
the channel properties that they have devised.

100



Chapter 5

Chaining secure channels

In Chapters 3 and 4 we exclusively described channels that secure point-to-
point connections; in this chapter we examine the possibilities for chaining
secure channels.

We consider chaining channels in two different ways: first, in Section 5.1,
through a set of dedicated intermediaries (simple proxies), and then, in Sec-
tion 5.2, through a (much smaller) set of trustworthy (multiplexing) proxies.
We present a surprising theorem that shows how, under some circumstances,
two channels can be chained to produce a stronger channel. We also show
that the channel established through a proxy is always simulated by (i.e. is
at least as strong as) the greatest lower bound of the channels established
to and from the proxy. In Section 5.3 we discuss some similar results about
chaining secure channels discovered by other researchers. Finally, in Sec-
tion 5.4 we conclude and summarise our findings.

The results presented in this section are particularly relevant to real-
world use of secure channels. Many organisations arrange their computers
in a trusted intranet, and only allow external access through a proxy. For
example:

• Many grid architectures (such as Globus [FK97]) only allow communi-
cation to the servers that the grid is comprised of through a gatekeeper.
The role of the gatekeeper is to scan the incoming (and outgoing) net-
work traffic, and to block messages that do not match the set of rules
that it holds;

• Firewalls may scan all network traffic that passes through them, and
automatically block messages that contain viruses. If computers on
the internal network can communicate securely with computers on the
external network, the firewall can no longer perform its task. The fire-
wall must establish secure connections with external agents on behalf
of the internal agents if it is still to scan messages for viruses.

In these scenarios the gatekeeper and firewall are acting as proxies for the
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trusted servers.
It is not obvious that a secure connection is established between two

agents by establishing two secure connections through a trusted proxy. It
is also not obvious which security properties, if any, the resultant channel
provides.

Because we require proxies to establish application-layer connections be-
tween agents, we consider proxies to be application-layer agents. While it
may be the case that many proxies run on dedicated hardware, and exchange
data at lower levels of the network-stack than the application layer, our dis-
cussion of proxies, and of channel chaining, is based on application-layer
proxies.

5.1 Simple proxies

In this section we consider the case when the proxies are simple.

Definition 5.1.1. A simple proxy is an agent who is dedicated to forwarding
messages from one agent to another. For every pair of roles (Ri, Rj) there
is a simple proxy role Proxy(Ri,Rj). For every pair of agents (A : R̂i, B : R̂j)
such that A 6= B there is a unique simple proxy P(A,B) : Pr̂oxy(Ri,Rj) who
forwards messages from A to B. When two roles communicate through a
simple proxy, the following trace specification is satisfied:

SimpleProxies(Ri → Rj)(tr) =̂
tr ↓ {| send.R̂i.Connection.R̂j |} = 〈〉 ∧
tr ↓ {| receive.R̂j .Connection.R̂i |} = 〈〉 ∧
∀A : R̂i;B : R̂j · ∃P(A,B) : Pr̂oxy(Ri,Rj) · SimpleProxy(P(A,B))(tr) ∧
∀A,A′ : R̂i;B : R̂j ;P(A′,B) : Pr̂oxy(Ri,Rj); cA : Connection;m : MessageApp ·

send.A.cA.P(A′,B).m in tr ∧Honest(A)⇒ A′ = A ∧
∀A : R̂i;B,B′ : R̂j ;P(A,B′) : Pr̂oxy(Ri,Rj); cB : Connection;m : MessageApp ·

receive.B.cB.P(A,B′).m in tr ∧Honest(B)⇒ B′ = B ,

where each simple proxy satisfies the following specification:

SimpleProxy(P(A,B))(tr) =̂
∀cP : Connection;m : Message ·
∀A′ : Agent · receive.P(A,B).cP .A

′.m in tr ⇒ A′ = A ∧
∀B′ : Agent · send.P(A,B).cP .B

′.m in tr ⇒ B′ = B ∧
∃c′P : Connection · send.P(A,B).cP .B 6 receive.P(A,B).c

′
P .A .

The simple proxy P(A,B) only establishes connections with A and B, and
each connection it establishes is either dedicated to sending messages to B
or to receiving messages from A. Further, the simple proxy forwards every
message that it receives from A to B.
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Figure 5.1: Simple proxies.

Because the proxy P(A,B) acts on A’s behalf, the proxy is honest if and
only if A is honest. We think of the family of proxies {P(A,B) | B : Agent}
as A’s proxies (because they all send on her behalf); see Figure 5.1.

Each simple proxy has a particular job: if P(A,B) receives a message that
appears to be from A, he forwards it to B; P(A,B) does not receive messages
that appear to have been sent by any other agent. P(A,B) only ever sends
messages to B, and never to any other agent. We assume that every agent
knows all of its proxies, and also knows which proxies send messages to it,1

and so if an honest agent who is not B is sent a message from P(A,B) he
discards it. We assume that honest agents never attempt to send a message
to any simple proxies other than their own.

5.1.1 Secure channels through simple proxies

In order to discover which security properties the channel through a simple
proxy satisfies we consider each of the components of the hierarchy indi-
vidually. In the discussion below we refer to the channel to the proxy as
(Ri → Proxy(Ri,Rj)), and the channel from the proxy as (Proxy(Ri,Rj) → Rj);
we refer to the overall channel through the proxy as Proxy−→(Ri,Rj).

Confidentiality It is clear that if either of the channels to or from a simple
proxy is not confidential, the channel through the proxy is not confi-
dential; i.e. the channel through the proxy is confidential only if the
channels to and from the proxy are both confidential.

1This could be implemented in the same way as, or even integrated with, a Public Key
Infrastructure.
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No faking It is also clear that if either of the channels to or from a simple
proxy is fakeable, then the channel through the proxy is fakeable. In
order to fake a message from A to B, the intruder must either fake
sending the message to A’s proxy P(A,B), or fake sending the message
from A’s proxy to B.

No re-ascribing The intruder can either re-ascribe a message on the chan-
nel to the proxy or on the channel from the proxy:

1. In order to re-ascribe a message on the channel to the proxy it is
not enough for the intruder just to change the sender’s identity:

tr =̂ 〈send.A.cA.P(A,B).m, hijack.A→A′.P(A,B).cP .m〉 .

A’s proxy will not accept a message that appears to have been
sent by another agent (A′). In order to re-ascribe a message on
the channel to the proxy, the intruder must also be able to redirect
the message to the correct one of the new sender’s proxies.

2. On the other hand, re-ascribing a message on the channel from
the proxy is straightforward:2

tr =̂ 〈send.A.cA.P(A,B).m, receive.P(A,B).cP .A.m,

send.P(A,B).c
′
P .B.m, hijack.P(A,B)→P(A′,B).B.cB.m,

receive.B.cB.P(A′,B).m〉 .

The intruder only needs to change the sender’s identity to that
of another agent’s proxy.

No redirecting The intruder can either redirect a message on the channel
to the proxy or on the channel from the proxy:

1. In order to redirect a message on the channel to the proxy the
intruder simply redirects the message to a different proxy:

tr =̂ 〈send.A.cA.P(A,B).m, hijack.A.P(A,B)→P(A,B′).cP .m,

receive.P(A,B′).cP .A.m, send.P(A,B′).c
′
P .B

′.m,

receive.B′.cB′ .P(A,B′).m〉 .

2. On the other hand, in order to redirect a message on the channel
from the proxy the intruder cannot just change the recipient’s
identity:

tr =̂ 〈send.A.cA.P(A,B).m, receive.P(A,B).cP .A.m

send.P(A,B).c
′
P .B.m, hijack.P(A,B).B→B′.cB′ .m〉 .

2Note that the proxies P(A,B) and P(A′,B) are different agents.
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B′ will not accept a message from the proxy P(A,B) because B′

knows which proxies send messages to him; in order to redirect
a message on this channel the intruder must also be able to re-
ascribe the message to one of the proxies that B′ accepts messages
from.

The SimpleProxies property on the roles Ri and Rj prevents agents play-
ing role Ri from communicating directly with agents playing role Rj : it
insists that they only communicate through proxies. This means that the
standard definitions of our secure channels (which restrict the intruder’s be-
haviour when hijacking or faking messages) are vacuously satisfied: there
are no messages sent by agents playing role Ri to agents playing role Rj to
hijack, and no agent playing role Rj will accept a message that appears to
be from an agent playing role Ri.

We have seen that in order to fake a message, the intruder can fake it
on the channel to the proxy, or on the channel from the proxy. We have
also seen that the intruder can hijack messages on either the channel to the
proxy, or on the channel from the proxy. In order to block these activities,
we must do so on both channels; we state the definitions of our building
blocks on the channel through a simple proxy below.

Definition 5.1.2 (No faking).

NF(Proxy−→(Ri,Rj))(tr) =̂
tr ↓ {| fake.R̂i.Pr̂oxy(Ri,Rj), fake.Pr̂oxy(Ri,Rj).R̂j |} = 〈〉 .

Definition 5.1.3 (No-re-ascribing).

NRA(Proxy−→(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A,A′ ∈ R̂i ∧B,B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
A 6= A′ |} = 〈〉 .

Definition 5.1.4 (No-honest-re-ascribing).

NRA−(Proxy−→(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A,A′ ∈ R̂i ∧B,B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
A 6= A′ ∧Honest(A′) |} = 〈〉 .

Definition 5.1.5 (No-redirecting).

NR(Proxy−→(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A,A′ ∈ R̂i ∧B,B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
B 6= B′ |} = 〈〉 .
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Definition 5.1.6 (No-honest-redirecting).

NR−(Proxy−→(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A,A′ ∈ R̂i ∧B,B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
B 6= B′ ∧Honest(B) |} = 〈〉 .

In the proof of the simple chaining theorem, below, we show that the
alternative specifications for each of the channels in the hierarchy through a
simple proxy are satisfied. These forms of the alternative specifications take
account of the fact that messages can be faked or hijacked on the channel to
the proxy or on the channel from the proxy; the specifications are shown in
Appendix A.2. We present one example below; the alternative form of the
channel specification (C ∧NRA− ∧NR−)(Proxy−→(Ri,Rj)) is:

Alt(C ∧NRA− ∧NR−)(Proxy−→(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .

5.1.2 Simple chaining theorem

We make the following observations of the overall channel through a simple
proxy.

Observation 5.1.7. If the intruder cannot redirect messages that were
sent to honest agents on the channel to the proxy, then he cannot re-ascribe
messages on the channel to the proxy. In order to re-ascribe a message
the intruder must be able to redirect the message to one of the new sender’s
proxies. Further, since all honest agents’ proxies are honest, no honest agent
ever sends a message to a dishonest agent on the channel to the proxy.
Subject to the collapsing cases described earlier, if the channel to the proxy
satisfies NR− it also satisfies NRA ∧NR.

Observation 5.1.8. If the intruder cannot re-ascribe messages to honest
agents on the channel from the proxy, then he cannot redirect messages on
the channel from the proxy. In order to redirect a message the intruder must
be able to re-ascribe it to one of the proxies who sends messages to the new
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recipient. Subject to the collapsing cases described earlier, if the channel
from the proxy satisfies NRA− it also satisfies NRA− ∧NR.

Theorem 5.1.9 (Simple chaining theorem). If roles Ri and Rj communi-
cate through simple proxies (i.e. SimpleProxies(Ri → Rj)) on secure chan-
nels such that:

ChannelSpec1(Ri → Proxy(Ri,Rj)) ,
ChannelSpec2(Proxy(Ri,Rj) → Rj) ,

where ChannelSpec1 and ChannelSpec2 are channels in the hierarchy, then
the overall channel (through the proxy) satisfies the channel specification:

ChannelSpec =↓ (↖s ChannelSpec1 u ↗s ChannelSpec2) ;

where:
↖s (c,nf,nra,nr) =

(c,nf,NRA,NR) if nr ∈ {NR−,NR} ,
(c,nf,nra,nr) otherwise ;

↗s (c,nf,nra,nr) =
(c,nf,nra,NR) if nra ∈ {NRA−,NRA} ,
(c,nf,nra,nr) otherwise ;

and u is the greatest lower bound operator in the full lattice.

The proof of the simple chaining theorem is in Section 5.1.3.

Corollary 5.1.10. If roles Ri and Rj communicate through simple proxies
(i.e. SimpleProxies(Ri → Rj)) on secure channels such that:

ChannelSpec(Ri → Proxy(Ri,Rj)) ,
ChannelSpec(Proxy(Ri,Rj) → Rj) ,

where ChannelSpec is a channel in the hierarchy, then the overall channel
(through the proxy) satisfies a channel specification ChannelSpec′ such that:

ChannelSpec 4 ChannelSpec′ .

In particular, ChannelSpec(Proxy−→(Ri,Rj)) holds.

Example 5.1.11. The channel to the proxy satisfies C ∧NRA ∧NR−, and
the channel from the proxy satisfies NF ∧NRA− ∧NR.

↖s (C ∧NRA ∧NR−) = C ∧NRA ∧NR ,
↗s (NF ∧NRA− ∧NR) = NF ∧NRA− ∧NR .

The greatest lower bound of these two points is NRA− ∧NR, which collapses
to ⊥.

The channel to the proxy is fakeable and the channel from the proxy is
non-confidential; because of collapsing case Collapse1, the overall channel
simulates the bottom channel.
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Example 5.1.12. The channel to the proxy satisfies NF ∧NRA− ∧NR−,
and the channel from the proxy satisfies NF ∧NRA−.

↖s (NF ∧NRA− ∧NR−) = NF ∧NRA ∧NR ,
↗s (NF ∧NRA−) = NF ∧NRA− ∧NR .

The greatest lower bound of these two points is NF ∧NRA− ∧NR, which
does not collapse. This channel is stronger than both of the individual
channels.

The intruder cannot fake messages on this channel, nor can he redirect
messages (because he cannot redirect messages using the channel to the
proxy, and he cannot re-ascribe messages using the channel from the proxy).
The intruder can only re-ascribe messages with his own identity because this
is the greatest capability he has on each channel individually.

Example 5.1.13. The channel to the proxy satisfies C ∧NR−, and the
channel from the proxy satisfies C ∧NRA− ∧NR−.

↖s (C ∧NR−) = C ∧NRA ∧NR ,
↗s (C ∧NRA− ∧NR−) = C ∧NRA− ∧NR .

The greatest lower bound of these two points is C ∧NRA− ∧NR, which
collapses to C ∧NRA− ∧NR− by Collapse5. This channel is stronger than
the greatest lower bound of the two individual channels.

Although the channel to the proxy is re-ascribable, it only allows the
intruder to redirect messages that were sent to him, so the overall channel
only allows the intruder to re-ascribe messages to his own identity (on the
channel from the proxy).

The resultant channels for all instances of the chaining theorem are
shown in Figure B.1 (in Appendix B.1).

5.1.3 An automated proof of the simple chaining theorem

Each instance of Theorem 5.1.9 is relatively simple to prove. One simply
starts with a receive event, and calculates which events are allowed (by the
channel specifications to and from the proxy, and by the network rules) to
precede it in a valid system trace. Each receive event can be traced back to
a set of send, fake, or hijack events; it is then straightforward to determine
the strongest channel whose alternative specification is satisfied.

Before we describe the automated proof of the theorem, we show an
example proof of one instance.

Lemma 5.1.14. If roles Ri and Rj communicate through simple proxies
(i.e. SimpleProxies(Ri → Rj)) on secure channels such that:

(C ∧NR−)(Ri → Proxy(Ri,Rj)) ,
(C ∧NRA− ∧NR−)(Proxy(Ri,Rj) → Rj) ,
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then (C ∧NRA− ∧NR−)(Proxy−→(Ri,Rj)).

Proof. We use the SimpleProxies property and the alternative specifications
of the channels to and from the proxy to show that the alternative form of
(C ∧NRA− ∧NR−)(Proxy−→(Ri,Rj)) holds; i.e.

C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .
(†)

holds for all valid system traces tr such that for all prefixes tr′ 6 tr:

SimpleProxies(Ri → Rj)(tr′) ,
(C ∧NR−)(Ri → Proxy(Ri,Rj))(tr′) ,
(C ∧NRA− ∧NR−)(Proxy(Ri,Rj) → Rj)(tr′) .

It is clear that C(Ri → Proxy(Ri,Rj))(tr) and C(Proxy(Ri,Rj) → Rj)(tr) both
hold, so we must show that the second half of (†) holds.

Let A and B be agents playing roles Ri and Rj , P(A,B) be A’s proxy to
B, cB a connection and m an application-layer message. Suppose that the
event receive.B.cB.P(A,B).m occurs in tr; the network rule N4 implies the
existence of one of several events earlier in the trace. The set of possible
events is limited by C ∧NRA− ∧NR−, which holds on the channel from the
proxy:

1. ∃cP : Connection · send.P(A,B).cP .B.m in tr ;

2. fake.P(A,B).B.cB.m in tr ;

3. ∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj) ·
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr ∧
((P(A′,B′) = P(A,B)) ∨Dishonest(P(A,B))) ∧
((B′ = B) ∨Dishonest(B′)) .

We consider each of these possibilities independently because each one
leads to a different trace.

1. Suppose that send.P(A,B).cP .B.m precedes the receive event in the
trace tr, for some connection identifier cP . SimpleProxies(Ri → Rj)
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implies SimpleProxy(P(A,B))(tr), and so receive.P(A,B).c
′
P .A.m occurs

earlier in the trace, for some connection c′P .

We use network rule N4 again; this implies the existence of one of
several events earlier in the trace, and, as before, these possibilities
are limited by C ∧NR−, which holds on the channel to the proxy:

(a) ∃cA : Connection · send.A.cA.P(A,B).m in tr ;

(b) fake.A.P(A,B).c
′
P .m in tr ;

(c) ∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj) ·
hijack.A′→A.P(A′,B′)→P(A,B).c

′
P .m in tr ∧

((P(A′,B′) = P(A,B)) ∨Dishonest(P(A′,B′))) .

The first two of these disjuncts match two of the disjuncts in (†), so
we do not (and cannot) trace these back further.

In the third disjunct, if A′ 6= A then P(A′,B′) 6= P(A,B), so P(A′,B′) is
dishonest, and hence A′ is dishonest. A must be honest (because the
intruder does not re-ascribe his own messages to himself), so this trace
simulates one in which the intruder fakes the message with A’s identity.

If B′ 6= B then the same argument shows that A′ is dishonest; again,
if A′ 6= A then this trace simulates one in which the intruder fakes the
message; if A′ = A then the intruder has redirected his own message:
this simulates a trace in which the intruder sends the message to the
correct agent in the first place.

Once we discount the simulating traces, we conclude that A′ = A and
B′ = B. This disjunct is now more restrictive than the corresponding
disjunct in (†), and hence implies it.

2. The second possibility is that the intruder faked the message with the
proxy’s identity; this disjunct is already in the correct form for (†).

3. The final possibility is that the intruder hijacked a message sent by
the simple proxy P(A′,B′) to the agent B′. If P(A′,B′) = P(A,B), then
necessarily A′ = A; if P(A,B) is dishonest, A is also dishonest. Since
we already know that either B′ = B, or B′ is dishonest, this disjunct
matches that in (†).

We have shown that if an agent B receives a message from A’s
proxy P(A,B), then the set of events that may precede this receive event
is a subset of those allowed by the alternative form of the proxy chan-
nel specification C ∧NRA− ∧NR− on the channel Ri → Rj . Therefore,
(C ∧NRA− ∧NR−)(Proxy−→(Ri,Rj)) holds.
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While each instance of the theorem can be proved simply, there are
121 instances3 that must be proved. In order to ease this process we have
developed a Haskell [Bir88] script (see Appendix B.4) that performs the
proofs automatically. In the rest of this section we describe the script, and
relate its various stages to the proof example shown above.

Deriving the full set of trace patterns We first calculate the distinct
trace patterns that result in an honest agent receiving a message, via
a proxy, from another honest agent or the intruder. A trace pattern
is a subtrace consisting of the events leading up to a receive event
in which all identities, connection identifiers and message values are
representative. For example, a trace pattern may show that an honest
agent sends a message to their proxy, the proxy receives it and then
sends it on, the intruder then redirects the message to another honest
agent, and then the new recipient receives the message; e.g.

s =̂ 〈send.A.cA.P(A,B), receive.P(A,B).cP .A.m, send.P(A,B).c
′
P .B.m,

hijack.P(A,B)→P(A,B′).B→B′.cB′ .m, receive.B′.cB′ .P(A,B′).m〉 .

Applying the channel properties We apply the properties of the chan-
nels to and from the proxy to eliminate those trace patterns in which
the intruder must perform an event that the channel does not allow
him to. For example, if the intruder cannot fake on the channel to the
proxy, we eliminate those trace patterns in which he fakes a message
on this channel.

Determining the resultant channel specification We examine the re-
maining trace patterns to determine which capabilities the intruder
still has. For example, if one of the remaining trace patterns shows
that an honest agent A sent a message to an honest agent B, but then
B receives that message from the dishonest agent I, then this pattern
demonstrates that the intruder can re-ascribe messages with his own
identity. When we examine each of the trace patterns we discover
which events the intruder can perform; we then find the point in the
lattice that corresponds to these remaining events, and collapse this
point to a channel in the hierarchy.

We describe each of these three stages in more detail below.

Deriving the full set of trace patterns

To derive the full set of trace patterns, we do not assume that either the
channel to the proxy or the channel from the proxy satisfy any secure channel

3There are 11 possibilities for the channel to the proxy, and 11 for the channel from
the proxy.
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specifications. Suppose that tr is a valid system trace such that for all
prefixes tr′ 6 tr, SimpleProxies(Ri → Rj)(tr′) holds.

Let A and B be agents playing roles R̂i and R̂j , P(A,B) be A’s proxy
to B, cB a connection and m an application-layer message. Suppose that
the event receive.B.cB.P(A,B).m occurs in tr; the network rule N4 implies
the existence of one of several events earlier in the trace.

1. send.P(A,B).cP .B.m in tr for some connection cP ;

2. fake.P(A,B).B.cB.m in tr ;

3. ∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj) ·
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .

There are three different possibilities: either the proxy sent the message
to B, the intruder faked the message to B (with the proxy’s identity), or
the intruder hijacked a message sent by a different proxy (P(A′,B′)). Each
of these events leads to different trace patterns, so we investigate them
independently.

1. The event send.P(A,B).cP .B.m occurs in the trace for some connec-
tion cP . Since B accepts this message, SimpleProxies(Ri → Rj) im-
plies that SimpleProxy(P(A,B)) holds for tr, and so P(A,B) must pre-
viously have received this message. The event receive.P(A,B).c

′
P .A.m

occurs earlier in the trace, for some connection c′P .

We apply network rule N4 again; this implies the existence of one of
several events earlier in the trace.

(a) send.A.cA.P(A,B) in tr for some connection cA; the trace has the
following pattern:

tr1 =̂ 〈send.A.cA.P(A,B).m, receive.P(A,B).c
′
P .A.m,

send.P(A,B).cP .B.m, receive.B.cB.P(A,B).m〉 .

(b) fake.A.P(A,B).c
′
P .m in tr ; the trace has the following pattern:

tr2 =̂ 〈fake.A.P(A,B).c
′
P .m, receive.P(A,B).c

′
P .A.m,

send.P(A,B).cP .B.m, receive.B.cB.P(A,B).m〉 .

The intruder does not fake messages with his own identity, so in
this trace pattern we assume that A is honest.

(c) ∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj) ·
hijack.A′→A.P(A′,B′)→P(A,B).c

′
P .m in tr .
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The intruder can only hijack messages that were previously
sent (N2), so A′ must have sent the message to her proxy ear-
lier in the trace (from some connection cA′). The trace has the
following pattern:

tr3 =̂ 〈send.A′.c′A.P(A′,B′).m,

hijack.A′→A.P(A′,B′)→P(A,B).c
′
P .m,

receive.P(A,B).c
′
P .A.m,

send.P(A,B).cP .B.m, receive.B.cB.P(A,B).m〉 .

We can safely block the intruder from hijacking his own mes-
sages (Proposition 4.4.1), so in this trace pattern we assume
that A′ is honest. If A′ = A and B′ = B, then this trace pat-
tern just shows a replay on the channel to the proxy; because
none of our channels prevent replays, we are not interested in
whether or not the intruder has this capability. We assume that
either A′ 6= A or B′ 6= B.

2. The event fake.P(A,B).B.cB occurs in the trace. Since the intruder
does not fake with dishonest identities, and since the proxy P(A,B) is
honest if and only if A is honest, we assume that A is honest. The
trace has the following pattern:

tr4 =̂ 〈fake.P(A,B).B.cB.m, receive.B.cB.P(A,B).m〉 .

3. The event hijack.P(A′,B′)→P(A,B).B
′→B.cB.m occurs in the trace.

We apply N2 again: the proxy P(A′,B′) must have sent the message
to B′ earlier in the trace (in some connection cP ′). So far, the trace
has this pattern:

s =̂ 〈send.P(A′,B′).cP ′ .B
′.m,

hijack.P(A′,B′)→P(A,B).B
′→B.cB.m, receive.B.cB.P(A,B).m〉 .

As before, we assume that P(A′,B′) is honest (and hence A′ is hon-
est). Now SimpleProxies(Ri → Rj) applies again and implies that
SimpleProxy(P(A′,B′)) holds for tr, and so P(A′,B′) must previously
have received this message from A′ (in some connection c′P ′). The
trace now has the following pattern:

s =̂ 〈receive.P(A′,B′).c
′
P ′ .A

′, send.P(A′,B′).cP ′ .B
′.m,

hijack.P(A′,B′)→P(A,B).B
′→B.cB.m, receive.B.cB.P(A,B).m〉 .

We apply network rule N4 again; this implies the existence of one of
several events earlier in the trace.
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(a) send.A′.cA′ .P(A′,B′).m in tr for some connection cA′ ; the trace has
the following pattern:

tr5 =̂ 〈send.A′.cA′ .P(A′,B′).m, receive.P(A′,B′).c
′
P ′ .A

′,

send.P(A′,B′).cP ′ .B
′.m,

hijack.P(A′,B′)→P(A,B).B
′→B.cB.m,

receive.B.cB.P(A,B).m〉 .

As before, we assume that A′ is honest and that either A′ 6= A
or B′ 6= B.

(b) fake.A′.P(A′,B′).c
′
P ′ .m in tr. If the intruder can fake with

A′’s identity, he can also fake with A’s identity; this means that
the hijack event on the channel from the proxy is unnecessary.
We ignore this trace pattern.

(c) ∃A′′ : R̂i;B′′ : R̂j ;P(A′′,B′′) : Pr̂oxy(Ri,Rj) ·
hijack.A′′→A′.P(A′′,B′′)→P(A′,B′).c

′
P ′ .m in tr .

We apply N2 again: the agent A′′ must have sent the message to
her proxy in order for the intruder to hijack it. The trace now
has the following pattern:

tr6 =̂ 〈send.A′′.cA′′ .P(A′′,B′′).m,

hijack.A′′→A′.P(A′′,B′′)→P(A′,B′).c
′
P ′ .m,

receive.P(A′,B′).c
′
P ′ .A

′, send.P(A′,B′).cP ′ .B
′.m,

hijack.P(A′,B′)→P(A,B).B
′→B.cB.m,

receive.B.cB.P(A,B).m〉 .

If A′′ 6= A′ and A′ 6= A then the intruder has re-ascribed the mes-
sage to A′ on the channel to the proxy; he then re-ascribes it to A
on the channel from the proxy. This is unnecessary activity, and
this trace pattern simulates one in which he does not hijack on the
channel to the proxy. We therefore assume that either A′′ = A′

or A′ = A; similarly we assume that either B′′ = B′ or B′ = B.
We ignore the trace patterns in which A′′ = A′ and B′′ = B′,
or A′ = A and B′ = B); we assume that A′′ is honest.

Applying the channel properties

The Haskell script automatically generates all of the trace patterns described
above. It then takes each of the 121 combinations of channels to and from
the proxy and uses the channel specifications to eliminate those traces that
are not allowed. The traces are calculated in two stages: the set of activ-
ity on the channel from the proxy is calculated first, and then the channel
specification on the channel from the proxy is applied; then the activity
on the channel to the proxy is calculated, and finally the channel specifi-
cation on the channel to the proxy is applied. The result is a set of trace
patterns {tr1, tr2, . . . , trn} that are allowed on the resultant channel.
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Determining the resultant channel specification

In order to determine which channel property the resultant channel satisfies
we examine each of the co-ordinate points in the lattice individually. The
resultant channel is confidential (the first co-ordinate point) if and only if
the channels to and from the proxy are confidential; we call this value c. We
determine the remaining three co-ordinate points (no-faking, no-re-ascribing
and no-redirecting) by looking at each of the allowed trace patterns.

Each of these trace patterns demonstrates that the intruder can perform
a particular event. We present below a summary of these patterns; each
case shows the initial and final events in the pattern and then describes
which activity this demonstrates. This mapping allows us to assign a tu-
ple (nf,nra,nr) to each trace pattern; this tuple represents the strongest
possible specification that this trace allows.

When the final event is receive.B.cB.P(A,B).m (agent B receives a mes-
sage from the honest agent A’s proxy):

send.A.cA.P(A,B).m this does not demonstrate any hijacking activity:
(NF,NRA,NR);

send.A.cA.P(A,I).m the intruder redirected a message that was sent to a
dishonest agent: (NF,NRA,NR−);

send.A.cA.P(A,B′).m the intruder redirected a message that was sent to an
honest agent: (NF,NRA,⊥);

send.A′.cA′ .P(A′,B).m the intruder re-ascribed a message to an honest
agent: (NF,⊥,NR);

send.A′.cA′ .P(A′,I).m the intruder re-ascribed a message to an honest agent,
and redirected a message sent to a dishonest agent: (NF,⊥,NR−);

send.A′.cA′ .P(A′,B′).m the intruder re-ascribed a message to an hon-
est agent, and redirected a message that was sent to an honest
agent: (NF,⊥,⊥);

send.I.cI .P(I,B).m the intruder hijacked his own message to simulate a
fake: (⊥,NRA,NR);

fake.A.P(A,B).cP .m the intruder faked a message to the proxy:
(⊥,NRA,NR);

fake.P(A,B).B.cB.m the intruder faked a message from the proxy:
(⊥,NRA,NR).

When the final event is receive.B.cB.P(I,B).m (agent B receives a message
from the dishonest agent I’s proxy):
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send.I.cI .P(I,B).m this does not demonstrate any activity: (NF,NRA,NR);

send.A.cA.P(A,B).m the intruder re-ascribed a message to a dishonest
agent: (NF,NRA−,NR);

send.A.cA.P(A,I).m this does not demonstrate any activity (the intruder
sent a message that was sent to him): (NF,NRA,NR);

send.A.cA.P(A,B′).m the intruder re-ascribed a message to a dishonest
agent, and redirected a message sent to an honest agent; however,
this is only possible on a non-confidential channel, so this simulates a
learn and send: (NF,NRA,NR).

The result of applying the mapping to each of the trace patterns is a
set of tuples of the form (nfi,nrai,nri) for i = 1 . . . n. We take the value of
the confidential co-ordinate and calculate the lattice point of the resultant
channel in the following way (where min is calculated according to the order
on the building blocks — see Chapter 4):

(c,nf,nra,nr) = (c,minn
i=1(nfi),minn

i=1(nrai),minn
i=1(nri)) .

Finally we collapse this point to a point in the channel hierarchy. Thus
the resultant channel satisfies the channel specification:

(c,nf,nra,nr) =↓ (c,minn
i=1(nfi),minn

i=1(nrai),minn
i=1(nri)) .

By eliminating trace patterns and calculating the resultant point in the
hierarchy in this manner we prove that the alternative specification of the
resultant channel holds on all valid system traces in which the channel spec-
ifications to and from the proxy hold. The full list of results, and the Haskell
script listing are shown in Appendix B.

5.2 Multiplexing proxies

In this section we consider the more general (multiplexing) proxy case. The
study of simple proxies shows that by chaining two secure channels through a
trusted third party one can sometimes produce a stronger channel. However,
in the simple case, we thought of the proxies as ‘belonging’ to one of the
agents communicating; it is highly likely that A trusts her proxies, but
should she trust other agents’ proxies who send messages to her? In this
section we consider more general multiplexing proxies. A multiplexing proxy
is a trusted third party who is willing to forward messages from any agent
to any other agent.

We assume that all multiplexing proxies are honest. There is nothing to
stop the intruder from setting up proxies of his own; however, any message
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sent through a dishonest proxy cannot remain confidential, and any message
received from a dishonest proxy cannot be authenticated.

When agent A intends to send a message to another agent (B) through
a simple proxy she just needs to pick the correct simple proxy to send the
message to. The proxy knows whom to forward the message to because
it is dedicated to that job. If A is to use a multiplexing proxy, she must
communicate her intent (to talk to B) to the proxy. Similarly, when B
receives a message from A’s proxy, he knows who originally sent the message;
when B receives a message from a multiplexing proxy, there must be some
communication from the proxy to B to say whom the message is from.

One way to solve this problem would be to build a special transport-layer
protocol in which the message sender’s protocol agent tells the proxy whom
to establish a connection with. The agent may then just send messages to
the proxy (just as they would if they were sending the messages directly to
the recipient). Similarly, the proxy tells the recipient’s protocol agent whom
the messages are from. However, this solution is unsuitable for our model
for two reasons:

• The whole point of the model is to make the details of the transport-
layer protocol abstract; once we start to impose conditions on the
transport-layer protocol, we lose the generality of the abstract model;

• When we discussed simple proxies we argued the case for considering
the proxies as application-layer entities; we make the same argument
here as we wish all details of the discussion to be at the application-
layer.

The solution we adopt, therefore, is to annotate the application-layer
messages with information about whom they are intended for, and whom
they were originally sent by. In order to send a message m to B (via the
multiplexing proxy P ), agent A concatenates B’s identity to the message:

send.A.cA.P.〈m,B〉 .

When P receives this message he concatenates it to A’s identity, and sends
it on to B:

send.P.cP .B.〈A,m〉 .

This only works if the channel is either confidential or non-fakeable; however,
all of our channels satisfy at least one of these two properties, so this method
can be used on all of our channels.

We assume that none of the application-layer protocols call for agents to
send messages with the same type as the messages described above. If we
do not make this assumption, it might be possible for messages created by
honest agents for use in the application-layer protocols to be mistaken for
messages sent to or from a multiplexing proxy.
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Definition 5.2.1. A multiplexing proxy is an honest agent who is dedicated
to forwarding messages; there is a single proxy role Proxy. When two roles
communicate through a multiplexing proxy, the following trace specification
is satisfied:

Proxies(Ri → Rj)(tr) =̂
tr ↓ {| send.R̂i.Connection.R̂j |} = 〈〉 ∧
tr ↓ {| receive.R̂j .Connection.R̂i |} = 〈〉 ∧
∀A,B, P : Agent; cA : Connection;m : Message ·

send.A.cA.P.〈m,B〉 in tr ⇒ Proxy(P )(tr) ∧
∀A,B, P : Agent; cB : Connection;m : Message ·

receive.B.cB.P.〈A,m〉 in tr ⇒ Proxy(P )(tr) ,

where each multiplexing proxy satisfies the following specification:

Proxy(P )(tr) =̂
Honest(P ) ∧
∀cP : Connection;A,B,B′ : Agent;m,m′ : Message ·

receive.P.cP .A.〈m,B〉 in tr ∧ receive.P.cP .A.〈m′, B′〉 in tr ⇒ B = B′ ∧
∀cP : Connection;A,A′, B : Agent;m,m′ : Message ·

send.P.cP .B.〈A,m〉 in tr ∧ send.P.cP .B.〈A′,m′〉 in tr ⇒ A = A′ ∧
∀cP : Connection;A : Agent · ∃c′P : Connection;B : Agent ·

send.P.cP .〈A,m〉 6 receive.P.c′P .〈m,B〉 .

Each connection that the multiplexing proxies establish is either ded-
icated to receiving messages from one agent, or sending messages to one
agent. Although two individual messages from one agent to another could
be sent through different proxies, we assume that all the messages in one
connection are sent to (or received from) the same proxy.

We assume that the honest agents only send messages of the form 〈m,B〉
to proxies, and that they will only receive messages of the form 〈A,m〉 from
proxies.

Each multiplexing proxy can be used by several agents. One can imagine
a scenario in which each organisation has a pool of multiplexing proxies:
every agent in that organisation communicates with external agents through
the proxies, but communicates directly with internal agents (see Figure 5.2).

Whenever a multiplexing proxy receives a message from A for B, he
forwards it to B, and tells B that it is from A. In each connection, the
proxies only exchange messages with one other agent; they also only allow
one third party to be involved in each connection. This restriction on the
proxies’ behaviour is not necessary for the proof of invariance of the single
message channels, but it is necessary to prove that the session properties are
invariant under chaining; we discuss how this might be done in Chapter 8.
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Figure 5.2: Multiplexing proxies.
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5.2.1 Secure channels through multiplexing proxies

The public knowledge of the role of each simple proxy was what led to
the rather surprising result that the chained form of two channels can be
stronger than both channels individually. With the multiplexing proxies we
no longer have this public knowledge; B only knows whom the message was
originally sent by by examining it and seeing whose identity is attached to
it. As we did last time, we consider each of the components of the hierarchy
individually in order to discover which properties the channel through a
proxy satisfies. In the discussion below we refer to the channel to the proxy
as (Ri → Proxy) and the channel from the proxy as (Proxy→ Rj); we refer
to the overall channel through the proxy as Proxy(Ri → Rj).

Confidentiality If either of the channels to or from a proxy is not confi-
dential, then the channel through the proxy is not confidential. Since
all multiplexing proxies are honest, the channel through the proxy
is confidential if and only if the channels to and from the proxy are
confidential.

No faking It is clear that if either of the channels to or from a proxy is
fakeable, then the channel through the proxy is fakeable. In order to
fake a message from A to B, the intruder must either fake sending the
message to the proxy, or from the proxy.

No re-ascribing Unlike the simple proxies, the intruder cannot choose
which channel to re-ascribe a message on: he must do so on the channel
to the proxy. This is straightforward:

tr =̂ 〈send.A.cA.P.〈m,B〉, hijack.A→A′.P.cP .〈m,B〉〉 .

The only identity that the intruder can change by re-ascribing on the
channel from the proxy is that of the message sender (the proxy):

tr =̂ 〈send.A.cA.P.〈m,B〉, receive.P.cP .A.〈m,B〉,
send.P.c′P .B.〈A,m〉, hijack.P→P ′.B.cB.〈A,m〉 .

Because honest agents only accept messages of the form 〈A,m〉 from
proxies, the intruder can only re-ascribe the message to a different
proxy: he cannot change the identity of the original sender of the
message by re-ascribing the message on the channel from the proxy.

No redirecting The intruder can only redirect a message using the channel
from the proxy; this is straightforward:

tr =̂ 〈send.A.cA.P.〈m,B〉, receive.P.cP .A.〈m,B〉,
send.P.c′P .B.〈A,m〉, hijack.P.B→B′.cB′ .〈A,m〉〉 .
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The only identity that the intruder can change by redirecting the mes-
sage on the channel to the proxy is that of the message recipient: in
this case, the proxy;

tr =̂ 〈send.A.cA.P.〈m,B〉, hijack.A.P→P ′.cP ′ .〈m,B〉〉 .

Because the only honest agents who receive messages of the
form 〈m,B〉 are proxies, the intruder can only redirect the message
to a different proxy.

We note that because the application-layer messages to and from the
proxy now contain some routing information, the intruder can redirect or
re-ascribe a message (i.e. change the identity of the original message sender
or the ultimate message recipient) by faking a message. In this section we
always use the terms no faking, no-re-ascribing and no-redirecting to refer to
the properties that block the intruder from performing the fake and hijack
events, but we will sometimes talk about the intruder faking a message to
re-ascribe or to redirect a message sent from one honest agent to another.
In order to do this the intruder must have learned the application-layer
message, so this is only possible on non-confidential channels.

The Proxies property on the roles Ri and Rj prevents agents playing
role Ri from communicating directly with agents playing role Rj . As be-
fore, we must reframe the definitions of the authenticated channel building
blocks for the channel through a multiplexing proxy because the standard
definitions are vacuously satisfied.

Definition 5.2.2 (No faking).

NF(Proxy(Ri → Rj))(tr) =̂
tr � {| fake.A.P.cA.〈m,B〉, fake.P.cP .B.〈A,m〉 |

A ∈ R̂i ∧ P ∈ Pr̂oxy ∧B ∈ R̂j ∧
cA, cP ∈ Connection ∧m ∈ MessageApp |} = 〈〉 .

Definition 5.2.3 (No-re-ascribing).

NRA(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.A→A′.P→P ′.cP ′ .〈m,B〉 |

A,A′ ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B ∈ R̂j ∧ cP ′ ∈ Connection ∧
m ∈ MessageApp ∧A 6= A′ |} = 〈〉 .

Definition 5.2.4 (No-honest-re-ascribing).

NRA−(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.A→A′.P→P ′.cP ′ .〈m,B〉 |

A,A′ ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B ∈ R̂j ∧ cP ′ ∈ Connection ∧
m ∈ MessageApp ∧A 6= A′ ∧Honest(A′) |} = 〈〉 .
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Definition 5.2.5 (No-redirecting).

NR(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.P→P ′.B→B′.cB′ .〈A,m〉 |

A ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B,B′ ∈ R̂j ∧ cB′ ∈ Connection ∧
m ∈ MessageApp ∧B 6= B′ |} = 〈〉 .

Definition 5.2.6 (No-honest-redirecting).

NR−(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.P→P ′.B→B′.cB′ .〈A,m〉 |

A ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B,B′ ∈ R̂j ∧ cB′ ∈ Connection ∧
m ∈ MessageApp ∧B 6= B′ ∧Honest(B) |} = 〈〉 .

As in the proof of the simple chaining theorem, in the proof of the
chaining theorem, below, we show that the alternative specifications for
each of the channels in the hierarchy through a proxy are satisfied. These
forms of the alternative specifications take account of the fact that mes-
sages can be faked or hijacked on the channel to the proxy or on the
channel from the proxy; the specifications are shown in Appendix B. We
present one example below; the alternative form of the channel specification
(C ∧NRA− ∧NR−)(Proxy(Ri → Rj)) is:

Alt(C ∧NRA− ∧NR−)(Proxy(Ri → Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃cP : Connection · fake.A.P.cP .〈m,B〉 in tr ∨
fake.P.B.cB.〈A,m〉 in tr ∨
∃P ′ : Pr̂oxy;B′ : R̂j ; cB : Connection ·

hijack.P ′→P.B′→B.cB.〈A,m〉 in tr ∧
((P ′ = P ) ∨Dishonest(P )) ∧ ((B′ = B) ∨Dishonest(B′)) ∨
∃A′ : R̂i;P ′ : Pr̂oxy; cP : Connection ·

hijack.A′→A.P ′→P.cP .〈m,B〉 in tr ∧
((A′ = A) ∨Dishonest(A)) ∧ ((P ′ = P ) ∨Dishonest(P ′)) .

In Appendix B.2 we always assume that P ′ = P , since honest agents only
accept messages from honest proxies, and only send messages to honest
proxies, so Dishonest(P ) and Dishonest(P ′) never hold.

5.2.2 Chaining theorem

We make the following observations of the overall channel through a multi-
plexing proxy.
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Observation 5.2.7. The intruder cannot redirect messages using the chan-
nel to the proxy. Subject to the collapsing cases described earlier, the chan-
nel to the proxy satisfies NR.

Observation 5.2.8. The intruder cannot re-ascribe messages using the
channel from the proxy. Subject to the collapsing cases described earlier,
the channel from the proxy satisfies NRA.

Theorem 5.2.9 (Chaining theorem). If roles Ri and Rj communicate
through multiplexing proxies (i.e. Proxies(Ri → Rj)) on secure channels
such that:

ChannelSpec1(Ri → Proxy) ,
ChannelSpec2(Proxy→ Rj) ,

where ChannelSpec1 and ChannelSpec2 are channels in the hierarchy, then
the overall channel (through the proxy) satisfies the channel specification:

ChannelSpec =↓ (↖m ChannelSpec1 u ↗m ChannelSpec2) ;

where:
↖m (c,nf,nra,nr) = (c,nf,nra,NR) ,
↗m (c,nf,nra,nr) = (c,nf,NRA,nr) ,

and u is the greatest lower bound operator in the full lattice.

The proof of the chaining theorem is in Section 5.2.3.

Corollary 5.2.10. If roles Ri and Rj communicate through multiplexing
proxies (i.e. Proxies(Ri → Rj)) on secure channels such that:

ChannelSpec(Ri → Proxy) ,
ChannelSpec(Proxy→ Rj) ,

where ChannelSpec is a channel in the hierarchy, then the overall channel
(through the proxy) satisfies a channel specification ChannelSpec′ which is
such that:

ChannelSpec 4 ChannelSpec′ .

In particular, ChannelSpec(Proxy(Ri → Rj)) holds.
A simple case analysis in the case of the multiplexing proxies shows that:

ChannelSpec′ = ChannelSpec .

Example 5.2.11. The channel to the proxy satisfies
C ∧NF ∧NRA− ∧NR−, and the channel from the proxy satisfies
C ∧NRA− ∧NR−.

↖m (C ∧NF ∧NRA− ∧NR−) = C ∧NF ∧NRA− ∧NR ,
↗m (C ∧NRA ∧NR−) = C ∧NRA ∧NR− .
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The greatest lower bound of these two points is C ∧NRA− ∧NR−; this is
the greatest lower bound of the two channels. This is the same result as for
the simple proxies.

The intruder cannot re-ascribe messages to honest agents because the
channel from the proxy is only re-ascribable with dishonest identities; even
though the channel from the proxy is fakeable, both channels are confi-
dential, so the intruder cannot learn the message and fake it to effect a
re-ascribe. The intruder can redirect messages that are sent to him.

Example 5.2.12. The channel to the proxy satisfies NF ∧NRA−, and the
channel from the proxy satisfies NF ∧NRA− ∧NR−.

↖m (NF ∧NRA−) = NF ∧NRA− ∧NR ,
↗m (NF ∧NRA− ∧NR−) = NF ∧NRA ∧NR− .

The greatest lower bound of these two points is NF ∧NRA− ∧NR−; this
channel is stronger than the greatest lower bound of the two channels. This
result is different to the simple proxy result (which is just NF ∧NRA−).

Neither channel is confidential, so the overall channel is not confidential.
However, because neither channel is fakeable, the intruder cannot overhear
messages and fake them to re-ascribe or redirect messages. He cannot there-
fore redirect messages using the channel to the proxy, and cannot re-ascribe
messages using the channel from the proxy.

Example 5.2.13. The channel to the proxy satisfies C ∧NF ∧NRA ∧NR−,
and the channel from the proxy satisfies C ∧NF ∧NRA− ∧NR.

↖m (C ∧NF ∧NRA ∧NR−) = C ∧NF ∧NRA ∧NR ,
↗m (C ∧NF ∧NRA− ∧NR) = C ∧NF ∧NRA ∧NR .

The greatest lower bound of these two points is the top channel; this is
stronger than both channels.

The intruder cannot redirect messages, nor can he re-ascribe messages on
the overall channel because these activities are blocked on the only channel
that allows them.

The list of resultant channels for every instance of the chaining theorem
is shown in Figure B.2 (in Appendix B.2).

5.2.3 An automated proof of the chaining theorem

As before, each instance of Theorem 5.2.9 is relatively simple to prove; the
proof mechanism is identical to that for the simple proxies, only the details of
the proof are different. As in the previous section, we first prove an example
instance of the theorem, then we describe the changes to the automated
proof.
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Lemma 5.2.14. If roles Ri and Rj communicate through multiplexing prox-
ies (i.e. Proxies(Ri → Rj)) on secure channels such that:

(NF ∧NRA−)(Ri → Proxy) ,
(NF ∧NRA− ∧NR−)(Proxy→ Rj) ,

then (NF ∧NRA− ∧NR−)(Proxy(Ri → Rj)).

Proof. We use the Proxies property and the alternative specifications of
the channels to and from the proxy to show that the alternative form of
(NF ∧NRA− ∧NR−)(Proxy(Ri → Rj)) holds; i.e.

∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·
receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃P ′ : Pr̂oxy;B′ : R̂j ; cB : Connection ·

hijack.P ′→P.B′→B.cB.〈A,m〉 in tr ∧
((P ′ = P ) ∨Dishonest(P )) ∧ ((B′ = B) ∨Dishonest(B′)) ∨

∃A′ : R̂i;P ′ : Pr̂oxy; cP : Connection ·
hijack.A′→A.P ′→P.cP .〈m,B〉 in tr ∧
((A′ = A) ∨Dishonest(A)) ∧ ((P ′ = P ) ∨Dishonest(P ′)) ,

(†)

for all valid system traces tr such that for all prefixes tr′ 6 tr:

Proxies(Ri → Rj)(tr′) ,
(NF ∧NRA−)(Ri → Proxy)(tr′) ,
(NF ∧NRA− ∧NR−)(Proxy→ Rj)(tr′) .

Let A and B be agents playing roles Ri and Rj , P be a multiplexing
proxy, cB a connection and m an application-layer message. Suppose that
the event receive.B.cB.P.〈m,A〉 occurs in tr; the network rule N4 implies
the existence of one of several events earlier in the trace. The set of possible
events is limited by NF ∧NRA− ∧NR−, which holds on the channel from
the proxy:

1. ∃cP : Connection · send.P.cP .B.〈A,m〉 in tr ;

2. ∃P ′ : Pr̂oxy;B′ : R̂j · hijack.P ′→P.B′→B.cB.〈A,m〉 in tr ∧
((P ′ = P ) ∨Dishonest(P )) ∧ ((B′ = B) ∨Dishonest(B′)) .

The second of these disjuncts is already in the correct form for (†), so
we only need to investigate the first.

Suppose that the event send.P.cP .B.〈A,m〉 precedes the receive event in
the trace tr, for some connection identifier cP . Proxies(Ri → Rj) implies
Proxy(P ), and so receive.P.c′P .A.〈m,B〉 occurs earlier in the trace, for some
connection c′P .

We use network rule N4 again; this implies the existence of one of several
events earlier in the trace, and, as before, these possibilities are limited
by NF ∧NRA−, which holds on the channel to the proxy.
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1. ∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ;

2. ∃A′ : R̂i;P ′ : Pr̂oxy · hijack.A′→A.P ′→P.cP .〈m,B〉 ∧
((A′ = A) ∨Dishonest(A)) ∧ ((P ′ = P ) ∨Dishonest(P ′)) .

These disjuncts match those in (†).
We have shown that if an agent B receives a message from agent A

via a multiplexing proxy, then the set of events that may precede this re-
ceive event is equal to those allowed by the alternative form of the proxy
channel specification NF ∧NRA− ∧NR− on the channel Ri → Rj . There-
fore (NF ∧NRA− ∧NR−)(Proxy(Ri → Rj)) holds.

There are, again, 121 instances of this theorem to prove. In order to
prove these instances we adapt the automated proof of the simple chaining
theorem; we describe these changes below; the full Haskell script is shown
in Appendix B.5.

Deriving the full set of trace patterns

We derive the full set of trace patterns in the same way as before: we do not
assume that either the channel to the proxy or the channel from the proxy
satisfy any secure channel specifications. Suppose that tr is a valid system
trace such that for all prefixes tr′ 6 tr, Proxies(Ri → Rj)(tr′) holds.

Let A and B be agents playing roles R̂i and R̂j , P be a multiplex-
ing proxy, cB a connection and m an application-layer message. Suppose
that receive.B.cB.P.〈A,m〉 occurs in tr; the network rule N4 implies the
existence of one of several events earlier in the trace.

1. send.P.cP .B.〈A,m〉 in tr for some connection cP ;

2. fake.P.B.cB.〈A,m〉 in tr ;

3. ∃P ′ : Pr̂oxy;B′ : R̂j · hijack.P ′→P.B′→B.cB.〈A,m〉 in tr .

There are three different possibilities: either the proxy sent the message
to B, the intruder faked the message to B (with the proxy’s identity), or
the intruder hijacked a message sent by a different proxy to agent B′. Each
of these events leads to different trace patterns, so we investigate them
independently.

1. The event send.P.cP .B.〈A,m〉 occurs in the trace for some connec-
tion cP . Since B accepts this message, Proxies(Ri → Rj) implies
that Proxy(P ) holds for tr, and so P must previously have received a
message of the form 〈m,B〉. The event receive.P.c′P .A.〈m,B〉 occurs
earlier in the trace, for some connection c′P .

We apply network rule N4 again; this implies the existence of one of
several events earlier in the trace.
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(a) send.A.cA.P.〈m,B〉 in tr for some connection cA; the trace has
the following pattern:

tr1 =̂ 〈send.A.cA.P.〈m,B〉, receive.P.c′P .A.〈m,B〉,
send.P.cP .B.〈A,m〉, receive.B.cB.P.〈A,m〉〉 .

(b) fake.A.P.c′P .〈m,B〉 in tr ; the trace has the following pattern:

tr2 =̂ 〈fake.A.P.c′P .〈m,B〉, receive.P.c′P .A.〈m,B〉,
send.P.cP .B.〈A,m〉, receive.B.cB.P.〈A,m〉〉 .

The intruder does not fake messages with his own identity, so in
this trace pattern we assume that A is honest.

(c) ∃A′ : R̂i;P ′ : Pr̂oxy · hijack.A′→A.P ′→P.c′P .〈m,B〉 in tr . The
intruder can only hijack messages that were previously sent (N2),
so A′ must have sent the message to P ′ earlier in the trace (in
some connection cA′). The trace has the following pattern:

tr3 =̂ 〈send.A′.cA′ .P ′.〈m,B〉,
hijack.A′→A.P ′→P.c′P .〈m,B〉, receive.P.c′P .A.〈m,B〉,
send.P.cP .B.〈A,m〉, receive.B.cB.P.〈A,m〉〉 .

We can safely block the intruder from hijacking his own mes-
sages (Proposition 4.4.1), so in this trace pattern we assume that
A′ is honest. The intruder does not gain anything by redirecting
the message to a different proxy (since all proxies are honest, and
all proxies behave in the same way), so we assume that P ′ = P .
If A′ = A then this trace pattern just shows a replay on the chan-
nel to the proxy; because none of our channels prevent replays,
we are not interested in whether or not the intruder has this
capability; we assume that A′ 6= A.

2. The event fake.P.B.cB.〈A,m〉 occurs in the trace; the trace has the
following pattern:

tr4 =̂ 〈fake.P.B.cB.〈A,m〉, receive.B.cB.P.〈A,m〉〉 .

In this trace pattern, we assume that A is honest.

3. The event hijack.P ′→P.B′→B.cB.〈A,m〉 occurs in the trace. Since
all proxies are honest, and all behave in the same way, the intruder
does not gain anything by changing the identity of the sender of the
message; we assume that P ′ = P . We apply N2 again: the proxy P
must have sent the message to B′ earlier in the trace (in some connec-
tion cP ). So far, the trace has the pattern:

s =̂ 〈send.P.cP .B′.〈A,m〉,
hijack.P.B′→B.cB.〈A,m〉, receive.B.cB.P.〈A,m〉〉 .
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P is a multiplexing proxy, so Proxies(Ri → Rj) applies again, and
implies that Proxy(P ) holds for tr, and so P must previously have
received a message of the form 〈m,B′〉 from A (in some connection c′P ).
The trace now has the following pattern:

s =̂ 〈receive.P.c′P .A.〈m,B′〉, send.P.cP .B′.〈A,m〉,
hijack.P.B′→B.cB.〈A,m〉, receive.B.cB.P.〈A,m〉〉 .

We apply network rule N4 again; this implies the existence of one of
several events earlier in the trace.

(a) send.A.cA.P.〈m,B′〉 in tr for some connection cA; the trace has
the following pattern:

tr5 =̂ 〈send.A.cA.P.〈m,B′〉,
receive.P.c′P .A.〈m,B′〉, send.P.cP .B′.〈A,m〉,
hijack.P.B′→B.cB.〈A,m〉, receive.B.cB.P.〈A,m〉〉 .

As before, we assume that A is honest and that B′ 6= B.

(b) fake.A.P.c′P .〈m,B′〉 in tr. If the intruder can fake the mes-
sage 〈m,B′〉, he can also fake the message 〈m,B〉; this means
that the hijack event on the channel from the proxy is unneces-
sary. We ignore this trace pattern.

(c) ∃A′ : R̂i;P ′ : Pr̂oxy · hijack.A′→A.P ′→P.c′P .〈m,B′〉 in tr . As
before, we assume that P ′ = P . We apply N2 again: the agent A′

must have sent the message to P (in some connection cA′) in
order for the intruder to hijack it. The trace now has the
following pattern:

tr5 =̂ 〈send.A′.cA′ .P.〈m,B′〉, hijack.A′→A.P.c′P .〈m,B′〉,
receive.P.c′P .A.〈m,B′〉, send.P.cP .B′.〈A,m〉,
hijack.P.B′→B.cB.〈A,m〉, receive.B.cB.P.〈A,m〉〉 .

We assume that A′ is honest and that A′ 6= A and B′ 6= B.

Applying the channel properties

The properties on the channels to and from the proxy are applied in exactly
the same way as for the simple proxies. The result of this stage of the
automated proof is a set of trace patterns {tr1, tr2, . . . , trn} that are allowed
on the resultant channel.
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Determining the resultant channel specification

We determine the channel property that the resultant channel satisfies in
the same way as we do in the automated proof of the simple chaining the-
orem. The resultant channel is confidential if and only if the channels to
and from the proxy are confidential; we call this value c. We determine the
remaining three co-ordinate points in the lattice by looking at the allowed
trace patterns.

Each of these trace patterns demonstrates that the intruder can perform
a particular event. We present below a summary of these patterns; each
case shows the initial and final events in the pattern, and then describes
which activity this demonstrates. This mapping allows us to assign a tu-
ple (nf,nra,nr) to each trace pattern; this tuple represents the strongest
possible specification that this trace allows.

When the final event is receive.B.cB.P.〈A,m〉 (agent B receives a mes-
sage from the proxy that appears to have been sent on the honest agent A’s
behalf):

send.A.cA.P.〈m,B〉 this does not demonstrate any activity:
(NF,NRA,NR);

send.A.cA.P.〈m, I〉 the intruder redirected a message that was intended for
a dishonest agent: (NF,NRA,NR−);

send.A.cA.P.〈m,B′〉 the intruder redirected a message that was intended
for an honest agent: (NF,NRA,⊥);

send.A′.cA′ .P.〈m,B〉 the intruder re-ascribed a message to an honest
agent: (NF,⊥,NR);

send.A′.cA′ .P.〈m, I〉 the intruder re-ascribed a message to an honest
agent, and redirected a message that was intended for a dishonest
agent: (NF,⊥,NR−);

send.A′.cA′ .P.〈m,B′〉 the intruder re-ascribed a message to an honest
agent, and redirected a message that was intended for an honest
agent: (NF,⊥,⊥);

send.I.cI .P.〈m,B〉 the intruder hijacked his own message to simulate a
fake: (⊥,NRA,NR);

fake.A.P.cP .〈m,B〉 the intruder faked a message to the proxy:
(⊥,NRA,NR);

fake.P.B.cB.〈A,m〉 the intruder faked a message from the proxy:
(⊥,NRA,NR).

129



When the final event is receive.B.cB.P.〈I,m〉 (agent B receives a message
from the proxy that appears to have been sent on the dishonest agent I’s
behalf):

send.I.cI .P.〈m,B〉 this does not demonstrate any activity: (NF,NRA,NR);

send.A.cA.P.〈m,B〉 the intruder re-ascribed a message to a dishonest
agent: (NF,NRA−,NR);

send.A.cA.P.〈m, I〉 this does not demonstrate any activity (the intruder
sent a message that was sent to him): (NF,NRA,NR);

send.A.cA.P.〈m,B′〉 the intruder re-ascribed a message to a dishonest
agent, and redirected a message that was intended for an honest agent;
however, this is only possible on a non-confidential channel, so this
simulates a learn and send: (NF,NRA,NR).

The result of applying the mapping to each of the trace patterns is a set
of tuples of the form (nfi,nrai,nri) for i = 1 . . . n. We take the value of the
confidential co-ordinate and calculate the resultant channel specification in
the following way (where min is calculated according to the order on the
building blocks — see Chapter 4):

(c,nf,nra,nr) =↓ (c,minn
i=1(nfi),minn

i=1(nrai),minn
i=1(nri)) .

By eliminating trace patterns and calculating the resultant point in the
hierarchy in this manner, we prove that the alternative specification of the
resultant channel holds on all valid system traces in which the channel spec-
ifications to and from the proxy hold. The full list of results, and the Haskell
script listing are shown in Appendix B.

5.3 Related work

In [MS94], the authors describe a calculus for secure channel establishment.
They define channels that offer confidentiality (→•), authentication of the
message sender (•→), or both (•→•). The authors show that if user B
trusts a third party T , and there are channels from another agent A such
that A •→ T •→ B, then the agents A and B can establish a new chan-
nel A •→ B. The authors also show that confidential channels can be
chained, provided that the message sender trusts the third party. These
two results agree with our chaining theorems; though our results go further
as we show that many more channels can be chained. However, we cannot
reason about channels when only one agent trusts the third party, as the
authors of [MS94] can.

In [Boy93], Boyd defines two different types of channel: Confidentiality,
where only the intended user (or set of users) can read the message; and
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Authentication, where only the expected user (or set of users) can write
the message. In Boyd’s setup channels are established by utilising existing
channels, or by propagating new channels between the two users wishing
to communicate, often via a trusted third party (a proxy in our notation).
Boyd shows that if a user A has an authenticated channel to a third party T ,
and T has an authenticated channel to a user B (and if B trusts T ), then an
authenticated channel from A to B can be established. This agrees with our
(multiplexing) result that authenticated channels can be chained; as before
though, our results go further as they show that many more channels can
be chained.

Some authors have tried to solve the chaining problem by modifying the
secure transport layer protocol. In [SBL06] the authors propose a variant of
TLS in which three connections are established: a direct connection between
client and server, and two direct connections between the client and a proxy,
and between the proxy and the server. The direct connection can be used
for highly confidential data, while the proxy channel can be used for data
that does not have to remain secret. In [KCC01] the authors propose adding
end-to-end encryption to chains of WTLS and TLS connections so that data
sent via a proxy remains confidential. However, in both these cases, data
can be passed through the proxy without the proxy being able to read it;
the proxy can then no longer perform any application-layer jobs it might
have (such as virus scanning).

5.4 Conclusions

In this chapter we investigated chaining our secure channel properties
through a trusted third party (a proxy). We showed, in two different cases,
that our channel properties are invariant under chaining, and that the over-
all channel property through a proxy is at least as strong as the greatest
lower bound of the channels to and from the proxy. In some cases the overall
channel is stronger than both channels.

In the case of simple proxies this elevation of the overall channel prop-
erty was caused by the trust relations between the agents and the proxies:
honest agents only send messages to their proxies, and all agents know which
proxies are dedicated to sending messages to them. In the case of the mul-
tiplexing proxies this elevation is due to the extra information added to the
application-layer messages.

In both cases we demonstrated a proof technique for showing that the
channel through a proxy satisfies the properties described by the general
chaining theorems, and we described a Haskell programme that automates
each of the 121 proofs of correctness of the theorems. Finally, we com-
pared our chaining results to similar results discovered and proved by other
researchers.
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Chapter 6

CSP models of secure
channels

In Chapter 3 we defined a framework for specifying secure channel prop-
erties; we set out a hierarchy of 11 confidential and authenticated channel
properties, and a hierarchy of 13 independent session and stream properties.
One of the key reasons for developing these channel properties was to study
security protocols that were designed with a particular secure transport layer
in mind.

In this chapter we describe our abstract models of the channel properties.
These abstract models simply capture the limitations that the channel prop-
erties impose on the intruder, without any of the complexity of modelling
the secure transport layer protocol itself.

In Section 6.1 we describe and characterise (by its honest traces) the
existing Casper model. We show that the standard model is equivalent to,
i.e. has the same honest traces as, the bottom channel from Chapter 3. In
Section 6.2 we describe the models of the new channels; these models are
built around the existing Casper structure so that only minimal changes
are required to the input scripts, and only small changes are made by the
compiler to the resulting CSP output script. In this section we prove that
these models are sound and complete (i.e. that they capture all honest traces
of the relevant channel property and no more), so we conclude that they can
usefully be used for protocol analysis.

In Section 6.3 we describe the alterations to the Casper model that are
necessary to implement some of the session and stream properties, and we
argue that these alterations correctly realise the properties. In Section 6.4,
we describe the syntax for Casper input files to use the new channel models.
We use the new Casper models for our case studies in Chapter 7. Finally, in
Section 6.5 we conclude and summarise our findings.
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Figure 6.1: The standard Casper network model.

6.1 Casper model

Casper [Low98] is a compiler for the analysis of security protocols;
Casper produces a CSP model of a security protocol from an abstract de-
scription of the protocol. The CSP model can be checked for security (trace)
properties by the model checker FDR [FSE05]. In this section we describe
the Casper model, and we formulate a description of the set of traces of
the Casper system. We use this formulation to show that the standard
Casper model is equivalent to the bottom channel specification.

A Casper input script describes a single application-layer protocol, and
the CSP output script models a finite system of honest agents who run the
protocol over a network controlled by an intruder. The intruder observes all
messages entering the network, and controls all messages leaving the net-
work, so the intruder controls all communication paths through the network;
see Figure 6.1. The intruder can also take part in protocol runs using his
own identity: the honest agents can send messages to him, and he can cause
them to receive messages from him.

We recall the definition of an application-layer security protocol (from
Chapter 4): an application-layer security protocol P is represented by a
triple (R,M, T ). R is the set of roles in the protocol; M is the set of
messages (labelled sequences of values taken from MessageApp); T is the
ordered sequence of message transmissions in the protocol.

We use the Yahalom protocol [BAN90] as a running example in this
section to demonstrate how Casper models are constructed:

Message 1 a→ b : a, na
Message 2 b → s : b, {a, na, nb}kbs

Message 3 s → a : {b, kab, na, nb}kas , {a, kab}kbs

Message 4 a→ b : {a, kab}kbs
, {nb}kab

.

There are three roles in this protocol: the initiator (a : R1), the respon-
der (b : R2) and the server (s : R3). Using the notation introduced above
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this protocol is described as:

P = (R,M, T ) ,
R = {R1, R2, R3} ,
M = {(Msg1, 〈a, na〉) | a : Agent, na : Nonce} ∪

{(Msg2, 〈b, {a, na, nb}kbs
〉) |

a, b : Agent;na, nb : Nonce; kbs : SymmetricKey} ∪
{(Msg3, 〈{b, kab, na, nb}kas , {a, kab}kbs

〉) |
a, b : Agent;na, nb : Nonce; kab, kas, kbs : SymmetricKey} ∪
{(Msg4, 〈{a, kab}kbs

, {nb}kab
)〉 |

a : Agent;nb : Nonce; kab, kbs : SymmetricKey} ,
T = 〈(R1, R2,Msg1), (R2, R3,Msg2), (R3, R1,Msg3), (R1, R2,Msg4)〉 .

For each of these roles Casper builds a process that sends and receives
the messages of the protocol; each process is parameterised by the facts that
are necessary to perform the particular role in the protocol. For example,
the initiator process is as follows:

INITIATOR(a, na, s) =
� b : Responder • env.a.(Env0, b)→
send.a.b.(Msg1, 〈a, na〉)→
� s : Server� kab : Key •

receive.s.a.(Msg3, 〈{b, kab, na, nb}kas ,m〉)→
send.a.b.(Msg4, 〈m, {nb}kab

〉)→ STOP .

The initiator process is parameterised by the identity of the agent playing
the role (a), the values of all facts necessary to play the role (na), and the
identities of third party agents that are fixed by the protocol structure (in
this case, just the server’s identity s is fixed).

We note that the values of facts in received messages (such as nonces)
are checked automatically because the process does not accept a message in
which the values are incorrect. The second component of the third message
is just treated as a value m from MessageApp; this field in the protocol is
encrypted with b’s shared key with s, so a cannot check the values in it.

As well as performing a send or receive event for every protocol mes-
sage that the initiator takes part in, the initiator process receives an initial
event from the environment; this event tells the initiator which agent to run
the protocol with. Whether values of facts and identities of other agents
are passed to the process as parameters or in an initial message from the
environment is controlled by the Casper input script.

Casper builds a process like the one above for every role in the protocol.
Each of these processes can be initiated with an agent’s identity (and the
values of the facts that process needs to know to run the protocol). For
any protocol P we write Pi(A) for the process for role Ri initiated with
agent A’s identity. traces(Pi(A)) is the complete set of traces that process
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could perform, and traces(PA) is the set of traces that all the processes
initiated with agent A’s identity perform (these processes are interleaved, so
this is the set of interleavings of traces(Pi(A)) for all the appropriate i).

The set of traces of the honest agents in the Casper system is therefore
described by the following set:

{tr ∈ {| send.Honest, receive.Honest |}∗ |
∀A : Honest · tr � {| send.A, receive.A |}∗ ∈ traces(PA)} .

Definition 6.1.1 (Protocol traces). We write traces(P) for the set of all
possible traces of the application-layer protocol P:

traces(P) =̂
{tr ∈ {| send, receive |}∗ |
∀A : Agent · tr � {| send.A, receive.A |} ∈ traces(PA)} .

The standard Casper agent processes do not communicate in explicit
connections: they just send and receive messages to and from other agents.
In Section 6.3 we build explicit connection identifiers into Casper to model
the session and stream channels. Until then, we assume that the agents do
communicate in connections. Connection identifiers can easily be mapped
onto the traces performed by the agents in the following way:

1. Connection identifiers are added to the events in the same way as they
appear in the events in Chapter 3;

2. Every time an agent sends a message to another agent for the first
time they start a new connection, and so a new connection identifier
is introduced;

3. Every time an agent receives a message from another agent for the first
time they start a new connection, and so a new connection identifier
is introduced.

Casper also builds an intruder process that controls the communication
between the honest agent processes. The intruder synchronises on all of
the send events performed by the honest agents, and learns the values of
the messages. After every send event that he overhears the intruder uses
the deduction rules described in Chapter 2 to close the set of his previous
knowledge and the new message under the deduction relation. At any time
the intruder can say a value that he has learned to cause an honest agent to
receive a message from any other agent’s identity.

This intruder process can act in an entirely passive manner, just allow-
ing message transmissions to be received unaltered, or he can block, fake,
redirect, re-ascribe and alter messages before passing them on. For more de-
tails on the intruder process and the deduction relation see [RG97, Low98,
RSG+01].
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As in the formal model described in Chapter 3, the intruder in the
Casper model has a set of initial knowledge IIK which he can use in his
deductions. In the standard Casper model, the intruder learns every sent
message (i.e. no channels are confidential), so after any trace the intruder
knows everything that he can deduce from his initial knowledge and what
he has overheard:

CasperIntruderKnowsIIK(tr) =̂
{m | IIK ∪ tr ↓ {| send.Honest.Connection.Agent |} ` m} .

In the Casper models the intruder does not send messages with his own
identity (he just causes honest agents to receive them from him), nor does
he receive messages that were sent to him (he learns the content of the
messages from overhearing the send events). The complete set of traces of
a Casper system is therefore described by the following set:

CasperTracesIIK =̂
{tr ∈ {| send.Honest, receive.Honest |}∗ |
∀A : Honest · tr � {| send.A, receive.A |} ∈ traces(PA)} ∧
∀B : Honest; cB : Connection;A : Agent;m : MessageApp; tr′ : Trace ·
tr′_〈receive.B.cB.A.m〉 6 tr ⇒
m ∈ CasperIntruderKnowsIIK(tr′)} .

The above description of the traces of the Casper system is based on the
description of Casper traces from [BL03].

In order to prove that the models we have developed for Casper are
sound and complete we show that the set of traces of the specification system
defined in Chapter 3 is equal to the set of traces of the Casper system, subject
to the limitations that the application protocol imposes on the honest agents’
behaviour.

In Chapter 3 we defined the set of ValidSystemTracesIIK ; this is the set of
traces composed of application-layer send and receive events and transport-
layer send, receive, fake and hijack events that follow the rules N1–N4,
A1 and A2. In this chapter we use the simulation relation to show that
the Casper system of any channel specification is equivalent to the system
described in Chapter 3.

In order to simplify the job of showing the simulation relations hold we
formulate below a precise definition of HonestTracesIIK : the projection of
the set of valid traces onto the events performed by the honest agents. The
network rules N1, N2 and N3 restrict the intruder’s behaviour, and they
all hold vacuously on an honest trace. Similarly, rules A1 and A2 relate
application-layer events to transport-layer events, and since transport-layer
events do not appear in honest traces these rules hold vacuously.

We restate a slightly modified form of rule N4 below; this rule does not
necessarily hold for every honest trace, so we must consider each of the
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consequences of the implication separately:

N4(tr) =̂
∀B : Honest; cB : Connection;A : Agent;m : MessageApp; tr′ : Trace ·
tr′_〈receive.B.cB.A.m〉 6 tr ⇒ ∃A′, B′ : Agent; cA : Connection ·

send.A.cA.B.m in tr′ ∨
fake.A.B.cB.m in tr′ ∨
hijack.A′→A.B′→B.cB.m in tr′ .

1. If a send.A.cA.B.m event precedes the receive event in the trace then
either agent A is honest (in which case the event appears in the honest
trace), or agent A is dishonest (in which case the event does not appear
in the honest trace). In this second case, we use rule N3 to conclude
that m ∈ IntruderKnowsIIK(tr′).

2. If a fake.A.B.cB.m event precedes the receive event in the trace then
this event does not appear in the honest trace; as above, we conclude
that m ∈ IntruderKnowsIIK(tr′).

3. If a hijack.A′→A.B′→B.cB.m event precedes the receive event in the
trace then there must previously have been a send.A′.cA′ .B′.m event
in the trace, for some connection cA′ (by rule N2). In this case we
assume that A′ is honest, because we can disregard those traces in
which the intruder hijacks his own messages (Proposition 4.4.1).

Hence we define:

HonestTracesIIK =̂
{tr ∈ {|send.Honest, receive.Honest|}∗ |
∀B : Honest; cB : Connection;A : Agent;m : MessageApp; tr′ : Trace ·
tr′_〈receive.B.cB.A.m〉 6 tr ⇒
∃A′, B′ : Agent; cA′ : Connection · send.A′.cA′ .B′.m in tr′ ∨
m ∈ IntruderKnowsIIK(tr′)} .

Theorem 6.1.2. The standard Casper model is equivalent to the bottom
channel specification ⊥ with respect to any application layer protocol P. In
other words, if every channel in the formal model satisfies the specification ⊥,
then:

∀IIK ⊆ MessageApp ·HonestTracesIIK ∩ traces(P) = CasperTracesIIK .

Proof. The theorem clearly holds once we observe that on the bottom chan-
nel (which is non-confidential):

∀IIK ⊆ MessageApp · send.A′.cA′ .B′.m in tr′ ⇒ IntruderKnowsIIK(tr′) ,
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and since

IntruderKnowsIIK(tr) =̂
{m | (IIK ∪ SentToIntruder(tr) ∪ SentOnNonConfidential(tr)) ` m} ,

and all channels are non-confidential:

∀IIK ⊆ MessageApp; tr : Trace ·
IntruderKnowsIIK(tr) = CasperIntruderKnowsIIK(tr) .

6.2 Authenticated and confidential channels

In the previous section we described the standard Casper model, and we
proved that it is equivalent to the bottom channel specification. In this
section we describe the changes to Casper to model the new channels, and
we prove that these models are equivalent to the channel specifications.
We prove this equivalence by showing that the sets of honest traces of the
Casper system are equal to the sets of honest traces of the specification.

In the standard Casper model the intruder’s knowledge increases
when he overhears messages sent by honest agents: an event of the
form send.A.cA.B.m for honest A is renamed to a hear.m event. The new
message m is then used to increase the set of the intruder’s knowledge; i.e.

CasperIntruderKnowsIIK(tr_〈send.A.cA.B.m〉) =
{m′ | IIK ∪ CasperIntruderKnowsIIK(tr) ∪ {m} ` m′} .

Every message in the intruder’s knowledge is stored in terms of its com-
ponents (i.e. the parts of the message that the intruder can break down
and reconstruct); these are known as facts. The intruder can combine
facts to create new messages, and, for any message m that he knows, the
intruder can perform a say.m event; this is renamed to an event of the
form receive.B.cB.A.m for honest B.

To model the new channels we create several new facts that the intruder
can learn; these facts record the message that was sent (as the old facts
do) but they also record who the message was originally sent by and to
whom it was sent. These new facts have different deduction rules (depending
on whether or not the channel is confidential), and the renaming rules for
the intruder to hear and say these new facts are restricted to reflect the
properties of the channel.

The new facts are used on channels as follows:

SentToC.(B, m) for confidential channels that allow re-ascribing but
specify NR or NR−; note that there is not a non-confidential form
of this fact because there are no non-confidential channels that allow
re-ascribing;
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SentBy.(A, m) for channels that allow redirecting but specify NRA
or NRA−; note that there is not a confidential form of this fact because
it is only used on channels that allow redirecting (and hence cannot
be confidential);

SentByTo.(A, B, m) for channels that specify NRA or NRA− and NR
or NR−;

SentByToC.(A, B, m) for confidential channels that specify NRA
or NRA− and NR or NR−.

The deduction rules for these facts are straightforward:

∀A,B : Agent;m : Message ·
SentBy.(A,m) ` m ∧
SentByTo.(A,B,m) ` m.

The intruder cannot use the confidential facts (SentToC.(B,m)
and SentByToC.(A,B,m)) to deduce any further facts.

6.2.1 Channel models

In this section we describe the renaming rules for the send/hear and
say/receive events for the new channel models.1 For each channel we de-
scribe the renaming rules, and we describe how these relate to the events
that the intruder can and cannot perform.

⊥ The renaming relation is as follows:

{(hear.m, send.A.B.m) | A : Honest;B : Agent;m : Message} ∪

{(say.m, receive.A.B.m) | A : Agent;B : Honest;m : Message} .
The intruder overhears all messages sent on the network and can send mes-
sages with any agent’s identity; this reflects the fact that the intruder can
fake messages, and can hijack messages by creating a receive event with any
pair of agent identities after hearing a message that was previously sent.

NF ∧NRA− The renaming relation is as follows:

{(hear.SentBy.(A,m), send.A.B.m) |
A : Honest;B : Agent;m : Message} ∪

{(say.m, receive.I.B.m) | I : Dishonest;B : Honest;m : Message} ∪

{(say.SentBy.(A,m), receive.A.B.m) |
A,B : Honest;m : Message} .

1In this section we omit the connection identifiers from the honest agents’ events; as
before, these can easily be added to the traces later.
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The intruder overhears all messages sent on the network, but he can only
send messages with his own identity. The intruder can redirect all previously
sent messages, and he can re-ascribe messages to dishonest identities by
learning them and sending them.

NF ∧NRA− ∧NR− The renaming relation is as follows:

{(hear.SentByTo.(A,B,m), send.A.B.m) |
A : Honest;B : Agent;m : Message} ∪

{(say.m, receive.I.B.m) | I : Dishonest;B : Honest;m : Message} ∪

{(say.SentByTo.(A,B,m), receive.A.B.m) ,
A,B : Honest;m : Message} ∪

{(say.SentByTo.(A, I,m), receive.A.B.m) |
A,B : Honest; I : Dishonest;m : Message} .

The intruder overhears all messages sent on the network, but he can only
send messages with his own identity. The intruder can re-ascribe previously
sent messages to a dishonest identity, but he can only redirect messages that
were sent to him. The intruder can only re-ascribe such messages to himself,
so to re-ascribe and redirect a message he learns the message and sends it
with his own identity.

NF ∧NRA− ∧NR The renaming relation is as follows:

{(hear.SentByTo.(A,B,m), send.A.B.m) |
A : Honest;B : Agent;m : Message} ∪

{(say.m, receive.I.B.m) | I : Dishonest;B : Honest;m : Message} ∪

{(say.SentByTo.(A,B,m), receive.A.B.m) ,
A,B : Honest;m : Message} .

The intruder overhears all messages sent on the network, but he can only
send messages with his own identity. The intruder can re-ascribe previously
sent messages to a dishonest identity, but he cannot redirect messages.
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C ∧NR− The renaming relation is as follows:

{(hear.SentToC.(B,m), send.A.B.m) | A,B : Honest;m : Message} ∪

{(hear.m, send.A.I.m) | A : Honest; I : Dishonest;m : Message} ∪

{(say.m, receive.A.B.m) | A : Agent;B : Honest;m : Message} ∪

{(say.SentToC.(B,m), receive.A.B.m) |
A : Agent;B : Honest;m : Message} .

The intruder cannot learn messages sent to honest agents. He can send
messages with his own identity, fake messages, and he can redirect messages
that were sent to him by faking them. The intruder cannot redirect messages
that were sent to honest agents (but he can re-ascribe them).

C ∧NRA− ∧NR− The renaming relation is as follows:

{(hear.SentByToC.(A,B,m), send.A.B.m) |
A,B : Honest;m : Message} ∪

{(hear.m, send.A.I.m) | A : Honest; I : Dishonest;m : Message} ∪

{(say.m, receive.A.B.m) | A : Agent;B : Honest;m : Message} ∪

{(say.SentByToC.(A,B,m), receive.A.B.m) ,
(say.SentByToC.(A,B,m), receive.I.B.m) |
A,B : Honest; I : Dishonest;m : Message} .

The intruder cannot learn messages sent to honest agents. He can send
messages with his own identity, fake messages, and he can redirect messages
that were sent to him by faking them. The intruder can only re-ascribe
messages that were sent to honest agents with his own identity, and he
cannot redirect them.

C ∧NRA ∧NR− The renaming relation is as follows:

{(hear.SentByToC.(A,B,m), send.A.B.m) |
A,B : Honest;m : Message} ∪

{(hear.m, send.A.I.m) | A : Honest; I : Dishonest;m : Message} ∪

{(say.m, receive.A.B.m) | A : Agent;B : Honest;m : Message} ∪

{(say.SentByToC.(A,B,m), receive.A.B.m) |
A,B : Honest;m : Message} .
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The intruder cannot learn messages sent to honest agents. He can send
messages with his own identity, fake messages, and he can redirect messages
that were sent to him by faking them. The intruder cannot re-ascribe or
redirect messages that were sent to honest agents, he can only replay them.

C ∧NF ∧NRA− ∧NR− The renaming relation is as follows:

{(hear.SentByToC.(A,B,m), send.A.B.m) |
A,B : Honest;m : Message} ∪

{(hear.SentByTo.(A, I,m), send.A.I.m) |
A : Honest; I : Dishonest;m : Message} ∪

{(say.m, receive.I.B.m) | I : Dishonest;B : Honest;m : Message} ∪

{(say.SentByToC.(A,B,m), receive.A.B.m) ,
(say.SentByToC.(A,B,m), receive.I.B.m) |
A,B : Honest; I : Dishonest;m : Message} ∪

{(say.SentByTo.(A, I,m), receive.A.B.m) |
A,B : Honest; I : Dishonest;m : Message} .

The intruder cannot learn messages sent to honest agents. He can send
messages with his own identity, but he cannot fake messages. The intruder
can only re-ascribe messages with his own identity, and he can only redirect
messages that were sent to him. To re-ascribe and redirect a message he
learns the message and sends it with his own identity.

C ∧NF ∧NRA ∧NR− The renaming relation is as follows:

{(hear.SentByToC.(A,B,m), send.A.B.m) |
A,B : Honest;m : Message} ∪

{(hear.SentByTo.(A, I,m), send.A.I.m) |
A : Honest; I : Dishonest;m : Message} ∪

{(say.m, receive.I.B.m) | I : Dishonest;B : Honest;m : Message} ∪

{(say.SentByToC.(A,B,m), receive.A.B.m) |
A,B : Honest;m : Message} ∪

{(say.SentByTo.(A, I,m), receive.A.B.m) |
A,B : Honest; I : Dishonest;m : Message} .

The intruder cannot learn messages sent to honest agents. He can send
messages with his own identity, but he cannot fake messages. The intruder
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cannot re-ascribe messages, and he can only redirect messages that were
sent to him.

C ∧NF ∧NRA− ∧NR The renaming relation is as follows:

{(hear.SentByToC.(A,B,m), send.A.B.m) |
A,B : Honest;m : Message} ∪

{(hear.m, send.A.I.m) | A : Honest; I : Dishonest;m : Message} ∪

{(say.m, receive.I.B.m) | I : Dishonest;B : Honest;m : Message} ∪

{(say.SentByToC.(A,B,m), receive.A.B.m) ,
(say.SentByToC.(A,B,m), receive.I.B.m) |
A,B : Honest; I : Dishonest;m : Message} .

The intruder cannot learn messages sent to honest agents. He can send
messages with his own identity, but he cannot fake messages. The intruder
can only re-ascribe messages with his own identity, and he cannot redirect
messages.

C ∧NF ∧NRA ∧NR The renaming relation is as follows:

{(hear.SentByToC.(A,B,m), send.A.B.m) |
A,B : Honest;m : Message} ∪

{(hear.m, send.A.I.m) | A : Honest; I : Dishonest;m : Message} ∪

{(say.m, receive.I.B.m) | I : Dishonest;B : Honest;m : Message} ∪

{(say.SentByToC.(A,B,m), receive.A.B.m) |
A,B : Honest; I : Dishonest;m : Message} .

The intruder cannot learn messages sent to honest agents. He can send
messages with his own identity, but he cannot fake, re-ascribe or redirect
messages.

6.2.2 Soundness and completeness

In Chapter 3 we assume that the intruder cannot use the hijack event to
play a message from one channel on another one: the hijack event does not
allow the intruder to change the roles of the agents, only their identities. In
order to prove the equivalence of the Casper models to the formal channel
specifications we must assume a property of the application-layer protocols
that prevents the intruder from hijacking messages from one channel to
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another. If we do not assume that application-layer protocols have this
property then the proofs in this section become soundness proofs, rather
than equivalence proofs. We recall the definition of disjoint messages from
Chapter 4.

Definition 6.2.1 (Disjoint messages). An application-layer proto-
col P = (R,M, T ) has disjoint messages if the sets of possible values of
encrypted components of different messages are disjoint:

∀(Msgi,Mi), (Msgj ,Mj) ∈M ·
∀mi ∈ EncryptedComponents(Mi);mj ∈ EncryptedComponents(Mj) ·
mi = mj ⇒ i = j .

The disjoint messages property of an application-layer protocol ensures
that even with the bottom secure channel property, the intruder cannot
take messages from one channel and play them on the other. This is in fact
a stronger disjointness property than we need to show the equivalence of
the single-message channel properties, but we use this strong property in
Section 6.3 for the session and stream properties.2

Confidentiality The only difference between a confidential and a non-
confidential channel in Casper is whether or not the intruder can learn the
application-layer message from the fact that he learns from hearing the mes-
sage on the transport layer. By inspection of the renaming relations and the
deduction relations described earlier in this section we see that the intruder
can only learn messages sent on non-confidential channels, or sent to him.
In particular, it is clear that after any Casper trace tr on a mixture of confi-
dential and non-confidential channels, the intruder’s knowledge is described
by IntruderKnowsIIK(tr). In other words, the intruder’s knowledge is ex-
actly the same as it is in the formal model.

Authentication For each of the secure channels in the hierarchy we prove
the following theorem:

Theorem 6.2.2 (Equivalence of channel models). The Casper model of the
channel property P is equivalent to the formal model of the channel prop-
erty. In other words, given a channel specification P (Ri → Rj) and an
application-layer protocol P = (R,M, T ):

∀IIK ⊆ MessageApp ·HonestTracesIIK(P (Ri → Rj)) ∩ traces(P) =
CasperTracesIIK(P (Ri → Rj)) ,

2For the equivalence of the single message channels it is sufficient that the messages
sent between different roles on channels that satisfy the same property are disjoint; there
may be intersections in the sets of messages sent by one role to another on the same
channel.
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where HonestTracesIIK(P (Ri → Rj)) is the set of valid system traces that
satisfy the property P on the channel Ri → Rj and the property ⊥ on all
other channels, and CasperTracesIIK(P (Ri → Rj)) is the set of traces of the
Casper system with the model of specification P on the channel Ri → Rj and
the standard Casper model on all other channels.

In each system we consider the channel specification P applied to the
channel Ri → Rj , while every other channel satisfies the bottom specifica-
tion. Because messages cannot be hijacked from one channel to another, and
because including stronger channel specifications on other channels only re-
stricts the traces on the other channels, the proof still holds when the other
channels satisfy stronger properties.

In order to demonstrate the proof technique, we prove the theorem for
the channel C ∧NF ∧NRA− ∧NR−.

Proof. We first calculate the honest traces of the channel specification us-
ing HonestTracesIIK and the alternative specification of the channel C ∧
NF ∧NRA− ∧NR−. We recall the alternative specification:

Alt(C ∧NF ∧NRA− ∧NR−)(Ri → Rj) =̂
C(Ri → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp; tr′ : Trace ·
tr′_〈receive.B.cB.A.m〉 6 tr ⇒
∃cA : Connection · send.A.cA.B.m in tr′ ∨
∃A′ : R̂i;B′ : R̂j · hijack.A′→A.B′→B.cB.m in tr′ ∧

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) .

1. If a send.A.cA.B.m event precedes the receive event in the trace then
either agent A is honest (in which case the event appears in the honest
trace), or agent A is dishonest (in which case the event does not ap-
pear in the honest trace). In the second case we conclude, as before,
that m ∈ IntruderKnowsIIK(tr′);

2. If a hijack.A′→A.B′→B.cB.m event precedes the receive event in the
trace then there are four possibilities:

(a) A = A′ ∧B = B′: in this case A is honest (because the intruder
does not hijack his own send events to replay them), so we con-
clude that there is a send.A.cA.B.m event in the trace;

(b) A 6= A′ ∧B = B′: in this case A is dishonest; there must have
been a send.A′.cA′ .B.m event earlier in the trace;

(c) A = A′ ∧B 6= B′: in this case B′ is dishonest; there must have
been a send.A.cA.B′.m event earlier in the trace;

(d) A 6= A′ ∧B 6= B′: in this case both A and B′ are dishonest; we
can safely block the intruder from performing a hijack event where

145



he redirects a message that was sent to him and re-ascribes it to
himself (Proposition 4.4.3), so we do not allow this trace in the
honest traces of the specification.

The honest trace formulation of the alternative specification is thus:

Alt(C ∧NF ∧NRA− ∧NR−)(Ri → Rj) =̂
C(Ri → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp; tr′ : Trace ·
tr′_〈receive.B.cB.A.m〉 6 tr ⇒
∃cA : Connection · send.A.cA.B.m in tr′ ∨
Dishonest(A) ∧m ∈ IntruderKnowsIIK(tr′) ∨
Dishonest(A) ∧ ∃A′ : R̂i; cA′ : Connection ·

send.A′.cA′ .B.m in tr ∨
∃cA : Connection;B′ : (Dishonest, Rj) · send.A.cA.B′.m in tr .

In this specification, the existence of a send event by an agent A implies
that that agent is honest (because if it were dishonest the event would not
appear in the honest trace).

In order to obtain a complete description of the honest traces of this
specification we take the definition of HonestTracesIIK from before, and add
the alternative specification (above) as a condition for the receive events on
the channel Ri → Rj :

HonestTracesIIK(P (Ri → Rj)) =̂
{tr ∈ {| send.Honest, receive.Honest |}∗ |
∀B : Honest; cB : Connection;A : Agent;m : MessageApp; tr′ : Trace ·
tr′_〈receive.B.cB.A.m〉 6 tr ⇒
∃A′, B′ : Agent; cA′ : Connection · send.A′.cA′ .B′.m in tr′ ∨
m ∈ IntruderKnowsIIK(tr′) ∧

∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp; tr′ : Trace ·
tr′_〈receive.B.cB.A.m〉 6 tr ⇒
∃cA : Connection · send.A.cA.B.m in tr′ ∨
Dishonest(A) ∧m ∈ IntruderKnowsIIK(tr′) ∨
Dishonest(A) ∧ ∃A′ : R̂i; cA′ : Connection ·

send.A′.cA′ .B.m in tr ∨
∃cA : Connection;B′ : (Dishonest, Rj) · send.A.cA.B′.m in tr} .

This is the set of all valid honest traces with the bottom channel specifi-
cation on all channels, with the additional restrictions of the channel prop-
erty C ∧NF ∧NRA− ∧NR− on the channel Ri → Rj . In order to prove the
theorem we must show that this set of honest traces is equal to the set of
traces of the Casper system; to do this, we consider the full set of traces of
the Casper system.
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First we recall the description of the set of traces of the Casper system:

CasperTracesIIK =̂
{tr ∈ {| send.Honest, receive.Honest |}∗ |
∀A : Honest · tr � {| send.A, receive.A |}∗ ∈ traces(PA)} ∧
∀B : Honest; cB : Connection;A : Agent;m : Message; tr′ : Trace ·
tr′_〈receive.B.cB.A.m〉 6 tr ⇒
m ∈ CasperIntruderKnowsIIK(tr′)} .

On the channel Ri → Rj the model of the intruder differs from
the standard model, so we can be more specific in the formulation
of CasperTracesIIK on the channel Ri → Rj . We use the intruder’s re-
naming and the deduction relation rules for the new facts to discover which
events must have happened earlier in a trace in which a receive.B.cB.A.m
event occurs on the channel Ri → Rj .

Suppose first that the honest agent B : R̂i receives the message m in con-
nection cB, apparently from agent A : R̂i. For this to happen, the intruder
must be able to perform the receive event. By tracing the renaming relation
backwards we observe that the intruder must be able to perform one of the
following events:

1. say.m: the intruder cannot fake on this channel, so A must be dishon-
est; in this case, m ∈ CasperIntruderKnowsIIK(tr′);

2. say.SentByToC.(A,B,m): in this case A must be honest; this fact can
only be learned when the intruder hears it, so the event send.A.cA.B.m
must occur earlier in the trace for some connection cA;

3. say.SentByToC.(A′, B,m): if A 6= A′ then A must be dishonest;
this fact can only be learned when the intruder hears it, so the
event send.A′.cA′ .B.m must occur earlier in the trace for some con-
nection cA′ ; when A = A′ this is covered by the case above;

4. say.SentByTo.(A,B′,m): in this case B′ must be dishonest; this
fact can only be learned when the intruder hears it, so the
event send.A.cA.B′.m must occur earlier in the trace for some con-
nection cA; again, when B = B′ this is covered by the case above.

We add these possible prior events to the description of CasperTracesIIK
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to form CasperTracesIIK(P (Ri → Rj)):

CasperTracesIIK(P (Ri → Rj)) =̂
{tr ∈ {| send.Honest, receive.Honest |}∗ |
∀A : Honest · tr � {| send.A, receive.A |}∗ ∈ traces(PA)} ∧
∀B : Honest; cB : Connection;A : Agent;m : Message; tr′ : Trace ·
tr′_〈receive.B.cB.A.m〉 6 tr ⇒
m ∈ CasperIntruderKnowsIIK(tr′) ∧

∀B : R̂j ; cB : Connection;A : R̂i;m : Message; tr′ : Trace ·
tr′_〈receive.B.cB.A.m〉 6 tr ⇒
∃cA : Connection · send.A.cA.B.m in tr′ ∨
Dishonest(A) ∧m ∈ CasperIntruderKnowsIIK(tr′) ∨
Dishonest(A) ∧ ∃A′ : R̂i; cA′ : Connection ·

send.A′.cA′ .B.m in tr′ ∨
∃cA : Connection;B′ : (Dishonest, Rj) · send.A.cA.B′.m in tr′} .

As with the proof of equivalence for the bottom channel specification we
observe that if a send.A′.cA.B′.m appears in the trace on any channel other
than Ri → Rj then the intruder knows that message, and that the intruder’s
knowledge after any trace is the same in the formal and Casper models. It
is clear that when we restrict the honest traces of the channel specification
to the traces of the application-layer protocol P the two sets are equal, and
hence the two models are equivalent.

6.3 Session and stream channels

In Section 6.2 we described how implicit connection identifiers can be
mapped onto the traces of the Casper agent processes: each instantiation
of each agent receives a new connection identifier for every agent process it
communicates with. Our model of the session channels works in exactly the
same way, except that the connection identifiers are made explicit. In this
section we describe the session and stream models, and we argue that they
are sound and complete.

6.3.1 Session channel models

To model the session channels we add explicit connection identifiers to the
new facts on the relevant channels, and to the communication events of the
honest agent processes.

For connections where an agent acts as the message sender the agent gets
a new connection identifier to use for the connection; this connection iden-
tifier is passed to the agent process as a parameter (just as the values such
as nonces are passed as parameters). The agent uses the same connection
identifier for every message he sends in the connection.
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When an agent acts as the message receiver the connection identifier
is chosen by external choice when he receives the first message in the con-
nection (just as the values of new facts that originate at other agents are
chosen). After receiving the first message in a connection the agent process
only receives further messages if they have the same connection identifier.

To illustrate the technique, we update the INITIATOR process from
Section 6.1 to show how the connection identifiers are used (in this case
every message in the protocol is sent on a session channel).

INITIATOR(a, ca, na, s) =
� b : Responder • env.a.(Env0, b)→
send.a.ca.b.(Msg1, 〈a, na〉)→
� s : Server� kab : Key� cs : Connection •

receive.s.a.cs.(Msg3, 〈{b, kab, na, nb}kas ,m〉)→
send.a.ca.b.(Msg4, 〈m, {nb}kab

〉)→ STOP .

The connection identifiers are added to the facts in the natural
way, so the new facts now have the following forms: SentToC.(B, cA,m),
SentBy.(A, cA,m), SentByTo.(A, cA, B,m) and SentByToC.(A, cA, B,m).3

The deduction rules are exactly the same as before, so they do not allow the
intruder to change the connection identifier associated with the message in
the new facts: the intruder cannot hijack messages from one connection to
another.

Each honest agent needs a new connection identifier for every connection
they establish, so the Casper compiler can calculate how many connection
identifiers are necessary for any particular instantiation of honest agent pro-
cesses. The intruder also has a connection identifier to use when he sends
or fakes messages, but the intruder only uses one connection identifier for
every message he sends or fakes.

Because agents only send (and receive) messages in the same connection
with the same connection identifier, this mechanism correctly implements
the session property. In order to show this we consider the receives-from
relation R established by the traces of the Casper system and we show that
it is left-total: i.e. every agent’s connection receives messages from a single
connection (or from the intruder). This is trivially true once we observe that
each agent sends all their messages with the same connection identifier, the
intruder can only fake messages with his connection identifier, the intruder
cannot change the connection identifier in the new facts, and each honest
agent only receives messages in a single connection if they all have the same
connection identifier.

If an honest agent receives a single message in a session then that mes-
sage must either have been faked to him by the intruder, or hijacked to him

3Note that the connection identifier in the SentToC fact is the connection identifier
chosen by the message sender, but this does not affect whom the intruder re-ascribes the
message to.
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(by the intruder saying one of the new facts). In this case, there is another
connection (either the original sender’s connection or the intruder’s connec-
tion identifier) such that the receives-from relation holds. If an honest agent
receives more than one message in a single connection, but there does not
exist a single connection (either honest or faked) that sent all the messages
that agent received, then the intruder must have been able to fake with
an honest agent’s connection identifier (which he cannot do), or change the
connection identifier associated with one of the facts he has learned (which
he cannot do).

To model an injective session channel we need to restrict the honest
agents’ ability to start receiving messages from a connection. In the session
channel model the honest agents perform an external choice over all possible
connection identifiers before they receive the first message in a session. Once
an honest agent has started to receive messages from a particular (honest)
connection identifier, we must prevent other honest agents from receiving
the messages associated with that connection identifier, and we must also
prevent the same agent from receiving the messages in that connection again.

We construct a connection identifier manager process that synchronises
with the honest agents on the first receive event in any new connection.
Once an instantiation of an honest agent process has accepted an honest
connection identifier no other agent process can accept that connection iden-
tifier. This manager process prevents the intruder from replaying sessions,
so each session can be received at most once; this ensures the injectivity of
the receives-from relation. The manager process only synchronises on the
events with honest agents’ connection identifiers.

For the models of session channels the honest agents use a different
connection identifier for each channel. For example, suppose a protocol
involves just two roles (Ri and Rj) communicating in a single session. In
the model we have described the agent playing role Ri has a connection
identifier for the messages that he sends to the agent playing role Rj , and
he accepts messages from the agent playing role Rj that are associated with
a different connection identifier. This means that the two agents in a session
can have different views of the connection identifiers they are each using, so
they may not actually be communicating in a symmetric session.

To model a symmetric session channel we change the models of the hon-
est agents so that they perform and synchronise on a pair.cA.cB event during
each session they establish. This event can only be performed by the honest
agents (except that any connection identifier can always be paired with the
intruder’s connection identifier), so once one agent has a complete view of
both connection identifiers the intruder can only connect that agent’s chan-
nels to another agent who has the same view. The pair event is performed
according to the following schedule:

• The initiator performs the pair event after he sends his first message,
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but before he receives the next message;

• The recipient performs the pair event immediately after receiving the
first message.

Once the recipient has received the first message he has a complete view
of the two connection identifiers because he knows what his connection iden-
tifier is for the next message he sends. However, the recipient cannot send
this message until the agent who sent the first message performs the pair
event. Because the intruder cannot change the connection identifier asso-
ciated with a message, both agents ‘own’ one of the connection identifiers
in the pair event, and so they are the only two agents who can perform
the event. This ensures that a symmetric session is established, even if the
agents cannot be sure of each other’s identity.

6.3.2 Stream channel models

In Chaper 4 we showed that for many of the application-layer protocols that
we are interested in (those with the no speaking out of turn property) it is
safe to use a session channel rather than a stream channel because progress
in the protocol is controlled by all the agents taking part. In particular,
the order in which the messages between any two agents arrive is fixed by
the protocol because the agents cannot make progress (send messages) until
they receive the messages they expect to.

Any protocol that satisfies the no speaking out of turn property may be
analysed in Casper with stream channels modelled simply by adding message
numbers to the new facts that the intruder learns, then using the session
channel models. The message numbers prevent the intruder from changing
the order in which messages are received. However, for any protocol that
satisfies the disjoint messages property, described in Section 6.2, the message
numbers are not necessary because the intruder cannot play one message as
another.

The mutual and synchronised stream properties from the end of Chap-
ter 3 are often enforced by the application-layer protocol being studied, so
building models of the stronger stream channels is not necessary.

6.4 Changes to Casper input scripts

In this chapter we described the Casper models of the secure channel spec-
ifications from Chapter 3. In this final section we describe the necessary
changes to a Casper input script to use these new models in a standard
Casper analysis.

The user encodes the protocol under consideration as usual; the only
necessary addition to the input script is a #Channels section. This section
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can be used to specify the old (secret, authenticated and direct) channels
of [BL03], or to specify the use of the new channel models. The new models
and the old models cannot be used together in the same script.

For each message in the protocol, the user should list the properties
of the channel that the message is carried on. For example, the following
channels section specifies the use of C ∧NR− on the channel for message 2,
and NF ∧NRA− on the channel for messages 1 and 3.

#Channels

1 NF NRA-
2 C NR-
3 NF NRA-

The channel properties must be listed for each message individually, and
must be listed in the order C, NF, NRA(-), NR(-), with the message number
and the channel properties separated by any combination of white space
characters.

In order to use the session and stream properties the user should use
the keywords Session and Stream, optionally followed by one of the key-
words injective or symmetric, followed by a list of the message numbers
that should be joined into a single session. When two agents communicate
on session channels (even on non-symmetric session channels), it is not nec-
essary to create different sessions for each agent; the list of all messages sent
by both agents should be included in the session. For example, the following
session description specifies that messages 1, 2 and 3 are sent in a single,
injective, session channel.

Session injective 1,2,3

The messages in the session (or stream) should be listed in order. How-
ever, the session and stream channel properties can be listed above or below
the individual channel properties, and different messages sent by the same
role in a single session do not have to satisfy the same channel property.

6.5 Conclusions

In this chapter we described abstract CSP models of our channel properties;
these models capture the properties of the channels (such as no-redirecting)
rather than modelling concrete transport layer protocols. We have built
these models into Casper. We proved that these CSP models are equivalent
to the formal channel properties described in Chapter 3, even though the
model of the intruder is slightly different. We proved this soundness and
completeness result using the equivalence relation defined in Chapter 4.

Finally, we described the simple changes that need to be made to
a Casper input script in order to use these new channel models.
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Chapter 7

Case Studies

One of the reasons for developing the secure channel specifications presented
in this thesis, and the primary motivation behind the development of the
models described in Chapter 6, is to study security protocols that rely on
secure transport layers. In Chapter 1 we suggested that many protocols of
this type can be found in web-based applications. In this chapter we study
two web-based single sign on protocols that use secure channels (either SSL
or TLS) as well as more traditional security techniques (such as MACs and
signatures).

A typical computer user has several relationships with service providers,
and must be able to authenticate himself to these service providers in order
to request resources from them, or to make use of services that they offer.
Most service providers want to be in full control of the authentication of
their users, and so the average user has to remember many usernames and
passwords for use at different service providers. A study of over half a
million internet users conducted over three months in 2007 found that, on
average, each user had 25 username accounts at different service providers,
and typed 8 of these per day. Yet each user only had, on average, 6.5
different passwords [FH07].

In order to make things easier for themselves, many users record their
passwords somewhere close to hand, or use the same password (and, where
possible, the same username) at every service provider. This is not an
ideal solution to the problem: secure authentication of a user at one service
provider now depends on the security of other service providers. Typically,
different service providers do not have the same requirements for the au-
thentication of their users, and so, for example, a user’s internet banking
account may easily be hacked if the user chooses the same login details at a
less secure service provider, such as an internet forum.

In Section 7.1 we describe the single sign-on paradigm. Single sign-on
systems have been developed to ease the burden of memory on the users
of computer systems without compromising the security of the systems.
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In Section 7.2 we describe our use of the secure channel specifications of
Chapter 3 to model SSL and TLS connections.

In the next two sections we report on our analysis of two single sign-
on systems that have been designed specifically for web-based deployment.
The SAML Web Browser Single Sign-On Profile was developed by OA-
SIS [OAS05b] to authenticate users to service providers by means of trusted,
centrally managed identity providers. In contrast to this, the OpenID
Authentication [FRH+08] scheme uses decentralised, potentially untrusted
OpenID providers to authenticate users to relying parties. It is up to each
user and each relying party to decide whether or not they trust a particular
OpenID provider. In Section 7.3 we describe the SAML protocols, and in
Section 7.4 we describe the OpenID protocols.

We have found attacks against both sets of protocols when the recom-
mendations in their specifications are not followed exactly. In Section 7.5
we describe a new single sign-on protocol that we have designed to be as
concise as possible. Our protocol is correct when run over SSL and TLS con-
nections, and relies heavily on our understanding of the properties of these
channels to function correctly and securely. We give the exact requirements
for the channels in Section 7.5. The short protocol development and de-
scription process emphasises the benefits of the channel models for protocol
development.

Finally in Section 7.6 we conclude and summarise our findings.

7.1 Single Sign-On

In a single sign-on system a user who has a login session with one server and
wishes to access a resource from another server can be authenticated to the
new server by means of their existing authenticated session. The first server
is often known as an identity provider; the second as a service provider or
resource provider. The identity provider asserts to the service provider that
the user is known to him, and has been authenticated. If the service provider
trusts the identity provider then they trust that the authentication is valid,
and so they create a new session for the user. The user does not have to
re-authenticate himself to the service provider.

There are many situations when this form of identity federation can
prove useful; for example:

• A company’s portal software and the order systems of suppliers to that
company. An employee of the company can sign in to the portal, and
then place orders with the suppliers without needing to authenticate
himself to each one individually.

• A web-based directory service where a user can register and provide
their information. When they wish to access a resource at a third
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party website they can be authenticated by their existing session with
the directory service, and their details transferred automatically.

• An academic institution where teachers access several online systems
(e.g. email, class attendance, student reports, applications). Each
server can act as both identity provider and service provider so that
once a teacher has signed on to one of the systems, they do not need
to sign on to the others.

Single sign-on offers a considerable advantage to the users of a system:
they only have to authenticate themselves to one server, and so they only
have to remember one password. If a user requests resources from multiple
service providers within the lifetime of a session with an identity provider, he
does not have to authenticate himself to each service provider individually.

One way to achieve this sort of identity federation would be to give each
user the same credentials and shared secrets with all of the service providers.
However, this would allow any service provider to impersonate any user to
any other service provider, and so, in this scenario, the user must trust many
more servers than he has to with a single sign-on solution, where he only
has to trust the identity provider.

The SAML and OpenID single sign-on protocols both specify means
of protecting the application-layer messages by adding security constructs
(such as signatures and MACs) to the protocol messages. However, they also
allow security properties from the transport layer to be used to strengthen,
or even to replace the application-layer message protection. Specifically, if
users can establish unilateral TLS connections to authenticated servers, and
the servers can initiate and respond to TLS connections with unilateral or
bilateral authentication, then the confidentiality and authentication prop-
erties of TLS can be lifted to the application-layer messages. Rather than
model these secure channels explicitly, we use the models from Chapters 3
and 6 to describe the properties we expect the network to satisfy, and then
limit the abilities of the intruder to respect these properties.

7.2 Modelling TLS

In Chapter 2 we described the TLS protocol, and in Chapter 3 we described
which of the secure channel properties we believe TLS (and SSL) satisfy. In
this section we relate the properties of SSL and TLS to the secure channel
properties, and we describe how we use the models from Chapter 6 to model
SSL and TLS in Casper.

Many researchers have analysed SSL and TLS and have found that they
allow agents to establish authenticated sessions, and to transfer data securely
and confidentially; see e.g. [WS96, MSS98, Pau99, KL08]. SSL allows an
unauthenticated client to establish a secure session with an authenticated
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server: no guarantees about the client’s identity are provided, but the client
is assured of the server’s identity. TLS can be run in two modes:

• In the unilateral authentication mode the server is authenticated to
the client, but the client is not authenticated to the server; this mode
is similar to SSL;

• In the bilateral authentication mode both client and server are authen-
ticated to one another.

Kamil and Lowe have shown that bilateral TLS establishes strong
stream channels [KL08] that satisfy the strongest channel specifica-
tion: C ∧NF ∧NRA ∧NR. We believe that unilateral TLS and SSL also
establish strong stream channels, but that a weaker authentication spec-
ification is satisfied. Because these protocols are asymmetric, the channel
specifications satisfied by the channels from the client to the server and from
the server to the client are different.

• On the channel from the client to the server the client can be sure
whom he is sending messages to. We use our model of C ∧NR− for this
channel: the channel is confidential, but the intruder could establish
a session pretending to be an honest agent.

• On the channel from the server to the client the client can be sure
whom he is receiving messages from. However, the server cannot be
sure whom he is sending messages to, so the intruder could be receiving
messages that the server believes he is sending to an honest agent. We
use our model of NF ∧NRA− for this channel.

If the intruder pretends to be an honest agent and establishes a session
with an honest server he can learn messages that were not intended
for him. If an honest agent and an honest server establish an SSL or
unilateral TLS session the intruder can overhear the transport-layer
messages they exchange, but he cannot deduce the application-layer
messages. Although the strong confidentiality definition of Chapter 3
is not satisfied, a weaker notion of confidentiality is satisfied. This
weaker notion does not collapse on redirectable channels, so we model
sessions over SSL or unilateral TLS as confidential, but we allow the
intruder to redirect messages, and hence to learn the messages sent to
an honest client if and only if he is faking the client role in the session.

We also use the symmetric session channel model for SSL and TLS connec-
tions; the protocols in this chapter all satisfy the no speaking out of turn
property, so we do not need to use the stream channel models.

HTTP/1.1 [FGM+99] supports persistent connections; rather than es-
tablishing a new connection for each request, clients can keep their connec-
tion to a server open. This means that HTTP/1.1 could potentially provide
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session continuation: all messages in a single session could be sent over a
single connection. However, most web browsers are designed to close con-
nections after retrieving a page and all the documents (such as stylesheets,
images, etc.) associated with it. Most modern web browsers fully sup-
port TLS session resumption, so multiple connections can be unified by this
means.

Paulson has proved that the TLS session resumption mechanism is se-
cure even if previous keys from the session being resumed have been compro-
mised [Pau99]. We argue therefore that we can treat multiple TLS sessions
between two agents as being equivalent to a single session.

7.3 SAML Single Sign-On

The Security Assertion Markup Language (SAML) — developed by the Se-
curity Services Technical Committee of OASIS (the Organization for the
Advancement of Structured Information Standards) — defines a framework
for exchanging security assertions between SAML authorities. A security as-
sertion is a package of information that carries statements made by a SAML
authority about a subject (typically a user or another SAML authority). In
this section we describe our model and analysis of the SAML Single Sign-
On protocols, and we report on the attacks we have found against these
protocols.

The Web Browser Single Sign-On Profile is one of several use cases de-
scribed by version 2.0 of SAML [OAS05c, OAS05b, OAS07]. It outlines
several protocols (based on variations of message flow and the bindings used
to transport the protocol messages) that allow a user to authenticate him-
self to a SAML authority (the service provider) by means of an existing
authenticated session with another SAML authority (the identity provider).

The SAML protocols are designed for web deployment; they must be
functional for any user, so the only capabilities that can be assumed of the
user’s software are those that are standard for any web browser:

• The ability to create GET and POST requests and to process the
response from such requests;

• The ability to accept, store and provide cookies (when requested);1

• The ability to initiate unilateral TLS/SSL sessions (and to verify the
validity of a server’s certificate).

1A cookie is a small text file that an HTTP server can ask a web browser to retain,
and to present whenever the user requests a page from that server again.
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7.3.1 SAML identities and bindings

The core building blocks of SAML are security assertions: authentication
statements about subjects (users or SAML authorities). Version 2.0 of
SAML specifies several different bindings and messages for exchanging as-
sertions, but for our analysis of the Web Browser Single Sign-On Profile we
only need to consider the SOAP, HTTP redirect, HTTP post and HTTP
artifact bindings, and the authentication request and response messages.

In the SAML protocols identities can take many forms; for example,
an identity may be an email address, an X.509 subject name, a Windows
domain qualified name or a Kerberos principal name. In our analysis we
treat all names abstractly: we assume that every agent and server has a
unique symbolic identity that all the other agents recognise. Some of the
protocol messages allow the SAML authorities to refer to the IP address from
which a user is communicating; because IP addresses are easily spoofed, and
because a user’s IP address may change legitimately during a protocol run
we do not include IP addresses in our model.

SOAP binding

The SOAP binding is based on version 1.1 of the Simple Object Access
Protocol (SOAP) [W3C00]. SOAP is a lightweight protocol for exchanging
structured information in a distributed environment; SOAP uses XML to
define a messaging framework that can be used over a variety of underly-
ing protocols. The SAML SOAP binding wraps SAML messages in SOAP
messages, and then directly transmits the SOAP messages between SAML
authorities.

We model a message exchange over the SOAP binding as a direct trans-
fer of the original message from the sender to the receiver. Kleiner and
Roscoe have shown how a SOAP message can be transformed into Casper
input [KR04]; we rely on a similar transformation function and on Hui and
Lowe’s safe simplifying transformations [HL01] to transform the SOAP mes-
sages to simple messages that can be used in Casper.

HTTP POST and HTTP redirect bindings

The HTTP POST and redirect bindings are intended for use when SAML au-
thorities need to communicate via an HTTP user agent (i.e. a web browser).
The message flow for both bindings is the same:

1. The user agent (u) issues an HTTP request to the first server (s1);

2. The first server responds to the request; the response contains the mes-
sage to be delivered to the second server (m) and the second server’s
identity (s2);
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3. The user agent issues an HTTP request containing the message to the
second server.

We model both of these bindings in the following way:

Message i u → s1 : request1
Message ii s1 → u : response, s2,m
Message iii u → s2 : request2, s1,m

where request1, request2 and response are defined by the scenario in which
the binding is used; in particular, they may be empty messages.

When the HTTP redirect binding is used, the message is encoded in a
query string and the user agent is redirected (using a Location header) to
the second server. When the HTTP POST binding is used, the message
is encoded in a hidden form field in an XHMTL document; the form is
configured to send an HTTP POST request to the second server. The first
server may configure the form to submit automatically, or may allow the
user to submit the form (by pressing a button). With both bindings, the
contents of the message are not protected, and so they can be modified by
the user agent, or modified in transit, and they should not be considered
confidential.

The SAML specifications state that the HTTP POST and HTTP redi-
rect bindings may also be run over HTTPS (i.e. HTTP with SSL or TLS).
When they are run with SSL or TLS then the authentication, confidential-
ity and integrity properties guaranteed by the transport-layer protocol may
be lifted to the SAML messages. When these bindings are run over HTTP
(i.e. without SSL or TLS) then the SAML messages may be signed and
encrypted in order to provide authentication, confidentiality and integrity
properties. In the rest of this section we restrict our attention to the use of
the HTTP POST binding, as the HTTP redirect and HTTP POST bindings
are equivalent in our model.

HTTP artifact binding

The HTTP artifact binding allows SAML authorities to send messages by
reference, rather than by value, via an HTTP user agent. An artifact is es-
sentially a nonce: it is an unforgeable, unpredictable random string, which
identifies the message creator, and can only be mapped to the original mes-
sage by the message creator. We model an artifact as a nonce concatenated
to the sender’s identity (the mechanism suggested by the SAML documents
is a hash of the sender’s identity concatenated to a random number).

The message flow is as follows:

1. The message sender (s1) creates an artifact (a) and sends that to the
user (u) using one of the HTTP bindings;
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2. When the message recipient (s2) receives the artifact they use the
SOAP binding to resolve the artifact: the message sender sends the
message (m) directly to the message recipient.

We model the HTTP artifact binding in the following way:

Message i u → s1 : request
Message ii s1 → u : response, s2, s1, a
Message iii u → s2 : s1, a
Message iv s2 → s1 : a
Message v s1 → s2 : m

where request and response are defined by the scenario in which the binding
is used; in particular, they may be empty messages.

The artifact has a single-use semantic: the SAML authority who issued
an artifact for a message should only resolve the artifact, and send out the
message, once. The SAML specification documents state that the artifact
does not need to be signed, but should always be communicated on a con-
fidential channel. The specification also states that the artifact resolution
protocol (messages 4 and 5 above) should be mutually authenticated and
integrity protected, either by signing and encrypting the SAML messages,
or by using bilateral TLS.

7.3.2 SAML messages

SAML messages are XML documents; the SAML schema documents are
published, so while SAML messages contain strong typing information, and
many fields, their content is largely predictable or irrelevant to our model.
We reduce each of the SAML messages to a message in the context of the
CSP model: a sequence of the values that uniquely defines it. We use
several of Hui and Lowe’s simplifying transformations from [HL01] to reduce
messages in this way. In particular:

• We ignore all message formatting information. SAML messages are
strongly typed, so we must ensure that if protocol attacks are detected
they are not due to typing errors.

• We ignore all message encodings. Some of the SAML bindings specify
that messages should be encoded using the deflate and base64 encod-
ings. These encodings are, essentially, isomorphisms between SAML
messages and strings of characters, so we do not model them.

• We do not include duplicate fields in any messages. Many of the SAML
messages contain identities, nonces or timestamps in several locations;
we only include each unique item once. Some messages also include
more than one fresh nonce; we only model one fresh nonce in each
message.
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• We do not model timestamps; if the protocol is free from attacks when
the timestamps are not included, then it is certainly free from attacks
when the timestamps are included in the messages.

Authentication request message

When a service provider wishes to obtain authentication statements about a
user it can send an authentication request message to an identity provider.
The authentication request message in the SAML specification contains sev-
eral fields; the fields that we include in our model are as follows:

ID An identifier for the request; we model this field as a nonce: nsp;2

Issuer The identity of the server who issued the request; we model this as
the service provider’s identity: sp;

Subject The requested subject of the resulting assertion; we model this as
the user’s identity: u.

We model the authentication request message as: nsp, sp, u; this message
is considerably shorter than the message specified by the SAML documents,
however our analysis shows that these three fields are sufficient to ensure
the security of the protocol.

Authentication response message

When an identity provider receives an authentication request message about
a subject that they can authenticate they return a response message contain-
ing one or more assertions about the subject. If they cannot authenticate
the subject the identity provider can either return an error message, or they
can proxy the request to another identity provider. We are only interested
in successful flows of the protocol, and we do not model request proxying, so
we assume that the identity provider can always authenticate the requested
user.

The response message in the SAML specification contains several fields,
and at least one authentication assertion; we model this message as follows:

ID An identifier for the response; we model this field as a nonce: nidp;

InResponseTo The ID of the authentication request message: nsp;

Issuer The identity of the server who issued the response; we model this
field as the identity provider’s identity: idp;

2The specification requires that for pseudo-random IDs the probability of collision
should be less than 2−128.
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Subject The subject of the assertion; we model this as the user’s iden-
tity: u. This complex field also contains creation and expiry time-
stamps (which we do not model) and the identity of the SAML au-
thority to whom the assertion can be delivered (the service provider’s
identity: sp);

AuthnStatement Describes the statement by the identity provider that
the subject was authenticated at a particular time by a particular
means. This field contains a creation timestamp and an expiry time-
stamp (after which the statement should not be relied upon). This
field can also contain a DNS domain name or IP address for the user,
but we treat all names and identities abstractly, so we model this as
the user’s identity: u.

If the HTTP POST (or HTTP redirect) binding is used to deliver the re-
sponse message then the assertion must be protected by a digital signature.
We model this as a signature on the entire message; in this case we model
the response message as: {nidp, idp, nsp, u, sp}SK(idp). If the authentication
response message is delivered by the artifact binding then the artifact reso-
lution protocol must be mutually authenticated and integrity protected: we
model this exchange as happening over a bilateral TLS channel. In this case
we model the response message as: nidp, idp, nsp, u, sp.

7.3.3 SAML Web Browser Single-Sign On Protocols

There are two possible scenarios for use of the profile:

Service provider first In the first scenario the user requests a resource
from the service provider first. If the service provider requires the
user to be authenticated before they provide the resource they send a
request to the identity provider to authenticate the user. If the user
does not already have a session with the identity provider then one
is created (after suitable authentication). The identity provider sends
an assertion to the service provider to verify the user’s identity.

Identity provider first In the second scenario the user identifies himself
to the identity provider first. After this authentication, the identity
provider creates a session for the user. When the user requests a
resource from a service provider he requests an assertion from the
identity provider, and presents that to the service provider to prove
that he is who he says he is.

The method that the identity provider uses to authenticate the user
is not specified by SAML, so we make it abstract: we model all of the
communication from the user to the identity provider, and from the identity
provider to the user, on an authenticated and confidential channel (i.e. the
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top channel in the hierarchy). This is the same model that we use for
bilateral TLS, but in this case it is intended to reflect unilateral TLS with
user authentication at the application layer.

In all of the protocols the communication between the user and service
provider takes place over a unilateral TLS connection; the communication
between the user and identity provider takes place over a unilateral TLS
connection in which the user is authenticated at the application layer; and
the communication between the service provider and the identity provider
takes place over a bilateral TLS connection.

Service provider first

The service provider first protocol has four steps:

1. The user requests a resource from the service provider; we model this
request as the user’s identity (u);

2. The service provider creates an authentication request message, and
sends it (via the user) to the identity provider;

3. The identity provider authenticates the user and sends an assertion
back to the service provider (via the user);

4. The service provider checks the assertion and provides the requested
resource (m) to the user.

The specification allows POST or artifact binding for the delivery of
the authentication request message (in stage 2) and of the authentication
response message (in stage 3). There are four possible combinations of
bindings, so there are four protocols to study; these are shown below.

POST–POST binding

Message 1 u → sp : u
Message 2.1 sp → u : idp, nsp, sp, u
Message 2.2 u → idp : nsp, sp, u
Message 3.1 idp→ u : {nidp, idp, nsp, u, sp}SK(idp), sp

Message 3.2 u → sp : {nidp, idp, nsp, u, sp}SK(idp), idp

Message 4 sp → u : m

1 C NR-
1.1 NF NRA-
1.2 C NF NRA NR
3.1 C NF NRA NR
3.2 C NR-
4 NF NRA-
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Session symmetric 1, 2.1, 3.2, 4
Session symmetric 2.2, 3.1

POST–artifact binding

Message 1 u → sp : u
Message 2.1 sp → u : idp, nsp, sp, u
Message 2.2 u → idp : nsp, sp, u
Message 3.1 idp→ u : sp, idp, a
Message 3.2 u → sp : idp, a
Message 3.3 sp → idp : a
Message 3.4 idp→ sp : nidp, idp, nsp, u, sp
Message 4 sp → u : m

1 C NR-
2.1 NF NRA-
2.2 C NF NRA NR
3.1 C NF NRA NR
3.2 C NR-
3.3 C NF NRA NR
3.4 C NF NRA NR
4 NF NRA-

Session symmetric 1, 2.1, 3.2, 4
Session symmetric 2.2, 3.1
Session symmetric 3.3, 3.4

Artifact–POST binding

Message 1 u → sp : u
Message 2.1 sp → u : idp, sp, a
Message 2.2 u → idp : sp, a
Message 2.3 idp→ sp : a
Message 2.4 sp → idp : nsp, sp, u
Message 3.1 idp→ u : {nidp, idp, nsp, u, sp}SK(idp), sp

Message 3.2 u → sp : {nidp, idp, nsp, u, sp}SK(idp), idp

Message 4 sp → u : m

Session symmetric 1, 2.1, 3.2, 4
Session symmetric 2.2, 3.1
Session symmetric 2.3, 3.1

1 C NR-
2.1 NF NRA-
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2.2 C NF NRA NR
2.3 C NF NRA NR
2.4 C NF NRA NR
3.1 C NF NRA NR
3.2 C NR-
4 NF NRA-

Artifact–artifact binding

Message 1 u → sp : u
Message 2.1 sp → u : idp, sp, a
Message 2.2 u → idp : sp, a
Message 2.3 idp→ sp : a
Message 2.4 sp → idp : nsp, sp, u
Message 3.1 idp→ u : sp, idp, a′

Message 3.2 u → sp : idp, a′

Message 3.3 sp → idp : a′

Message 3.4 idp→ sp : nidp, idp, nsp, u, sp
Message 4 sp → u : m

1 C NR-
2.1 NF NRA-
2.2 C NF NRA NR
2.3 C NF NRA NR
2.4 C NF NRA NR
3.1 C NF NRA NR
3.2 C NR-
3.3 C NF NRA NR
3.4 C NF NRA NR
4 NF NRA-

Session symmetric 1, 2.1, 3.2, 4
Session symmetric 2.2, 3.1
Session symmetric 2.3, 2.4
Session symmetric 3.3, 3.4

Identity provider first

When the identity provider first protocols are used, the InResponseTo
field in the authentication response message must be empty; we model this
message as before, but we remove the service provider’s nonce. The identity
provider first protocol has three steps:

1. The user requests an assertion to present to the service provider; we
model this request as the user’s identity (u) and the service provider’s
identity (sp);
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2. The identity provider creates an assertion and sends it (via the user)
to the service provider;

3. The service provider checks the assertion and provides the requested
resource (m) to the user.

The specification allows POST or artifact binding for the delivery of the
authentication response message (in stage 2). This gives us two protocols
to study; these are shown below.

POST binding

Message 1 u → idp : u, sp
Message 2.1 idp→ u : {nidp, idp, u, sp}SK(idp), sp

Message 2.2 u → sp : {nidp, idp, u, sp}SK(idp)

Message 3 sp → u : m

1 C NF NRA NR
2.1 C NF NRA NR
2.2 C NR-
3 NF NRA-

Session symmetric 1, 2.1
Session symmetric 2.2, 3

Artifact binding

Message 1 u → idp : u, sp
Message 2.1 idp→ u : sp, idp, a
Message 2.2 u → sp : idp, a
Message 2.3 sp → idp : a
Message 2.4 idp→ sp : nidp, idp, u, sp
Message 3 sp → u : m

1 C NF NRA NR
2.1 C NF NRA NR
2.2 C NR-
2.3 C NF NRA NR
2.4 C NF NRA NR
3 NF NRA-

Session symmetric 1, 2.1
Session symmetric 2.2, 3
Session symmetric 2.3, 2.4
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7.3.4 Attacks against the protocols

We used the models of the SAML Single Sign-On protocols described above
to test several authentication properties in Casper. Specifically, we tested an
authentication property between every pair of roles who communicate di-
rectly in the protocol. Of these, the most important property is the authen-
tication of the user to the service provider because achieving this correctly
is the goal of the protocols.

When we allow the intruder to play the role of the identity provider FDR
detects three classes of attack against the authentication specifications:

• The intruder can pretend to be any user to any service provider;

• The intruder, acting as the identity provider, can fail to authenticate
an honest user to an honest service provider (this is a denial of service
attack and not an attack against authentication);

• The intruder can authenticate an honest user to an honest service
provider when they should not (i.e. the intruder can tell the service
provider that they have authenticated the user, even if they have not
done so).

All of these attacks are only possible when the intruder can play the
identity provider role; this highlights the importance of the trust relationship
between the SAML authorities. It is not surprising that there are attacks
against the protocol (against the service provider and against the user) when
the intruder can play the role of the identity provider: the basic tenet of
the protocol is that the identity provider is used to authenticate the user to
the service provider, removing the need for the user to authenticate himself
directly. We henceforth allow the intruder to play the user and service
provider roles, but not the identity provider role.

The SAML specification documents do not require the authentication
request message to be signed by the service provider. However, when this
message is not signed there is an attack against the authentication check
between the service provider and the identity provider. A dishonest user
can create fake authentication requests (i.e. create authentication requests
and send them to identity providers), and the protocol can be run without
the service provider taking part. This attack is only possible against the
protocols that use the HTTP POST or redirect bindings to transport the
authentication request; i.e. the protocols where the service provider and the
identity provider do not communicate directly. Because the authentication
request message includes the identity of the user, the supposed request issuer
and the asserting party, together with a new ID, this attack does does not al-
low a dishonest user to be authenticated to a service provider erroneously as
the dishonest user does not have a correct session with the identity provider,
and cannot establish one.
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There are possible replay attacks if the protocol is not implemented
correctly by the identity provider. The SAML documents state that the
identity provider should keep a list of the requests he has responded to for
as long as they are valid3 so that he can detect replay attacks. If this is not
implemented correctly then a dishonest agent, using his own identity, may
replay a signed authentication request and receive a new assertion. This
attack manifests itself as a run of the protocol that the service provider has
not taken part in (i.e. the identity provider to service provider agreement
check fails).

If, at any point in a run of the protocol, the intruder gets hold of an
assertion he can use it to authenticate himself to the service provider who
first requested the assertion. For this reason, the assertions must always
be sent on confidential (and, where appropriate, authenticated) channels.
When the HTTP POST or HTTP redirect binding is used to transport
the authentication assertion from the identity provider to the relying party
the assertion may be stored on the user’s computer (either in their browsing
history in the case of the redirect binding, or in the cached copy of the HTTP
POST form submission page). If the user’s computer is compromised before
the timestamp on the assertion expires the intruder may be able to replay
the assertion to assume the user’s identity at the service provider. In order
to prevent this attack the service provider should keep track of the identifiers
in the authentication assertions he has accepted (at least for the duration of
the timestamp on the assertions), and he should only accept each assertion
once.

Similarly, if any of the messages containing an artifact are sent over a
non-confidential channel, the intruder can learn the artifact. If the artifact
is for an authentication response message, the intruder can use it to assume
the user’s identity. Because of the single use semantic of the artifact, the
intruder would have to know the correct identity to use; he could have at
most one guess, though he would probably increase his chances of guess-
ing correctly by analysing the network traffic. For this reason, we believe
that the specification documents should require the artifact to be sent on a
confidential channel (rather than recommending that it should be).

When the artifact binding is used to transfer the authentication response
message, which contains the assertion, the intruder, playing the service
provider role, can choose not to resolve the assertion, but just to assume
that the message it points to is an authentication passed (rather than failed)
message. There is nothing the service provider can gain from failing to re-
solve the artifact, but if a dishonest user knew that a service provider did not
resolve artifacts he could pretend to be someone else. This is an unlikely sce-
nario, because at the point of receiving an artifact a service provider would

3The validity of the request message is defined by a timestamp value (which we do not
model) and the specific set-up in use.
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only know the user’s claimed identity, and would have no reason to trust
this.

In Section 7.2 we asserted that we could model two TLS sessions that are
linked by the session resumption mechanism as a single session. This only
applies to the SAML Web Browser Single Sign-On Profile when the protocol
is run in service provider first mode: in this case, the user and the service
provider use two sessions during the protocol run. The first session contains
the user’s initial request, and the service provider’s authentication request
message; the second session contains the identity provider’s authentication
response message, and the final message from the service provider. Our
analysis shows that we do not need to treat these two message flows as a
single session: when we model the two sessions separately, no new attacks
are introduced.

If the authentication request messages are signed by the service provider,
the single-use property of artifacts is correctly implemented, artifacts are
only ever transmitted on confidential channels, the identity provider only re-
sponds to each authentication request once and service providers keep track
of which assertions they have previously accepted we can find no further
attacks to the protocols.

Recently, Armando et al. analysed the service provider first protocol with
HTTP POST and redirect binding [ACC+08], and Google’s implementation
of this protocol for Google Applications [Goo08]. The model of the protocol
in [ACC+08] is the same as the model we presented earler in this section
(although it is written using slightly different notation, and some duplicate
fields are not removed). Critically though, the implementation of the proto-
col that Google created deviates from the models in [ACC+08] and in this
section in two ways:

• The InResponseTo field (i.e. the authentication request identifier)
and the service provider’s identity are omitted from the authentication
assertion;

• The InResponseTo field, the service provider’s identity and the iden-
tity provider’s identity are omitted from the authentication response
message.

The service provider’s identity and the authentication request identifier
do not appear anywhere in the authentication response message. This al-
lows assertions provided to one service provider to be presented to a different
service provider, in response to a different request, to authenticate the user.
This leads to an attack where a dishonest service provider running the pro-
tocol with an honest user can replay the assertion he receives to a different
service provider to impersonate the user. Armando et al. did not find any
attacks against the protocol as specified by [OAS05b].
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Other researchers have analysed an earlier version of the Single Sign-On
Profile (defined in SAML 1.1 [OAS04]), for example [Gro03] and [HSN05].
However, we have found no complete analysis of all the message flows, and
no analysis which examines all of the possible bindings. Our investigation of
the new protocols in the latest version of SAML provides a useful confirma-
tion of the earlier results, and serves to highlight the importance of several
assumptions and comments in the technical specifications.

7.3.5 Conclusions

Most of the security of the SAML single sign-on protocols is provided by
the secure transport layer and the inherent trust that the users and service
providers have in the identity provider. There are several attacks against
the users and against the service providers when the intruder can take the
role of the identity provider, but there are no significant attacks against the
authentication of the user to the service provider when the identity provider
is honest. Those attacks that do exist are only possible if the protocols are
not implemented correctly according to the SAML specifications.

The SAML single sign-on protocols are token authentication protocols:
the identity provider gives the user a token to present to the service provider
to authenticate himself. Anyone who receives a token asserting the identity
of a user can pretend to be that user. A stronger protocol would not rely
on the confidentiality of the token to provide authentication. Ideally, a
single sign-on system should protect the users and service providers when
the identity provider cannot be trusted; in other words, we at least require
that a user really was trying to authenticate himself to a service provider
for that service provider to accept an assertion from someone claiming to
be the user. We may not be able to prevent man-in-the-middle attacks
with an untrustworthy identity provider, but we could limit the intruder’s
capabilities.

7.4 OpenID Authentication

The OpenID Authentication specification [FRH+08] was developed by the
OpenID Community, and is based on the original specification for OpenID
Authentication written by Fitzpatrick and Recordon [FR06]. OpenID Au-
thentication has recently been adopted by Myspace, Flickr, Yahoo!, and
Sourceforge to allow their users to authenticate themselves to other websites.
Although these four large community sites only act as identity providers and
do not accept authentication statements from other OpenID providers, the
adoption of the protocol by such major sites as these is seen as a major step
towards wider adoption of the OpenID protocols.

The OpenID Authentication protocols provide a way for a user to prove
that he controls a particular identifier without having to provide sensitive in-
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formation (such as an email address) or credentials (such as a password). Un-
like the SAML Single Sign-On Profile, the OpenID protocols are structured
in a decentralised manner: the identity providers (OpenID providers) are not
registered with any central authority, so relying parties (agents who accept
authentication statements from OpenID providers) must choose whether or
not to trust the OpenID providers that their users rely on to prove their
identities.

The principal aim of OpenID Authentication is to ease the means by
which users authenticate themselves to web sites and web services. In order
to ensure that as many users as possible can use OpenID, no special capabili-
ties are required of the user’s web browser (the user agent): the protocols use
standard HTTP (and HTTPS) requests (as described in Section 7.3). If the
user and his identity provider have some means of keeping an authenticated
session open the OpenID protocols do not require any visible interaction be-
tween the user and the identity provider. If the user’s OpenID provider has
not yet authenticated the user, or if their most recent authenticated session
has expired, the protocol is readily adapted to allow the OpenID provider
to create a fresh authenticated session with the user.

In the rest of this section we describe the types of identities and messages
that the OpenID protocols use and the types of secure channels that the
specification recommends. We present our models of the protocols and we
report the attacks that we have found against the protocols. We conclude
by discussing the strengths and weaknesses of the OpenID Authentication
scheme, and we discuss some of the areas that still need to be worked on to
improve the security of the protocols.

7.4.1 OpenID identities and signatures

An OpenID identifier is either an HTTP or HTTPS URI (a URL) or an XRI
(Extensible Resource Identifier) [OAS05a]. An XRI is an abstract identifier
that identifies a resource so that it can be referenced across multiple domains
and transports, and that maintains a persistent link to the resource, even if
its network location changes. For simplicity, we treat all OpenID identifiers
as URLs, and we model these as abstract identities.

By using URLs as identifiers users can uniquely identify themselves with-
out disclosing any personal information (such as an email address). For ex-
ample, users may choose to use local identities at their OpenID providers
(e.g. http://username.myopenid.com/), or they may use their own domain
names (e.g. http://www.user.name/) and just rely on OpenID providers
for authentication. The OpenID scheme allows users to change OpenID
providers while maintaining the same identity (either the local identity if it
is available at the new provider, or their own domain names).

The signature algorithm supported (and recommended) by the OpenID
Authentication specification is HMAC using SHA [KBC97, Fed02] with ei-
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ther a 160-bit or 256-bit key and output (in OpenID the key used for HMAC
is referred to as an association). We model this signature scheme by a single
application of a cryptographic hash function where the hash key (the asso-
ciation) is included in the list of hashed fields, but is not included in plain
text in the message. For example, in order to send the signed message m
an agent would send m,h(k,m), where k is the association being used as a
key for the hash function.

7.4.2 OpenID protocol messages

OpenID protocol messages are either sent directly between relying parties
and OpenID providers, or they are sent indirectly via the user agent. In
this section we describe our models of direct and indirect communication;
we then describe our models of all the possible phases of a complete OpenID
Authentication protocol run.

Direct communication

Direct communication is always initiated by the relying party: the request is
encoded as an HTTP POST request, and the response is a standard HTTP
response with the message in the body. The HTTP encoding (used for the
request) encodes the message in a query string: all field names are prefixed
with “openid.”, then fields and their values are linked by an “=” symbol,
and fields are concatenated with an “&”. For example:

?openid.ns=http://specs.openid.net/auth/2.0&openid.mode=
check_authentication&openid.identity=http://user.name/

The response message is encoded using key-value form encoding: each
key-value pair appears on a new line, and the key and its value are separated
by a “:”. For example:

ns:http://specs.openid.net/auth/2.0
mode:check_authentication
identity:http://user.name/

The request and response messages must always include the OpenID ver-
sion number (openid.ns) and the message type (openid.mode). However,
in order to simplify our model we do not include these fields. By omitting
the mode of messages we risk introducing attacks where a message of one
type could be confused for a different message. However, we believe that the
types of the messages, and the protection provided by the transport layer
will mean that no attacks of this form are introduced.

We model direct communication by messages sent directly between the
relying party and the OpenID provider:

Message i rp→ op : request?
Message ii op→ rp : response .
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Indirect communication

Some of the protocol messages are sent indirectly via the user agent; indirect
communication may be initiated by either the relying party or the OpenID
provider. Indirect communication may be accomplished in two different
ways:

1. The message sender uses a Location header to redirect the user agent
to the message recipient; the message body is encoded in a query string
(as above) and appended to the recipient’s URL;

2. The message sender sends an HTML page to the user agent; the HTML
page contains a form that is configured to submit a POST request to
the message recipient. This causes the user agent to generate a query
string encoding of the message, and this is delivered to the message
recipient.

As with direct communication the messages sent via the user agent must
always include the OpenID version number and the message type, and all
keys must be prefixed with openid. We model indirect communication in
the following way:

Message i i → u : r,m
Message ii u→ r : m

where u is the user agent, i the message sender (the initiator), r the message
recipient and m the message. Note that our model of the indirect binding
does not include the message sender’s identity when the message is delivered
to the recipient; in reality this field may be provided if the user agent submits
a Referrer header, but many user agents (and users) choose to prevent this
header from being sent. In the OpenID protocols, the message itself always
contains the sender’s identity.

The OpenID specifications define seven stages to the authentication pro-
tocol, however there is not a unique order in which the stages are run: there
are several allowable alternative ways of running the protocol. The seven
stages are as follows:

1. Initiate authentication The user initiates authentication by present-
ing an identity (either his own identity, or the identity of an OpenID
provider) to the relying party, or by telling his OpenID provider which
relying party he wishes to communicate with;

2. Discovery The relying party performs discovery on the identity pre-
sented by the user to determine whether it is an OpenID provider’s
identity or a user’s identity. If the user has presented his own identity
discovery will return with the identity of the user’s OpenID provider;
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3. Establish association The relying party and the OpenID provider
establish an association (a shared secret) to be used to sign and verify
subsequent messages. This stage is optional: they may use a pre-
viously established association as long as it has not expired or been
invalidated. Alternatively, the relying party may decide to perform
direct verification of the authentication response later in the protocol
run;

4. Authentication request The relying party redirects the user to the
OpenID provider using either HTTP redirection or HTTP form redi-
rection;

5. Authentication The OpenID provider authenticates the user (either
freshly or using an existing authenticated session);

6. Authentication response The OpenID provider redirects the user
to the relying party with the authentication response message. If the
relying party specified an assertion in the authentication request mes-
sage the OpenID provider uses that association to sign the response;
if not, the OpenID provider creates a fresh (private) association and
uses that to sign the response message;

7. Direct verification If the response message was signed with a private
association the relying party communicates directly with the OpenID
provider to verify the signature of the authentication response.

In the rest of this section we describe these protocol stages in more detail.

1. Initiate authentication

The protocol is initiated by the user when he wants to authenticate himself
to a relying party. Usually the user requests a resource from the relying
party for which the relying party requires proof of his identity. The relying
party sends an HTML form to the user with a text field for him to enter
his identity; this form is then sent back to the relying party. We assume
that the protocol starts at the final stage of this process: the user sends his
identity (or the identity of his OpenID provider) to the relying party:

Message 1 u→ rp : u ,

or:
Message 1′ u→ rp : op .
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2. Discovery

During discovery the relying party uses the identity provided by the user
to look up the endpoint URL of the user’s OpenID provider. The relying
party can perform discovery in two different ways: either by using the Yadis
protocol [Mil06], or by requesting the URL and looking for information in
the response that identifies the OpenID provider.

In order to use the Yadis protocol, the relying party makes an HTTP
HEAD or GET request to the URL provided by the user. The result of
this request will be an Extensible Resource Descriptor Sequence (XRDS)
document (or the location of an XRDS document); this XML file should
contain, among other information, the OpenID provider’s endpoint URL
(their identity) and, if appropriate, the user’s local identity at the OpenID
provider. If the Yadis protocol fails, the relying party should make an HTTP
GET request to the URL provided by the user and search the resulting
document for link tags identifying the OpenID provider and the user’s
local identity at the OpenID provider (where appropriate).

If the user provides his own identity then we assume that he is in con-
trol of the URL, and so he also controls the result of the HTTP request.
We model the discovery protocol in this case as a simple HTTP exchange
between the relying party and the user:

Message 2.1 rp→ u : u
Message 2.2 u → rp : u, op .

If the user provides an OpenID provider’s identity then only the Yadis
protocol may be used, and only the OpenID provider’s identity will be re-
turned (the user’s identity and his local identity will be provided to the
relying party later). We omit the discovery protocol in this case because the
only result would be the OpenID provider’s identity, and the user provided
this in the first stage of the protocol. We model the user’s identity and his
local identity at the OpenID provider as the same abstract identity: u.

3. Establish association

The authentication response message (the sixth stage) is sent indirectly from
the OpenID provider to the relying party, so the relying party must have
some means of verifying that the message was originally sent by the OpenID
provider. In the OpenID protocols the OpenID provider signs the authenti-
cation response message using the HMAC keyed-hashing algorithm. In order
to use this mechanism the relying party and the OpenID provider need to
have a shared secret (an association) to be used as the hash key.

If the relying party and the OpenID provider still have a valid association
from a prior protocol run then they can skip this step and use the existing
association for this protocol run. Alternatively, if the relying party cannot,
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or does not want to, maintain a list of associations it can choose to run the
protocol in ‘stateless’ mode: this allows them to verify the authentication
response message directly at the end of the protocol run.

OpenID defines two different ways of establishing associations: either by
performing a Diffie-Hellman key exchange [DH76] or by sending the MAC
key unencrypted (at the application layer). Because unauthenticated Diffie-
Hellman key exchanges are vulnerable to man-in-the-middle attacks they
are not suitable for establishing shared secrets (i.e. using a Diffie-Hellman
key exchange to create an association could allow an intruder to create a
different association with a relying party and an OpenID provider, but lead
them both to believe they had created an association with one another).

Rather than model the Diffie-Hellman scheme (which we know will lead
to an attack against the OpenID protocol), we only consider the unencrypted
method. An alternative would be to model a Diffie-Hellman exchange that
takes place over an authenticated connection (e.g. SSL or TLS). However,
if the exchange is run over an SSL or TLS connection the Diffie-Hellman
exchange is unnecessary: the OpenID provider can just send the HMAC key
directly.4

With the unencrypted method the relying party sends a direct message
to the OpenID provider requesting a new association; the OpenID provider
then sends a direct message back to the relying party containing the new
association k (the HMAC key), a handle to that key nk (a nonce that they
can both use to refer to the association) and an integer value t (the lifetime
of the association in seconds).

For simplicity we do not model the lifetime of the association in our
model as we assume that a new association is created for every run of the
protocol. The OpenID specifications require that the unencrypted associa-
tion establishment method is only used in conjunction with transport-layer
encryption, but does not specify which form of SSL or TLS to use. For our
initial model we assume the weakest possible form: an SSL session between
the relying party (the client) and the OpenID provider (the server).

We therefore model the association establishment protocol in the follow-
ing way:

Message 3.1 rp→ op : rp, op
Message 3.2 op→ rp : nk, k .

4. Authentication request

The authentication request message is an indirect message from the relying
party to the user’s OpenID provider requesting that the OpenID provider

4This does not give the relying party a guarantee that the key is freshly generated, but
this guarantee is not necessary: we found that modelling the protocol in this way does
not cause any attacks.

176



authenticate the user (if they have not already done so) and return an au-
thentication assertion to the relying party. Our model of this message in-
cludes the following fields:

claimed id The identity the user initially presented to the relying party; if
this is an OpenID provider’s identity this should have the special value
http://specs.openid.net/auth/2.0/identifier select; other-
wise, this is the user’s identity: u;

identity The user’s local identity at his OpenID provider (as found during
discovery). If the user presented his OpenID provider’s identity in
stage 1 this should also have the special value above indicating that
the OpenID provider should choose an identifier that belongs to the
user; otherwise, this is the user’s identity u;

assoc handle A handle for an association between the relying party and
the OpenID provider. This field is optional; if it is omitted the trans-
action takes place in stateless mode, and the relying party must use
direct verification to verify the authentication response message; oth-
erwise, we model this field as the nonce nk that was established during
the association establishment protocol (stage 3);

return to The URL to which the OpenID provider should direct the user
to return the authentication response message; we model this field as
the relying party’s identity: rp.

The OpenID specification does not make any recommendations about
using SSL or TLS for the connection between the user and the relying party
at this point in the protocol, so we model the authentication request message
being sent on an unauthenticated and non-confidential channel (i.e. ⊥).

We model the indirect communication of the authentication request mes-
sage in the following way:

Message 4.1 rp→ u : op, u, nk, rp
Message 4.2 u → op : u, nk, rp .

5. Authentication

When an OpenID provider receives an authentication request message he
should determine who the user is and whether or not he can attest to that
user’s identity. The means by which the authentication of the user is ac-
complished is out of the scope of the protocol description, so we model
the message that the user sends to the OpenID provider (Message 4.2)
as being sent on an authenticated channel (i.e. a channel that satisfies at
least NF ∧NRA−).

177



If the relying party asked the OpenID provider to assist the user in
choosing an identity then the OpenID provider should communicate with
the user and help him to choose an identity. We model this exchange by
including the user’s identity in the authentication message from the user to
the OpenID provider, even if the identity was not included in the relying
party’s initial request message.

6. Authentication response

Once the OpenID provider has authenticated the user he sends an authenti-
cation response message back to the relying party via the user. Our model
of this indirect message contains the following fields:

op endpoint The endpoint URL for the OpenID provider; we model this
as the OpenID provider’s identity op;

claimed id The user’s claimed identity; this is either the value that the
user initially presented to the relying party, or if the OpenID provider
has helped the user to choose an identity, this is the identity they
chose; in both cases, we model this as the user’s identity u;

identity The user’s local identity at the OpenID provider; as with
the claimed id this is either the value the user provided to the rely-
ing party or the user’s identity at the OpenID provider; we model this
field as the user’s identity u;

return to A verbatim copy of the same parameter from the authentication
request message (rp);

response nonce A string that is unique to this particular authentication
response; the nonce includes a timestamp indicating the current time
according to the OpenID provider’s clock and it may contain additional
characters as necessary to make it unique; we omit the timestamp and
model this field as a nonce: nr;

assoc handle The handle for the association that was used to sign the
authentication response; if the relying party did not specify an asso-
ciation in the request message (or if there was not a request message)
then this should be the handle for a new private association; we model
this field as the nonce nk.

We model the OpenID provider’s signature on the message as a single
application of a cryptographic hash function to the hash key concatenated
to the values to be signed; we include all of the necessary fields in the signa-
ture. The indirect communication of the authentication response message
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is therefore modelled in the following way:

Message 6.1 op→ u : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 6.2 u → rp : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk) ,

where k is the association that nk refers to.
The specification states that relying parties should accept and verify

unrequested associations, so the protocol can be run in two ways: either in
OpenID provider first mode or relying party first mode, depending on whom
the user first communicates with.

When the protocol is run in OpenID provider first mode, or when the
user provides his OpenID provider’s identity in the first stage of the protocol
(i.e. when the relying party has not yet performed discovery on the claimed
identifier) the relying party must perform discovery on the claimed identifier.
This is to ensure that the OpenID provider who signed the authentication
response is authorised (by the user) to make assertions about the claimed
identifier. This discovery phase is modelled in the same way as the earlier
discovery protocol (messages 2.1 and 2.2).

The OpenID Authentication specification document recommends that
the OpenID provider’s endpoint URL should always be protected by an
SSL certificate; this is to ensure that the user can correctly identify the
OpenID provider. It also serves another very important purpose which is
not directly referred to by the specification: the SSL channel protects the
confidentiality of the authentication response message. If anyone other than
the user learns the content of the authentication response they can present it
to the relying party and impersonate the user. We model the communication
channel between the user and the OpenID provider as an SSL connection
(the user plays the client role, the OpenID provider plays the server role).
The authentication of the user to the server at the application layer elevates
the properties of the secure channel; we model a strong symmetric channel
that satisfies C ∧NF ∧NRA ∧NR in both directions.

The specification does not make any recommendations about the chan-
nel between the user and the relying party. However, it is vital that the
authentication response is delivered to the relying party on a confidential
channel. We model the channel between the user and the relying party as
an SSL connection (the user plays the client role, the relying party plays the
server role).

7. Direct verification

If the authentication response message is signed with a private association
the relying party must use the direct verification protocol to verify the signa-
ture. The protocol is initiated by the relying party sending a direct message
to the OpenID provider including an exact copy of all the fields in the au-
thentication response message.
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When an OpenID provider receives a direct verification request message
he should first check that the association handle refers to a private asso-
ciation, and that he has not already responded to a verification check for
the response nonce in the request. If both of these conditions are met,
and if the signature is valid the OpenID provider should send a direct mes-
sage to the relying party including an is valid field set to true. Rather than
introducing a new variable, we just model this message as a confirmation
of the user’s identity. The direct verification protocol is modelled in the
following way:

Message 7.1 rp→ op : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 7.2 op→ rp : u .

The OpenID specification recommends that the OpenID provider’s end-
point URL should be protected by an SSL certificate, so we model the
communication channel between the relying party and the OpenID provider
as an SSL connection (the relying party plays the client role, the OpenID
provider plays the server role).

7.4.3 OpenID protocols

The messages of the OpenID Authentication protocol can be exchanged
in six different ways. When the protocol is run in OpenID provider first
mode there are two possibilities: the user either identifies himself by using
a domain name that he owns, or he uses a local identifier at his OpenID
provider. The first message in both variations is a message from the user
to his OpenID provider; this message is used to authenticate the user’s
identity, and to tell the OpenID provider which relying party he wishes to
communicate with:

Message 1 u→ op : u, rp .

The OpenID provider then sends an authentication response message,
via the user, to the relying party (messages 6.1 and 6.2). When the re-
lying party receives this authentication message he performs the discovery
protocol (messages 3.1 and 3.2) to make sure that the OpenID provider
who signed the message is authorised to make assertions about the claimed
identifier.

The OpenID provider uses a private association to sign the authentica-
tion message, so the relying party must use the direct verification protocol
(messages 7.1 and 7.2) to verify the signature. Once the relying party has
verified the message signature he can be sure that the user has correctly
been authenticated to him, and so he provides the requested resource to the
user.

When the protocol is run in relying party first mode there are four possi-
bilities: the user either provides his own identity or he provides an OpenID
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provider’s identity, and the relying party either establishes an association
before sending the request message or the relying party and the OpenID
provider use the direct verification protocol to verify the signature.

In the two variations when the user provides his own identity the first
message is message 1; the relying party then performs the discovery proto-
col (messages 2.1 and 2.2) to discover the user’s OpenID provider. If the
user provides his OpenID provider’s identity (message 1′) then the relying
party performs discovery on it, but we do not model this stage.

The discovery protocol uses an HTTP connection if the identity is an
HTTP URL, or an HTTPS connection if the identity is a secure URL. We
assume that all user-owned URLs are not secure (i.e. they are HTTP URLs)
because we assume that most users do not have an SSL certificate installed
on their own domain; we assume that all identities provided by OpenID
providers are secure URLs.

After the relying party has discovered the user’s OpenID provider’s iden-
tity he can either run the association establishment protocol (messages 3.1
and 3.2) or choose not to (either to use an existing association, or to use
direct verification later). The relying party sends an authentication request
message to the OpenID provider via the user (messages 4.1 and 4.2). The
OpenID provider authenticates the user, and then sends an authentication
response back to the relying party (messages 6.1 and 6.2). Finally, if nec-
essary, the relying party runs the direct verification protocol (messages 7.1
and 7.2) before providing the user with the resource he requested.

Full listings of the six variations of the protocol and the Casper channel
models we use for our analysis are shown in Appendix C.

7.4.4 Attacks against the protocols

We used the models of the OpenID Authentication protocols described above
to test several authentication properties in Casper. Specifically, we tested
an authentication property between every pair of roles who communicate
directly in the protocol. Of these, the most important property is the au-
thentication of the user to the relying party because achieving this correctly
is the goal of the protocols.

In contrast to the trusted Identity Providers in the SAML Single Sign-
On protocols, we cannot assume that the OpenID providers are trustworthy:
we must allow the intruder to play the role of an OpenID provider, as well
as allowing him to play the roles of users and relying parties. Naturally, we
expect to find attacks against users who rely on dishonest OpenID providers
to prove their identity. However, a very important property that a single
sign-on system should satisfy is that it protects users against dishonest iden-
tity providers that they do not trust; in other words, an OpenID provider
can only authenticate a user to a relying party identity if the user has said
(either publicly, or within the protocol run) that they trust that OpenID
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provider. We found several attacks against the OpenID protocols that show
that they do not necessarily have this property.

In the rest of this section we describe the attacks that we found against
the OpenID protocols. For each attack we describe a scenario in which it is
possible, we describe the consequences of the attack and the steps that can
be taken to prevent it.

If a user has an insecure identity (i.e. an HTTP URL rather than an
HTTPS URL) the intruder can spoof the discovery phase of the protocol
and change the identity of the user’s OpenID provider; this attack can be
performed against any of the protocols where the user presents an identity
that he controls. Below, we give a trace of the relying party first protocol
with verification by association in which the intruder has impersonated the
user A. RP is the relying party; OP is A’s (honest) OpenID provider, and
the intruder (I) can act as an OpenID provider using his own identity.

Message 1 IA → RP : A
Message 2.1 RP→ IA : A
Message 2.2 IA → RP : A, I
Message 3.1 RP→ I : RP, I
Message 3.2 I → RP : NK ,K
Message 4.1 RP→ IA : A,NK ,RP
Message 6.2 IA → RP : I, A,RP, NR, NK , h(K, I, U,RP, NR, Nk)
Message 8 RP→ IA : M .

Message 1 is the initial phase of the protocol where the intruder imper-
sonates the user and requests a resource from the relying party. Messages 2.1
and 2.2 are the discovery protocol; in this attack the intruder intercepts the
relying party’s request to the user’s identity URL and sends back his own
response, identifying himself as the user’s OpenID provider. Messages 3.1
and 3.2 are the association establishment protocol. Message 4.1 is the first
stage of the indirect communication of the authentication request message
from the relying party to the OpenID provider (in this case, the intruder).
The intruder, acting as the user, sends back the authentication response to
the relying party in message 6.2. In message 8 the relying party sends the
resource (M) to the intruder. The intruder has successfully authenticated
himself as the user A to the relying party even though A did not take part
in the protocol run.

This attack is possible because the discovery response message (mes-
sage 2.2 above) is not sent on an authenticated channel. In order to prevent
this attack, the message from the user that identifies his OpenID provider
must be authenticated by some means.

When we model security protocols, we usually assume that users are
played by a single agent process, that they do not have any specialised secu-
rity software on their computer and that they do not possess any credentials
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other than shared secrets with other agents (e.g. passwords). The OpenID
discovery protocol is performed by the relying party, and the point of a sin-
gle sign-on system is that the user and the relying party do not share any
secrets, so there does not appear to be any way to authenticate the discovery
protocol.

However, in the case of the OpenID Authentication scheme, two of the
assumptions above are no longer valid:

1. The role of a user who controls his own identity is no longer played
by a single agent process: the role is played by the web server that
responds to HTTP requests at the user’s identity URL and by the user
himself at his own personal computer;

2. A user who controls his own identity can establish some credentials
by installing an SSL certificate on the server that responds to HTTP
requests at his identity.

With an SSL certificate installed on the user’s identity URL, the discov-
ery process can take place over an SSL connection, and the message from
the user’s web server to the relying party can be sent over the authenticated
half of an SSL connection. This simple fix prevents the attack shown above.
We recommend that insecure URLs should not be allowed to be used as
identities within the OpenID protocols.

A dishonest OpenID provider can assume the identity of any user for
whom he controls a local identifier. This is not surprising because it is the
OpenID provider who proves the user is who he says he is. However, it
is worth bearing in mind that users should only establish identities with
providers that they trust, and relying parties should only allow OpenID
providers whom they trust to authenticate their users to them.

The relying party always plays the client role when establishing SSL
connections to the OpenID provider, so the relying party’s identity is never
authenticated to the OpenID provider. This means that there are some
possible protocol runs in which an OpenID provider believes that a relying
party has been running the protocol when they have not. These could easily
be prevented by running the direct verification protocol and the association
establishment protocol over a bilateral TLS connection, rather than an SSL
connection. However, the added complexity of the stronger channel is un-
necessary because without it there are no attacks against the authentication
of the user to the relying party.

A relying party may choose not to perform discovery or not to verify
the authentication message (either directly or by checking the signature).
Although the user always communicates with his OpenID provider during
the protocol run, he does not receive any guarantee that the relying party
has communicated with the OpenID provider. This only leads to attacks
against the protocol if an intruder knows that a certain relying party does
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not perform discovery or does not check message signatures. In this case the
intruder can assume any identity with the relying party. This attack high-
lights the trust that users must have in relying parties before they provide
any personal information to them.

When the protocol is run in relying party first mode, the first time
that the user communicates with his OpenID provider may be when he is
redirected to the provider by the relying party. We assume that the user is
capable of correctly identifying his OpenID provider, and would notice if he
was sent to another website. Unfortunately, because of the way the OpenID
protocols are designed to be implemented, this may not be the case: the
OpenID provider’s website may appear in a frame or a popup on the relying
party’s website, and so the user may not necessarily be able to tell whether
or not they are really communicating with the correct provider. The only
way to ensure that the user can check the identity of the OpenID provider
is for the user to be redirected to the provider’s website in a standard web
page view so that he can easily check the details of the SSL certificate.
An alternative is for the user to programme his browser with the identities
(i.e. the URLs) of the OpenID providers that he trusts; however, support
for this is currently limited to Mozilla Firefox, and this mechanism cannot
be used when the user uses a different computer.

The security of the OpenID protocols relies heavily on the secrecy of the
authentication response message. The OpenID provider should only give
this message to the user once he has correctly authenticated him. However,
anyone who gets hold of an authentication response message can identify
himself as the user to whom it refers by presenting it to the relying party it
was originally intended for. The message is protected by a timestamp and
a nonce; these are designed to protect against replay attacks. However, if
an intruder gets hold of an authentication response message and presents it
to the relying party before the user does he can authenticate himself as the
user. In order to prevent this sort of attack, the authentication response
message must only be communicated on secret channels.

For the OpenID protocols this means that all communication between
the user and the two servers must take place over SSL connections. The SSL
connection from the user to the OpenID provider only provides NF ∧NRA−

from the OpenID provider to the user; however, the user authenticates him-
self to the OpenID provider in the application layer before the authentication
response message is sent, so this elevates the channel to provide authenti-
cation in both directions, thus establishing a confidential channel from the
OpenID provider to the user. The SSL connection from the user to the
relying party is confidential because it satisfies C ∧NR−.

In our model of OpenID Authentication we assume that whenever the
protocol is run, relying parties either use direct verification or they establish
a new association. In fact, relying parties and OpenID providers are allowed
to establish associations that they use in more than one run of the proto-
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col. Establishing long-term secrets in this manner makes individual protocol
runs faster: signatures can be checked by the relying party without any com-
munication between the relying party and the OpenID provider. However,
this has the disadvantage that authentication messages can be replayed to
the relying party they were originally intended for, and in order to detect
replays, relying parties must store all the response nonces they have seen
within the lifetime of the association. The protocol is much more secure
when a new association is established with every protocol run, and much
less effort is required from the relying party to ensure that authentication
messages are not replayed.

Even though we did not model the timestamp or the nonce in the au-
thentication response, we did not find any replay attacks because every
authentication response message was either verified directly, or by a freshly
established association. The security of the protocols in this case, and in
particular the guarantee of freshness of the authentication response is pro-
vided by the strong symmetric authenticated channel that the relying party
and the OpenID provider establish.

7.4.5 Conclusions

All of the attacks that we found against the OpenID Authentication pro-
tocols can be prevented by following the strongest recommendations in the
specification: users should only use secure URLs as identifiers (either URLs
that they control, or local identifiers at OpenID providers); users should
always communicate with relying parties and OpenID providers on SSL
connections; and relying parties and OpenID providers should perform the
association establishment protocol and the direct verification protocol over
SSL connections.

Almost all of the security of the OpenID Authentication scheme is due
to the protection provided by the secure transport layer protocols that it
uses. The only security mechanism in the application layer is the OpenID
provider’s signature on the authentication response message, which is based
entirely on the secrecy of the association. The timestamp and nonce in the
authentication response message help to prevent replay attacks, but the pro-
tection of a confidential secure transport layer is sufficient to replace these.
Replay attacks are not possible if the relying party and the OpenID provider
communicate directly in every protocol run. In fact, if a new association is
used for every protocol run (and if the user’s identity is tied to the associa-
tion by being included in the association establishment or direct verification
protocol), the signature can be removed completely; the only token that
needs to be given to the user is the association itself. Clearly the protocol
is more efficient if associations can be reused, and in order for this to be
possible without introducing attacks, the signature mechanism is necessary.

The OpenID specification [FRH+08] is well written: it is unambiguous,
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and easy to follow. The only problem with the specification is that the
strongest recommendations mentioned above are not compulsory, they are
just suggested. The protocol itself is also simple; rather than using com-
plicated XML documents to carry the protocol messages, the messages are
encoded in plain text. However, all field names and types are recorded
unambiguously, so the protocols are not susceptible to typing attacks; fur-
thermore, the messages themselves are each given a unique tag (the mode
field) so messages cannot be confused for one another.

7.5 Developing a new single sign-on protocol

In this section we describe the development process for a new single sign-on
protocol. We start the development process by formalising the goals of the
protocol, and we decide on a basic message exchange framework (i.e. who
sends what to whom in order to achieve the goals). We then determine
which channel properties we can use to simplify the protocol; finally, we test
our protocol in Casper using the new channel models.

The single sign-on protocol is designed to authenticate a user u to a ser-
vice provider sp by means of a trusted third party: the identity provider idp.
The goal of the protocol is therefore to achieve this authentication correctly;
we recall the definition of agreement from [Low97]:

Definition 7.5.1 (Agreement). A protocol guarantees to an initiator A
agreement with a responder B on a set of data items ds if, whenever A
(acting as initiator) completes a run of the protocol, apparently with re-
sponder B, then B has previously been running the protocol, apparently
with A, and B was acting as responder in his run, and the two agents
agreed on the data values corresponding to all the variables in ds, and each
such run of A corresponds to a unique run of B.

The goal of our single sign-on protocol is therefore to achieve agreement
between the user (acting as the protocol initiator) and the service provider
(acting as the responder) on the user’s request and the user’s identity; we
test this goal directly in Casper.

We assume that identity providers are trustworthy, and that there is a
reliable way for a service provider to determine, or confirm, who a user’s
identity provider is. For example:

• There may only be one identity provider in the system;

• The user’s identity may be a URL on the identity provider’s domain
(e.g. http://www.facebook.com/profile.php?id=36801608);

• The user’s identity may be a URL on their own domain, and could
identify the identity provider when requested over an HTTPS connec-
tion.
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Our single sign-on protocol is designed for service-provider first interac-
tion; the user provides his identity to the service provider in order to request
a resource, or an action, but before the resource can be delivered, or the ac-
tion performed, the service provider must ensure that the user is who he
claims to be. The phases of the protocol are as follows:

1. The user first visits a service provider and requests a resource, or an
action, that is restricted;

2. The service provider generates a new secret (a nonce) and sends it,
and the user’s identity, to the identity provider. The understanding is
that the identity provider should only tell the nonce to the user once
he has correctly authenticated him;

3. The service provider redirects the user’s browser to his identity
provider’s website, with a message containing the service provider’s
identity (so that the identity provider knows which nonce to give the
user). The user authenticates himself to his identity provider by some
means out of scope of the protocol description (for example, a user-
name and password);

4. When the user has proved who he is, the identity provider gives him
the nonce, and redirects him back to the service provider;

5. The user’s knowledge of the nonce proves to the service provider that
he is who he claimed to be, and so the service provider performs the
action, or delivers the resource to the user.

The minimal messages that are required to achieve the message exchange
described above are as follows:

Message 1 u → sp : u, idp, req?
Message 2.1 sp → idp : u, nsp

Message 2.2 idp→ sp : ok
Message 3.1 sp → u : idp, sp
Message 3.2 u → idp : sp
Message 4.1 idp→ u : sp, u, nsp

Message 4.2 u → sp : u, nsp

Message 5 sp → u : resp .

We examine each message in turn, and consider which channel properties
are necessary for the transmission of each message in order to protect the
protocol. Messages 1, 2.2 and 3.1 can be sent over the bottom channel.
The secrecy of the nonce is essential for the correctness of the protocol, so
every time the nonce is transmitted between agents, it must be sent over a
confidential channel; messages 2.1, 4.1 and 4.2 must all be sent over channels
that satisfy at least C ∧NR−.
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If the resource that the user requested is secret, then message 5 must be
sent over a confidential channel. On the other hand, if the protocol is being
used for credit then message 1 should be sent over a confidential channel (or
the request should not be sent until message 4.2). If the protocol is used for
responsibility (i.e. if the user has asked the service provider to perform an
action), then either the request should be sent in message 4.2, or messages 1
and 4.2 should be sent in an injective session.

We model the authentication of the user to the identity provider by
an authenticated channel for message 3.2; however, if the authentication
is performed at the application layer, this message (which will contain the
user’s credentials) should be sent on a confidential channel (to protect the
secrecy of the credentials).

Even when the channel properties listed above are used, we have discov-
ered an attack against the authentication of the user to the service provider.
During a run of the protocol in which the intruder impersonates an honest
user, the intruder can re-ascribe message 2.1 to himself so that, although he
cannot learn the nonce directly from overhearing this message, he can cause
the identity provider to associate that nonce with a session between the user
and the intruder:5

α.1 Iu → sp : u, idp, req?
α.2.1 (sp→I)→ idp : u, nsp

α.2.2 Iidp → sp : ok
α.3.1 sp → Iu : idp, sp .

If that honest user then begins a protocol run with the intruder playing the
role of the service provider, the identity provider will tell the user to give
the original service provider’s nonce to the intruder to prove his identity:

β.1 u → I : u, idp, req?′

β.3.1 I → u : idp, I
β.3.2 u → idp : I
β.4.1 idp→ u : I, u, nsp .

Once the intruder learns the nonce, he can present it to the real service
provider to impersonate the user:

β.4.2 u→ I : u, nsp

α.4.2 Iu → sp : u, nsp

α.5 sp→ I : resp .

We discovered this attack by checking an agreement property between
the user and the service provider in Casper and FDR using the new channel
models described in Chapter 6.

5The extra notation for the sender’s identity of message α.2.1 is intended to show that
the intruder re-ascribes this message to himself.
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This attack is possible because the intruder can re-ascribe message 2.1
in the protocol. The attack could be prevented by sending message 2.1
over an authenticated channel (increasing the requirement for this channel
to C ∧NF ∧NRA ∧NR), however it is simpler for the service provider to
include his identity in the application-layer message:

Message 2.1 sp→ idp : u, sp, nsp .

With this change made to the protocol, the authentication check in FDR
does not detect any more attacks against the authentication of the user to
the service provider.

Rather than use an injective session channel to link the request (mes-
sage 1) with the authenticated channel from the user to the service provider
(message 4.2), we delay (or repeat) the request to message 4.2:

Message 4.2 u→ sp : u, nsp, req? .

With the following channel setup, there are no attacks against the au-
thentication of the user to the service provider:

2.1 C NR-
3.2 C NR-
4.1 C NR-
4.2 C NR-

There are, however, possible attack traces against this protocol in which
the intruder can cause a different authentication specification to fail; for
example:

• The intruder can impersonate the service provider and the identity
provider so that the user believes he has completed a run of the pro-
tocol with the service provider. This attack could not lead an honest
service provider to authenticate a user incorrectly, but it might lead
a user to believe that he will be given credit for his request, or that
the action he requested will be performed. This attack is prevented
by sending message 5 on an authenticated channel (i.e. NF ∧NRA−),
and sending messages 4.2 and 5 on a symmetric session channel.

• As with the OpenID and SAML protocols, a dishonest service provider
can choose not to authenticate the user. In this case the attack man-
ifests itself as a trace where the intruder fakes message 4.1 from the
identity provider to the user, and does not send message 2.1. This is
a protocol run that the identity provider has not taken part in; how-
ever, this attack only disadvantages the service provider. This attack
can easily be prevented by sending message 4.1 over an authenticated
injective session channel.
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• The service provider is not authenticated to the identity provider,
so the intruder can send fake nonces to the identity provider. The
intruder cannot complete a protocol run in which he authenticates
himself as an honest user, however he might be able to mount a denial
of service attack by filling the identity provider’s memory with fake
nonces. If message 2.1 is sent on an authenticated injective session
channel then the identity provider only stores valid nonces, and this
attack can be prevented.

• The intruder can replay a valid message 3.2 to make the identity
provider believe the user wants to run the protocol again. The in-
truder cannot use this attack to authenticate himself as the user, but
the attack can easily be prevented by sending message 3.2 on an in-
jective session channel.

We note that the channel setup listed above simulates unilateral TLS
(or SSL) connections between the user and the service provider, the service
provider and the identity provider, and the user and the identity provider,
with application layer authentication on the channel from the user to the
identity provider.6 Further, using SSL channels for every point-to-point
connection prevents all of the other attack traces discussed above (though
we emphasise that the channel setup above is sufficient to guarantee the main
goal of the protocol: authentication of the user to the service provider).

In developing this new single sign-on protocol we found the abstract
channel properties very helpful. By explicitly assuming the secure transport
layer could provide certain properties to the application layer, we specified a
protocol without any encryption, message signing, or hash functions in the
application layer. As a result of this, our protocol is simple, and would be
straightforward to implement. There are of course several implementation
decisions that we have made implicit in our presentation of the protocol
(e.g. how long should the identity provider store nonces before forgetting
them, and how many nonces should the identity provider remember for each
user-service provider pair); however, these decisions can be made at the time
of implementation without affecting the security of the protocol’s main goal:
the authentication of the user to the service provider.

This protocol was developed and tested in less than a day. This incredi-
bly short development and testing process is partly due to the highly abstract
formalism of the protocol description, but also largely due to the abstrac-
tion of the secure transport layer properties. Because the authentication,
confidentiality and session properties are easily understood, we discovered
most of the requirements of the secure transport layer without testing the
protocol in Casper. The tool support (provided by Casper and FDR) meant

6The channel for message 4.1 is confidential because a unilateral SSL channel with
application-layer authentication is confidential in both directions.
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that we could test different versions of the protocol and different channel
setups easily and quickly, and so it was straightforward to prevent the few
attacks that were possible.

7.6 Conclusions

In this chapter we have studied two different solutions to the identity feder-
ation problem. In the first, the SAML Single Sign-On Web Browser Profile,
centralised Identity Providers authenticate their users to Service Providers
by giving them signed authentication assertions. In the second solution,
the OpenID Authentication scheme, each user chooses an identifier (or a
set of identifiers) that uniquely identify him. In order to prove to a relying
party that he controls an identifier, the user communicates with an OpenID
provider with whom he has some means of proving his identity. The OpenID
provider creates a signed authentication message that the user can present
to the relying party.

Both of these schemes allow a user to register his details with a single
identity provider, and then to prove his identity to several service providers,
without having to create new authentication details (such as username and
passwords) with each one. Both of these solutions are token authentication
protocols: the user is given a token to present to the relying party, and this
token has the following properties:

• The token is signed by a particular identity provider; this property en-
sures that the relying party who receives the token knows the identity
of the server who is authenticating the user’s identity;

• The token can only be delivered to a particular relying party; this
property ensures that the identity provider knows to whom the user
wants to authenticate himself;

• The token can only be used once by the specified user at the specified
relying party; this property ensures that old tokens cannot be reused;

• The identity provider would only give the token to the user once he
had authenticated him, and convinced himself that he really was com-
municating with the specified user.

Both of these protocols rely on the value of the token being kept secret
from everyone but the user, the identity provider and the relying party. If
an intruder obtains a token that refers to another user’s identity, he can
authenticate himself as that user at the relying party for whom the token
was originally intended. In order to keep the value of the token secret
both of the protocols rely on a secure transport layer; in particular, they
both specify that authentication assertions should only be communicated on
channels protected by an SSL or TLS connection.
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Both sets of specification documents clearly point out the need to keep
the authentication tokens secret, and the role of SSL in achieving this con-
fidentiality. However, they do not clearly state the other properties of the
transport layer that the protocols rely on. In both cases the symmetric
session property of SSL and TLS prevents replay attacks, and the authen-
tication properties prevent attacks in which an intruder can impersonate a
relying party or identity provider.

Both sets of specifications fail to specify exactly which channels should
be used for communication between every pair of agents. We feel that the
specifications would be much clearer, and the protocols more secure, if the
specification documents adopted a more formal approach to specifying the
properties that the secure transport layer must satisfy in order to make the
protocol work correctly. For example, the OpenID protocol requires a confi-
dential channel from the user to the relying party so that the authentication
token cannot be overheard; however, this is not specified in [FRH+08].

We also found that both protocols are overly complicated, and, once
the properties of the secure transport layer are understood, it is easy to see
how they can be simplified. In particular, the signatures on messages can
be removed completely if the relying party and identity provider commu-
nicate directly and establish a shared secret over a strongly authenticated,
confidential channel such as a unilateral (or bilateral) TLS connection.

In Section 7.5 we described a new single sign-on protocol that we de-
signed using the channel specifications from Chapter 3. We designed the
protocol to be as concise as possible: all messages only contain the nec-
essary fields, and we specify the minimum channel properties necessary in
order for the protocol to achieve its goal securely. There are several design
decisions that would need to be made to implement and run this protocol
in a web-based environment, but each decision can be supported by ref-
erence to the underlying requirements for the channels. In particular, we
claim that if all communication in the protocol is run over unilateral TLS
(or SSL) connections then the protocol is free from attacks.

The short development process, and the compact description of the pro-
tocol are due in part to the highly abstract formalism of the protocol de-
scription, but they are also due to the abstraction of the secure transport
layer properties. By using the properties from Chapter 3 we simplify the
application-layer protocol, and so we simplify the design methodology.

We used the updated tool support to test the first version of the protocol
against the goals it was designed to achieve, and we found an attack against
the authentication of the user to the service provider, and several attacks
against other authentication specifications. It was straightforward to analyse
the output from FDR to understand how the attacks were possible, and to
modify the channel properties the protocol needs. We updated the formal
model, ran the Casper checks again, and confirmed that the changes we made
prevented the intruder from performing the attacks.
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Chapter 8

Conclusions and future work

In this thesis we have presented a hierarchy of secure channel properties, and
we have described a formal framework for reasoning with these properties.

We described a system comprising a set of agents communicating over an
insecure network which is controlled by a Dolev-Yao style active intruder.
The honest agents can send and receive messages, while the intruder can
send, receive, fake and hijack messages. The intruder is constrained only
by rules that prevent him from performing impossible events: he can only
hijack messages that have already been sent, and he can only send and fake
messages that he knows. We defined the set of ValidSystemTraces: the set
of all possible traces that the honest agents and the intruder can perform.

We specified confidential channels that prevent the intruder from over-
hearing messages, and we described a necessary condition for a secure trans-
port protocol to establish confidential channels: the intruder must only be
able to learn messages that were sent to him, or that were sent on non-
confidential channels.

We described several dishonest events that the intruder can perform
(e.g. honest re-ascribing), and we presented security specifications that pre-
vent the intruder from performing these events. We investigated the com-
binations of these specifications and we found that several of them collapse:
they allow behaviours that simulate events that they block. We presented
five collapsing rules, and, having taken these rules into account, we described
a hierarchy of eleven confidential and authenticated channel specifications.
We described several of these specifications in more detail, and in every
case we presented a simple protocol that satisfies the specification. We have
not proved that these protocols satisfy the specifications, however, for these
simple examples the proofs appear to be straightforward.

We also investigated channel specifications that group several messages
together into a session. We specified injective and symmetric forms of the
session property, and then we described even stronger guarantees that secure
channels can provide.
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We formalised our notion of simulation in terms of the honest agents’
views of the valid system traces. By hiding the intruder’s events, and only
examining the events that he can cause the honest agents to perform, we
make the intruder’s activity abstract; this allows us to compare channel
specifications, even when the model of the intruder is different. We used our
simulation relation to define an equivalence relation (mutual simulation),
and we used this relation to prove the equivalence of alternative forms of
our channel specifications. Rather than blocking the intruder’s events, these
alternative forms state the possible events that could precede a receive event,
and require that one of them does. The alternative specifications are more
conducive to proving properties about the secure channel properties.

We showed that every possible combination of the channel primitives (the
specifications that block the individual intruder events) is either a point in
the channel hierarchy, or collapses to a unique point in the hierarchy. We
also showed that we could safely block some combinations of the intruder’s
events because they simulate other events. We specified a sufficient condition
for substituting session channels for stream channels without introducing
attacks.

We investigated chaining our secure channel properties through a trusted
third party (a proxy). We showed, in two different cases, that our channel
properties are invariant under chaining, and that the overall channel prop-
erty through a proxy is at least as strong as the greatest lower bound of the
channels to and from the proxy. In some cases, due to the trust relations
between agents and some extra application-layer data, the overall channel
is stronger than both channels.

We described abstract CSP models of our channel properties; these mod-
els capture the properties of the channels (such as no-redirecting) rather
than modelling the concrete transport layer protocols. We built these mod-
els into Casper, and we proved that the models are equivalent to the formal
properties, even though the model of the intruder is slightly different.

We used the Casper models to study two single sign-on protocols for
the internet. These protocols both rely on SSL and TLS connections to
function correctly; we modelled the protocols in Casper, and we described
several attacks that we found against the protocols. In almost every case
the attacks are only possible if the protocol is not implemented exactly as
the specification describes it; however, we found a serious attack against the
OpenID authentication protocol when users use insecure identities.

Finally, we showed how the channel properties and the channel hierarchy
can be used to simplify the protocol development process. We described a
new single sign-on protocol which we developed using this technique; by
explicitly relying on precisely specified properties of the secure transport
layer we justify several simplifications in the application-layer protocol. In
particular, our protocol does not use encryption or digital signatures in the
application layer.
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We hope that the work presented in this thesis will make it easier to
specify secure channel properties and to compare these properties with one
another. We also hope that this work will make it easier for secure transport
layer protocol designers to specify exactly what properties their protocol
can provide, and for application-layer security protocol designers to specify
exactly what properties their protocol requires of the secure transport layer.

8.1 Future work

In this section we describe several areas for further research, and where we
believe there are interesting results to be discovered.

8.1.1 Further channel properties

Our hierarchy of channel properties is far from complete; in this section we
describe three directions in which our properties could be extended

Recentness There are several properties that TLS provides that are not
captured by our channel specifications; one of these properties is recentness.
Because a new TLS session must be established via the full handshake pro-
tocol or by resuming an old session, the agents in a TLS session have already
verified that each other is ‘alive’ before they send their first application-layer
messages. This has the effect of guaranteeing that each message an agent
receives in a TLS connection must have been created recently (i.e. it can-
not have been sent before the handshake protocol was performed). Hence
recentness is a property provided by TLS.

A guarantee of recentness can also be afforded by adding timestamps to
the transport-layer protocol:

Message A→ B : {m, t}SK(A) .

When B receives this message he knows that A created it at time t, so he
knows how fresh that message is (assuming that his clock is synchronised
with A’s).

We could specify a recentness property by introducing timestamps of a
globally synchronised clock to the send, receive, fake and hijack events:

send.A.cA.t.B.m: agent A sent message m in connection cA at time t to
agent B;

receive.B.cB.t.m: agent B received message m in connection cB at time t,
apparently from agent A;

fake.A.B.cB.t.m: the intruder faked message m so that agent B receives it
in connection cB at time t, apparently from A;

195



hijack.A→A′.B→B′.cB.t.m: the intruder hijacked a message originally
sent by A to B, so that agent B′ receives it in connection cB′ at
time t, apparently from A′.

By introducing these timestamps we derive some additional limitations
on the behaviour of the honest agents and the intruder: agents cannot re-
ceive messages earlier than they were sent, and the intruder cannot hijack
messages so that they are received earlier than they were sent. However,
these conditions are implied by our existing network rules and the condition
that timestamp values are non-decreasing in all valid system traces. We can
now specify a recentness property by requiring that the difference in the
timestamps on send and receive events is less than a certain bound.

It is clear that this recentness property is independent of the single-
message properties, but it is less clear how it interacts with the stronger
stream properties. For example, when an agent receives a message on a
mutual stream channel then he knows that the message is at least as recent
as the last message he sent.

Weak confidentiality We have seen that a unilateral TLS connection
uses the same transport-layer message encoding to carry application-layer
messages, but only provides confidentiality in one direction, because only
one agent is authenticated to the other. Channels such as this seem to
satisfy a weak form of confidentiality: when they are established correctly
(i.e. when two honest agents are communicating in a symmetric session)
they protect the confidentiality of the application-layer messages. When
they are not established correctly (i.e. when the intruder is faking the part
of the unauthenticated agent) they do not provide confidentiality, because
the messages are not delivered to the agent that the sender intended them
for. There is scope for a weaker confidentiality specification to capture this
property: if C−(Ri → Rj) then only the agent to whom the messages are
being delivered can decrypt them.

While this property can be specified independently of the single-message
properties, it makes most sense in the context of symmetric session channels
(or stronger channels). On these channels an authenticated message sender
knows that all his messages are being received by a single agent, and that
they are kept secret from all other agents, but he does not necessarily know
who the receiving agent is.

Innominate channels In every property in our single-message hierarchy,
at least one agent is authenticated to the other. That is, none of our channels
are capable of providing properties (such as the session or stream properties,
or confidentiality) unless one of the parties is authenticated to the other.
It would be interesting to investigate properties that allow two agents to
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establish a weakly-confidential channel, say, without either agent having to
authenticate himself.

We believe that there is scope for specifying innominate channels such
as this. These channels are not strictly anonymous in the sense that an
anonymous channel would prevent the recipient of a message from being
able to prove who sent the message to him, but they remove the requirement
for authentication. It is generally accepted that two agents who do not
possess (shared) secrets cannot establish secure communications links, and
this is borne out in practice: when TLS is run in ‘anonymous authentication’
mode using Diffie-Hellman key establishment, there is a man-in-the-middle
attack [Res01]. In general, it seems likely that if A and B wish to establish
a channel without checking each other’s identity, then they do not have
any means of detecting whether the intruder has interposed himself between
them (and is simply listening to, and relaying messages in each direction).

8.1.2 Classifying secure transport protocols

In Chapter 3 we gave single-message examples of protocols that we be-
lieve satisfy the properties in the hierarchy. For example, we claim that
encrypting a message with the intended recipient’s public key, and in-
cluding the sender’s identity in the encrypted message ({A,m}PK(B))
achieves C ∧NRA ∧NR−. We have not proved that these example pro-
tocols really do satisfy the properties that we claim they do; it should be
straightforward to prove that these protocols are correct.

In Chapter 2 we described several ‘real-world’ secure transport protocols
(such as IPsec and TLS). We can describe which of our channel properties
we believe these protocols satisfy, but it would be good to be able to prove
that they do indeed satisfy these properties. Kamil and Lowe have made
some progress in this direction; in [KL08] they use strand spaces to prove
that TLS provides a property that is equivalent to a stream channel that
satisfies C ∧NF ∧NRA ∧NR.

8.1.3 Proxies and chaining

In Chapter 5 we presented two chaining theorems for secure channels. The
theorems are useful because they describe ways in which secure channels
might be used, and they allow users of our secure channel specifications to
calculate the properties of the overall channel through a proxy very simply.
One can easily tell whether or not the chained form of two channels still
provides a particular property. In particular, we have shown that the single
message channels defined in Chapter 3 are invariant under chaining through
a proxy, provided that the proxy is trustworthy.

In Chapter 3 we presented several session properties. A session channel
guarantees that all the messages received in a connection were sent in a single
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connection. We also specified stream properties which guarantee the session
property, and also that messages are received in the same order as that in
which they were sent. It would be interesting to investigate whether the
session and stream properties are invariant under chaining. It seems likely
that this is the case (assuming that whenever the proxy receives several
messages in a single session he forwards them in a single session, in the
same order).

It would also be interesting to investigate more general chaining; for
example, the effect of multiple chains of secure channels. When agents play-
ing role Ri send messages to agents playing role Rj through a multiplexing
proxy, the elevation function is different on the channels to and from the
proxy. If the chaining is set up as

Ri → Proxy→ Proxy ′ → Rj ,

it is not clear what properties the channel through the two different proxies
satisfies.

Using the theorems in this paper we could calculate the properties of the
overall channel in two different ways: by calculating the resultant channel
over the first two connections, then using this result to calculate the result
of the overall chain, or by calculating the result of the last two connections
first.1

↓ (↖m Chain(Ri → Proxy→ Proxy ′) u ↗m (Proxy ′ → Rj)) , or
↓ (↖m (Ri → Proxy) u ↗m Chain(Proxy→ Proxy ′ → Rj)) ,

where:

Chain(Ri → Proxy→ Proxy ′) =
↓ (↖m (Ri → Proxy) u ↗m (Proxy→ Proxy ′)) , and

Chain(Proxy→ Proxy ′ → Rj) =
↓ (↖m (Proxy→ Proxy ′) u ↗m (Proxy ′ → Rj)) .

Because the elevation functions (↖m and↗m) are not the same, in most
cases these calculations will give different results. For this reason we believe
that the overall channel is likely to satisfy the following specification:

↓ (↖m (Ri → Proxy)u (Proxy→ Proxy ′) u ↗m (Proxy ′ → Rj)) .

The specifications of the channels to the first proxy and from the last proxy
are elevated in the usual way, but there is no elevation on the intermediate
channel. It is straightforward to generalise this result to longer chains.

1In these examples, when we write a channel such as Ri → Rj , we are referring to the
channel properties satisfied by this channel, rather than the channel itself.
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8.1.4 Layering

The concept of layering is natural with architectures such as the one de-
scribed in this thesis. Of course, running an application-layer protocol on
top of a transport-layer channel is one instance of layering; however, it is also
possible to layer one secure transport protocol on top of another. For ex-
ample, consider the following four ways of sending message m from agent A
to agent B:

Message 1 A→ B : {m}PK(B)

Message 2 A→ B : {m}SK(A)

Message 3 A→ B : {{m}PK(B)}SK(A)

Message 4 A→ B : {{m}SK(A)}PK(B)

Message 1 satisfies C ∧NR−, and Message 2 satisfies NF ∧NRA−. These
channels could be layered in two different ways; firstly, by layering the first
channel on top of the second, and secondly, by layering the second channel
on top of the first. The order in which the channels are layered is important
in determining the properties of the resultant channel:

• The first order (shown as Message 3) results in a channel that satis-
fies C ∧NF ∧NRA− ∧NR;

• The second order (shown as Message 4) results in a channel that sat-
isfies C ∧NF ∧NRA ∧NR−.

We saw in Chapter 5 (when we considered the multiplexing proxies) that
adding extra information in the application layer can have an effect on the
properties of the secure transport layer. For example, if an agent includes his
own identity in the application-layer message, then a confidential channel
can be elevated to a confidential channel that satisfies C ∧NRA ∧NR−.
On session or stream channels, the agent sending messages only needs to
include his identity in one message for the transformation to be applied
to every message sent on the channel. There are many other ways that
application-layer messages can be used to strengthen the properties of the
secure transport layer. For example:

• A could prove knowledge of a long-term secret that is shared with B
(such as a password) in order to authenticate himself;

• On a confidential channel, an agent B could choose a nonce and send
it to A in the first message he sends; if A includes that nonce in every
message he sends to B this could convert a message channel into a
session channel.

It would be interesting to use our framework to study formally the prob-
lem of layering channels, and to prove that these equivalences are sound.
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8.1.5 Group protocols

In this thesis we assumed that the only available cryptographic algorithms
are cryptographic hash functions, symmetric key and individual public key
encryption, and secret key signing. It would be useful to extend the formal-
ism to consider groups of agents who share secret keys. For example, sup-
pose that a group of agents {A1, . . . , An} know k, a symmetric key, and each
agent Ai sends messages to the other agents in the following way: {Ai,m}k.

This channel is non-fakeable and non-re-ascribable to agents outside the
group; it is also confidential in the sense that it protects the confidentiality
of messages from agents outside the group.

This is a very simple example of a protocol based on a group key: there
are many more complicated protocols that might be used to establish chan-
nels between groups, or within groups. These channels might provide prop-
erties that we have not yet specified; for example, a protocol in which agents
sign messages with a group secret key will be non-fakeable by anyone outside
the group, but not within the group.

8.1.6 Data independence

In Chapter 6 we described how abstract models of the channel properties
can be built into Casper in order to test security protocols for secrecy and
authentication properties when they are run in a finite system (i.e. a system
in which a fixed number of honest agents run the protocol a fixed number
of times). The numbers involved in this sort of analysis are generally small
(of the order of one or two agents each running the protocol at most twice),
because otherwise the space requirements for conducting the state space
exploration in FDR become intractable.

Roscoe, Broadfoot and Kleiner have used data independence techniques
to simulate the behaviour of an unbounded number of agents using an un-
bounded supply of fresh variables [RB99, RK06]. These systems allow a
finite check in FDR to verify protocols in which the agents can perform an
unbounded number of parallel runs.

We would be interested in applying these techniques to the models we
described in Chapter 6 in order to obtain much stronger guarantees when
performing Casper analyses.

8.1.7 Case studies

In Chapter 7 we presented two case studies of protocols that use SSL and
TLS connections. We would be interested to conduct further case studies
using our channel models. We are particularly interested in finding more
security protocols that use SSL and TLS (e.g. [Vis06]), and in finding secu-
rity protocols that use different secure transport protocols (such as IPsec).
We also believe that there is scope to use our channel models to analyse
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some of the protocols introduced by Creese et al. that use empirical chan-
nels [CGH+05].

Delegation protocols also provide an interesting area for further exten-
sions to the model. In many delegation protocols security credentials are
established in the application layer, and then used in the transport layer.
This crossing of layers is not something our current model can represent, as
we assume that application-layer messages and transport-layer messages are
disjoint. There may also be other classes of security protocol in which data
values established in one layer are used in the other, so it would be useful if
our model could be extended to enable us to study these.
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[FHG99b] F.J.T. Fábrega, J.C. Herzog, and J.D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security,
7(2–3):191–230, 1999.

[FK97] I. Foster and C. Kesselman. Globus: a metacomputing infrastruc-
ture toolkit. International Journal of High Performance Comput-
ing Applications, 11(2):115, 1997.

[FKK96] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol Version
3.0, 1996.

[FR06] B. Fitzpatrick and D. Recordon. OpenID Authentication 1.1, 2006.

[FRH+08] B. Fitzpatrick, D. Recordon, D. Hardt, J. Bufu, and J. Hoyt.
OpenID Authentication 2.0 - Final. OpenID Community, 2008.
Available from http://openid.net/specs/openid-authentication-
2 0.html.

[FSE05] Formal Systems (Europe) Ltd. FDR2 User Manual, 2005. Avail-
able from http://www.fsel.com/.
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Appendix A

Alternative channel
specifications

A.1 Authenticated channels

Definition A.1.1 (Alt(⊥)).

Alt(⊥)(Ri → Rj) =̂
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
fake.A.B.cB.m in tr ∨
∃A′ : R̂i;B′ : R̂j · hijack.A′→A.B′→B.cB.m in tr .

Definition A.1.2 (Alt(NF∧NRA−)).

Alt(NF ∧NRA−)(Ri → Rj) =̂
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
∃A′ : R̂i;B′ : R̂j · hijack.A′→A.B′→B.cB.m in tr ∧

((A′ = A) ∨Dishonest(A)) .

Definition A.1.3 (Alt(NF ∧NRA− ∧NR−)).

Alt(NF ∧NRA− ∧NR−)(Ri → Rj) =̂
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
∃A′ : R̂i;B′ : R̂j · hijack.A′→A.B′→B.cB.m in tr ∧

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) .
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Definition A.1.4 (Alt(NF ∧NRA− ∧NR)).

Alt(NF ∧NRA− ∧NR)(Ri → Rj) =̂
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
∃A′ : R̂i · hijack.A′→A.B.cB.m in tr ∧

((A′ = A) ∨Dishonest(A)) .

Definition A.1.5 (Alt(C∧NR−)).

Alt(C ∧NR−)(Ri → Rj) =̂
C(Ri → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
fake.A.B.cB.m in tr ∨
∃A′ : R̂i;B′ : R̂j · hijack.A′→A.B′→B.cB.m in tr ∧

((B′ = B) ∨Dishonest(B′)) .

Definition A.1.6 (Alt(C ∧NRA− ∧NR−)).

Alt(C ∧NRA− ∧NR−)(Ri → Rj) =̂
C(Ri → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
fake.A.B.cB.m in tr ∨
∃A′ : R̂i;B′ : R̂j · hijack.A′→A.B′→B.cB.m in tr ∧

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) .

Definition A.1.7 (Alt(C ∧NRA ∧NR−)).

Alt(C ∧NRA ∧NR−)(Ri → Rj) =̂
C(Ri → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
fake.A.B.cB.m in tr ∨
∃B′ : R̂j · hijack.A.B′→B.cB.m in tr ∧

((B′ = B) ∨Dishonest(B′)) .
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Definition A.1.8 (Alt(C ∧NF ∧NRA− ∧NR−)).

Alt(C ∧NF ∧NRA− ∧NR−)(Ri → Rj) =̂
C(Ri → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
∃A′ : R̂i;B′ : R̂j · hijack.A′→A.B′→B.cB.m in tr ∧

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) .

Definition A.1.9 (Alt(C ∧NF ∧NRA− ∧NR)).

Alt(C ∧NF ∧NRA− ∧NR)(Ri → Rj) =̂
C(Ri → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
∃A′ : R̂i · hijack.A′→A.B.cB.m in tr ∧

((A′ = A) ∨Dishonest(A)) .

Definition A.1.10 (Alt(C ∧NF ∧NRA ∧NR−)).

Alt(C ∧NF ∧NRA ∧NR−)(Ri → Rj) =̂
C(Ri → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr ∨
∃B′ : R̂j · hijack.A.B′→B.cB.m in tr ∧

((B′ = B) ∨Dishonest(B′)) .

Definition A.1.11 (Alt(C ∧NF ∧NRA ∧NR)).

Alt(C ∧NF ∧NRA ∧NR)(Ri → Rj) =̂
C(Ri → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;m : MessageApp ·

receive.B.cB.A.m in tr ⇒
∃cA : Connection · send.A.cA.B.m in tr .
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A.2 Simple proxy channels

Definition A.2.1 (Alt(⊥)).

Alt(⊥)(Proxy−→(Ri,Rj))(tr) =̂
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .

Definition A.2.2 (Alt(NF∧NRA−)).

Alt(NF ∧NRA−)(Proxy−→(Ri,Rj))(tr) =̂
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .

Definition A.2.3 (Alt(NF ∧NRA− ∧NR−)).

Alt(NF ∧NRA− ∧NR−)(Proxy−→(Ri,Rj))(tr) =̂
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .

Definition A.2.4 (Alt(NF ∧NRA− ∧NR)).

Alt(NF ∧NRA− ∧NR)(Proxy−→(Ri,Rj))(tr) =̂
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃A′ : R̂i;P(A′,B) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P(A′,B)→P(A,B).cP .m in tr ∨
hijack.P(A′,B)→P(A,B).B.cB.m in tr .
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Definition A.2.5 (Alt(C∧NR−)).

Alt(C ∧NR−)(Proxy−→(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .

Definition A.2.6 (Alt(C ∧NRA− ∧NR−)).

Alt(C ∧NRA− ∧NR−)(Proxy−→(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .

Definition A.2.7 (Alt(C ∧NRA ∧NR−)).

Alt(C ∧NRA ∧NR−)(Proxy−→(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃B′ : R̂j ;P(A,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.A.P(A,B′)→P(A,B).cP .m in tr ∨
hijack.P(A,B′)→P(A,B).B

′→B.cB.m in tr .
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Definition A.2.8 (Alt(C ∧NF ∧NRA− ∧NR−)).

Alt(C ∧NF ∧NRA− ∧NR−)(Proxy−→(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃A′ : R̂i;B′ : R̂j ;P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .

Definition A.2.9 (Alt(C ∧NF ∧NRA− ∧NR)).

Alt(C ∧NF ∧NRA− ∧NR)(Proxy−→(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃A′ : R̂iP(A′,B) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P(A′,B)→P(A,B).cP .m in tr ∨
hijack.P(A′,B)→P(A,B).B.cB.m in tr .

Definition A.2.10 (Alt(C ∧NF ∧NRA ∧NR−)).

Alt(C ∧NF ∧NRA ∧NR−)(Proxy−→(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃B′ : R̂j ;P(A,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.A.P(A,B′)→P(A,B).cP .m in tr ∨
hijack.P(A,B′)→P(A,B).B

′→B.cB.m in tr .

Definition A.2.11 (Alt(C ∧NF ∧NRA ∧NR)).

Alt(C ∧NF ∧NRA ∧NR)(Proxy−→(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P(A,B) : Pr̂oxy(Ri,Rj);m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr .
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A.3 Multiplexing proxy channels

Definition A.3.1 (Alt(⊥)).

Alt(⊥)(Proxy(Ri, Rj))(tr) =̂
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃cP : Connection · fake.A.P.cP .〈m,B〉 in tr ∨
fake.P.B.cB.〈A,m〉 in tr ∨
∃A′ : R̂i;B′ : R̂j ; cP : Connection ·

hijack.A′→A.P.cP .〈m,B〉 in tr ∨
hijack.P.B′→B.cB.〈A,m〉 in tr .

Definition A.3.2 (Alt(NF∧NRA−)).

Alt(NF ∧NRA−)(Proxy(Ri, Rj))(tr) =̂
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃A′ : R̂i;B′ : R̂j ; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P.cP .〈m,B〉 in tr ∨
hijack.P.B′→B.cB.〈A,m〉 in tr .

Definition A.3.3 (Alt(NF ∧NRA− ∧NR−)).

Alt(NF ∧NRA− ∧NR−)(Proxy(Ri, Rj))(tr) =̂
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃A′ : R̂i;B′ : R̂j ; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P.cP .〈m,B〉 in tr ∨
hijack.P.B′→B.cB.〈A,m〉 in tr .

Definition A.3.4 (Alt(NF ∧NRA− ∧NR)).

Alt(NF ∧NRA− ∧NR)(Proxy(Ri, Rj))(tr) =̂
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃A′ : R̂i; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P.cP .〈m,B〉 in tr .
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Definition A.3.5 (Alt(C∧NR−)).

Alt(C ∧NR−)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃cP : Connection · fake.A.P.cP .〈m,B〉 in tr ∨
fake.P.B.cB.〈A,m〉 in tr ∨
∃A′ : R̂i;B′ : R̂j ; cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P.cP .〈m,B〉 in tr ∨
hijack.P.B′→B.cB.〈A,m〉 in tr .

Definition A.3.6 (Alt(C ∧NRA− ∧NR−)).

Alt(C ∧NRA− ∧NR−)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃cP : Connection · fake.A.P.cP .〈m,B〉 in tr ∨
fake.P.B.cB.〈A,m〉 in tr ∨
∃A′ : R̂i;B′ : R̂j ; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P.cP .〈m,B〉 in tr ∨
hijack.P.B′→B.cB.〈A,m〉 in tr .

Definition A.3.7 (Alt(C ∧NRA ∧NR−)).

Alt(C ∧NRA ∧NR−)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃cP : Connection · fake.A.P.cP .〈m,B〉 in tr ∨
fake.P.B.cB.〈A,m〉 in tr ∨
∃B′ : R̂j ; cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.P.B′→B.cB.〈A,m〉 in tr .
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Definition A.3.8 (Alt(C ∧NF ∧NRA− ∧NR−)).

Alt(C ∧NF ∧NRA− ∧NR−)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃A′ : R̂i;B′ : R̂j ; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P.cP .〈m,B〉 in tr ∨
hijack.P.B′→B.cB.〈A,m〉 in tr .

Definition A.3.9 (Alt(C ∧NF ∧NRA− ∧NR)).

Alt(C ∧NF ∧NRA− ∧NR)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃A′ : R̂i; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P.cP .〈m,B〉 in tr .

Definition A.3.10 (Alt(C ∧NF ∧NRA ∧NR−)).

Alt(C ∧NF ∧NRA ∧NR−)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr ∨
∃B′ : R̂j ; cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.P.B′→B.cB.〈A,m〉 in tr .

Definition A.3.11 (Alt(C ∧NF ∧NRA ∧NR)).

Alt(C ∧NF ∧NRA ∧NR)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection;A : R̂i;P : Pr̂oxy;m : MessageApp ·

receive.B.cB.P.〈A,m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m,B〉 in tr .
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Appendix B

Additional material for
chaining theorems

B.1 Simple Proxy results

See Figure B.1.

B.2 Multiplexing Proxy results

See Figure B.2.
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B.3 Subsidiary (shared) channel functions

channels.lhs

>module Channels (

> Channel, ChannelComp (Less, Greater, Equal, Incomparable),

> channelCompare, hierarchy, collapse, channelShow, glb)

>where

A channel is represented by its co-ordinates in the full lattice:

(C, NF, NRA, NR)

>type Channel = (Integer, Integer, Integer, Integer)

>data ChannelComp = Less | Equal | Greater | Incomparable

> deriving (Eq, Show)

Channels are compared pointwise:

>channelCompare :: Channel -> Channel -> ChannelComp

>channelCompare (c1, nf1, nra1, nr1) (c2, nf2, nra2, nr2)

> | c1 == c2 && nf1 == nf2 && nra1 == nra2 && nr1 == nr2 = Equal

> | c1 <= c2 && nf1 <= nf2 && nra1 <= nra2 && nr1 <= nr2 = Less

> | c1 >= c2 && nf1 >= nf2 && nra1 >= nra2 && nr1 >= nr2 = Greater

> | otherwise = Incomparable

The hierarchy is represented as follows:

(1, 1, 2, 2)

C NF NRA NR

/ \

/ \

(1, 1, 2, 1) (1, 1, 1, 2)

C NF NRA NR- C NF NRA- NR

/ \ / \

/ \/ \

(1, 0, 2, 1) (1, 1, 1, 1) (0, 1, 1, 2)

C NRA NR- C NF NRA- NR- NF NRA- NR

\ /\ /

\ / \ /

(1, 0, 1, 1) (0, 1, 1, 1)

C NRA- NR- NH NRA- NR-

| |

| |

(1, 0, 0, 1) (0, 1, 1, 0)

C NR- NF NRA

\ /

\ /

(0, 0, 0, 0)

_|_

>hierarchy :: [Channel]

>hierarchy = [(1, 1, 2, 2),

>(1, 1, 2, 1), (1, 1, 1, 2),
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>(1, 0, 2, 1), (1, 1, 1, 1), (0, 1, 1, 2),

>(1, 0, 1, 1), (0, 1, 1, 1),

>(1, 0, 0, 1), (0, 1, 1, 0),

>(0, 0, 0, 0)]

Collapse a point in the lattice by applying the collapsing rules until we

reach a fixpoint

>collapse :: Channel -> Channel

>collapse c = if (c == c’) then c else collapse c’

> where c’ = collapse’ c

>collapse’ :: Channel -> Channel

>collapse’ (0,0,x,y) = (0,0,0,0)

>collapse’ (x,1,0,y) = (x,0,0,y)

>collapse’ (0,1,2,x) = (0,1,1,x)

>collapse’ (1,x,y,0) = (0,x,y,0)

>collapse’ (1,0,x,2) = (1,0,x,1)

>collapse’ c = c

Show a channel as a string

>channelShow :: Channel -> String

>channelShow (0,0,0,0) = "_|_"

>channelShow (c, nf, nra, nr) = cStr ++ nfStr ++ nraStr ++ nrStr

> where cStr = if c > 0 then "C" ++

> (if nf + nra + nr > 0 then " ^ " else "") else ""

> nfStr = if nf > 0 then "NF" ++

> (if nra + nr > 0 then " ^ " else "") else ""

> nraStr = if nra > 0 then dashNRA ++

> (if nr > 0 then " ^ " else "") else ""

> nrStr = if nr > 0 then dashNR else ""

> dashNRA = if nra == 1 then "NRA-" else "NRA"

> dashNR = if nr == 1 then "NR-" else "NR"

The greatest lower bound (in the hierarchy) of two channels

>glb :: Channel -> Channel -> Channel

>glb (c1, nf1, nra1, nr1) (c2, nf2, nra2, nr2) =

> (min c1 c2, min nf1 nf2, min nra1 nra2, min nr1 nr2)

B.4 Simple proxy proof script

>import Channels

We calculate the channel combinations where the expected result (calculated

using the elevation rules) and the actual result (calculated using the trace

patterns) differ.

>difference :: IO()

>difference = (putStr . concat) [

> "Actual: " ++ (actual c1 c2) ++

> "Expected: " ++ (expected c1 c2) ++ "\n" |
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> c1 <- hierarchy, c2 <- hierarchy,

> (actual c1 c2) /= (expected c1 c2)]

The expected result (calculated using the elevation rules).

>expected :: Channel -> Channel -> String

>expected c1 c2 = "A --[" ++

> (channelShow c1) ++ "]--> Proxy --[" ++

> (channelShow c2) ++ "]--> B = " ++

> (channelShow resultant) ++ "\n"

> where resultant = collapse (glb (raiseToProxy c1) (raiseFromProxy c2))

>raiseToProxy :: Channel -> Channel

>raiseToProxy (c, nf, nra, nr) = (c, nf, nra’, nr’)

> where nra’ = if (nr > 0) then 2 else nra

> nr’ = if (nr > 0) then 2 else 0

>raiseFromProxy :: Channel -> Channel

>raiseFromProxy (c, nf, nra, nr) = (c, nf, nra, nr’)

> where nr’ = if (nra > 0) then 2 else nr

The actual result (calculated using trace patterns).

>actual :: Channel -> Channel -> String

>actual c1 c2 = "A --[" ++

> (channelShow c1) ++ "]--> Proxy --[" ++

> (channelShow c2) ++ "]--> B = " ++

> (channelShow (match (resultant A) (resultant I) c1 c2)) ++ "\n"

> where resultant a = (map head . toSender a . toProxy) (finalEvent a)

> toSender a = applyChannel c1 . concat . map

> (initial (Sender a) (Receiver B))

> toProxy = map preProxy . applyChannel c2 . pre

> finalEvent a = (Receive (Proxy (Sender a, Receiver B), Receiver B))

We use representative identities: A, A’, B, B’ are honest; I is dishonest.

>data Identity = A | A’ | B | B’ | I

> deriving (Eq, Show)

An agent is either a proxy between two agents, a sender, or a receiver.

>data Agent = Proxy (Agent, Agent) | Sender Identity | Receiver Identity

> deriving (Eq, Show)

Proxies are honest if the agent they send on behalf of is honest.

>honest :: Agent -> Bool

>honest (Proxy (a,b)) = honest a

>honest (Sender a) = a /= I

>honest (Receiver a) = a /= I

It’s convenient to list the senders, receivers and proxies.

>senders :: [Agent]
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>senders = [Sender A, Sender A’, Sender I]

>receivers :: [Agent]

>receivers = [Receiver B, Receiver B’, Receiver I]

>proxies :: [Agent]

>proxies = [Proxy (a, b) | a <- senders, b <- receivers]

And to pick out the sender or receiver from a proxy.

>sender :: Agent -> Agent

>sender (Proxy (a, b)) = a

>receiver :: Agent -> Agent

>receiver (Proxy (a, b)) = b

Each event is either a send, receive, fake or hijack. We list the sender’s

identity first, the recipient’s second.

>data Event = Send (Agent, Agent) |

> Receive (Agent, Agent) |

> Fake (Agent, Agent) |

> Hijack (Agent, Agent, Agent, Agent)

> deriving (Eq,Show)

The function pre calculates which events could have occurred immediately

before the final receive event. However, we don’t let the intruder fake

with his own (e.g. a dishonest) identity.

>pre :: Event -> [[Event]]

>pre (Receive (p,b)) = sends:fakes:hijacks

> where sends = [Send (p,b), Receive (p,b)]

> fakes = if (honest (p)) then [Fake (p,b), Receive (p,b)]

> else []

> hijacks = [[Send (p’, receiver (p’)),

> Hijack (p’, p, receiver (p’), b),

> Receive (p,b)] | p’ <- proxies]

If the proxy p sent a message to b, then who sent the message to p?

>preProxy :: [Event] -> [Event]

>preProxy (Send (p,b):xs) = Receive (sender p, p):Send (p,b):xs

>preProxy xs = xs

Once we know who the proxy received the message from we can work out all

possible traces that would result in our original event. However:

# We don’t let the intruder send messages to the wrong recipient;

# We don’t let the intruder fake with his own identity, with the wrong

sender’s identity, or to the wrong recipient.

>initial :: Agent -> Agent -> [Event] -> [[Event]]

>initial a1 b1 (Receive (a,p):xs) = sends:fakes:hijacks

> where sends = if (honest (a) || receiver (p) == b1) then

> Send (a,p):Receive (a,p):xs else []

> fakes = if (honest (a) && a == a1 && receiver(p) == b1) then

> Fake (a,p):Receive (a,p):xs else []

> hijacks = [[Send ((sender (p’)), p’),
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> Hijack (sender (p’),a,p’,p),

> Receive (a,p)] ++ xs | p’ <- proxies]

>initial _ _ xs = [xs]

We can apply a channel to the events each side of the proxy (apply only

looks at the first two events in each trace).

>applyChannel :: Channel -> [[Event]] -> [[Event]]

>applyChannel _ [] = []

>applyChannel cs ([]:xss) = applyChannel cs xss

>applyChannel (c,nf,nra,nr) ((x:y:xs):xss) =

> if (nfs nf (x,y) && nras nra (x,y) && nrs nr (x,y)) then

> (x:y:xs):(applyChannel (c,nf,nra,nr) xss) else

> (applyChannel (c,nf,nra,nr) xss)

> where nfs 0 _ = True

> nfs 1 ((Fake (a,b)),y) = False

> nfs 1 _ = True

> nras 0 _ = True

> nras 1 (x,(Hijack (a,a’,b,b’))) = (a == a’) || (not $ honest(a’))

> nras 1 _ = True

> nras 2 (x,(Hijack (a,a’,b,b’))) = (a == a’)

> nras 2 _ = True

> nrs 0 _ = True

> nrs 1 (x,(Hijack (a,a’,b,b’))) = (b == b’) || (not $ honest(b))

> nrs 1 _ = True

> nrs 2 (x,(Hijack (a,a’,b,b’))) = (b == b’)

> nrs 2 _ = True

The function match takes a list of initial honest and initial dishonest

events and discovers which channel they correspond to.

>match :: [Event] -> [Event] -> Channel -> Channel -> Channel

>match hs ds (c1,nf1,nra1,nr1) (c2,nf2,nra2,nr2) = collapse (c,nf,nra,nr)

> where c = if (c1 == 1 && c2 == 1) then 1 else 0

> nf = if (nf1 == 1 && nf2 == 1) then 1 else 0

> nra = minimum (map trd (map hEvents hs ++ map dEvents ds))

> nr = minimum (map fth (map hEvents hs ++ map dEvents ds))

The functions hEvents and dEvents tell which channel properties a certain

event implies.

>hEvents :: Event -> Channel

>hEvents (Send (Sender A,Proxy (Sender A,Receiver B))) = (1,1,2,2)

>hEvents (Send (Sender A,Proxy (Sender A,Receiver I))) = (1,1,2,1)

>hEvents (Send (Sender A’,Proxy (Sender A’,Receiver B))) = (1,1,0,2)

>hEvents (Send (Sender A’,Proxy (Sender A’,Receiver I))) = (1,1,0,1)

>hEvents (Send (Sender I,Proxy (Sender I,Receiver B))) = (1,0,2,2)

>hEvents (Send (Sender I,Proxy (Sender I,Receiver I))) = (1,0,2,2)

>hEvents (Send (Sender A,Proxy (Sender A,Receiver B’))) = (1,1,2,0)

>hEvents (Send (Sender A’,Proxy (Sender A’,Receiver B’))) = (1,1,0,0)

>hEvents (Send (Sender I,Proxy (Sender I,Receiver B’))) = (1,0,2,2)

>hEvents (Fake (Sender A,Proxy (Sender A,Receiver B))) = (1,0,2,2)

>hEvents (Fake (Proxy (Sender A,Receiver B),Receiver B)) = (1,0,2,2)

229



>dEvents :: Event -> Channel

>dEvents (Send (Sender I,Proxy (Sender I,Receiver B))) = (1,1,2,2)

>dEvents (Send (Sender A,Proxy (Sender A,Receiver B))) = (1,1,1,2)

>dEvents (Send (Sender A’,Proxy (Sender A’,Receiver B))) = (1,1,1,2)

>dEvents (Send (Sender A,Proxy (Sender A,Receiver I))) = (1,1,2,2)

>dEvents (Send (Sender A’,Proxy (Sender A’,Receiver I))) = (1,1,2,2)

>dEvents (Send (Sender I,Proxy (Sender I,Receiver I))) = (1,1,2,2)

>dEvents (Send (Sender A,Proxy (Sender A,Receiver B’))) = (0,1,2,2)

>dEvents (Send (Sender A’,Proxy (Sender A’,Receiver B’))) = (0,1,2,2)

>dEvents (Send (Sender I,Proxy (Sender I,Receiver B’))) = (1,1,2,2)

>trd (_,_,x,_) = x

>fth (_,_,_,x) = x

B.5 Multiplexing proxy proof script

>import Channels

We calculate the channel combinations where the expected result (calculated

using the elevation rules) and the actual result (calculated using the trace

patterns) differ.

>difference :: IO()

>difference = (putStr . concat) [

> "Actual: " ++ (actual c1 c2) ++

> "Expected: " ++ (expected c1 c2) ++ "\n" |

> c1 <- hierarchy, c2 <- hierarchy,

> (actual c1 c2) /= (expected c1 c2)]

The expected result (calculated using the elevation rules).

>expected :: Channel -> Channel -> String

>expected c1 c2 = "A --[" ++

> (channelShow c1) ++ "]--> Proxy --[" ++

> (channelShow c2) ++ "]--> B = " ++

> (channelShow resultant) ++ "\n"

> where resultant = collapse (glb (raiseToProxy c1) (raiseFromProxy c2))

>raiseToProxy :: Channel -> Channel

>raiseToProxy (c, nf, nra, nr) = (c, nf, nra, 2)

>raiseFromProxy :: Channel -> Channel

>raiseFromProxy (c, nf, nra, nr) = (c, nf, 2, nr)

The actual result (calculated using trace patterns).

>actual :: Channel -> Channel -> String

>actual c1 c2 = "A --[" ++

> (channelShow c1) ++ "]--> Proxy --[" ++

> (channelShow c2) ++ "]--> B = " ++

> (channelShow (match (resultant A) (resultant I) c1 c2)) ++ "\n"

> where resultant a = (map head . toSender a . toProxy) (finalEvent a)

> toSender a = applyChannel c1 . concat . map
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> (initial (Sender a) (Receiver B))

> toProxy = map preProxy . applyChannel c2 . pre

> finalEvent a = (Receive (Proxy, Receiver B, Sender a))

We use representative identities: A, A’, B, B’ are honest; I is dishonest.

>data Identity = A | A’ | B | B’ | I

> deriving (Eq, Show)

An agent is either a proxy, a sender, or a receiver.

>data Agent = Proxy | Sender Identity | Receiver Identity

> deriving (Eq, Show)

All proxies are honest (so we never question it).

>honest :: Agent -> Bool

>honest (Sender a) = a /= I

>honest (Receiver a) = a /= I

It’s convenient to list the senders and receivers.

>senders :: [Agent]

>senders = [Sender A, Sender A’, Sender I]

>receivers :: [Agent]

>receivers = [Receiver B, Receiver B’, Receiver I]

Each event is either a send, receive, fake or hijack. We list the sender’s

idenitity first, the receiver’s second and the third party’s (the original

sender or the final recipient) third.

>data Event = Send (Agent, Agent, Agent) |

> Receive (Agent, Agent, Agent) |

> Fake (Agent, Agent, Agent) |

> Hijack (Agent, Agent, Agent, Agent)

> deriving (Eq,Show)

The function pre calculates which events could have occurred immediately

before the final receive event. However, we don’t let the intruder fake

with his own (e.g. a dishonest) identity.

>pre :: Event -> [[Event]]

>pre (Receive (Proxy,b,a)) = sends:fakes:hijacks

> where sends = [Send (Proxy,b,a), Receive (Proxy,b,a)]

> fakes = if (honest (a)) then

> [Fake (Proxy,b,a), Receive (Proxy,b,a)] else []

> hijacks = [[Send (Proxy,b’,a),

> Hijack (Proxy,b’,b,a),

> Receive (Proxy,b,a)] | b’ <- receivers]

If the proxy p sent a message to b, then who sent the message to p?

>preProxy :: [Event] -> [Event]
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>preProxy (Send (Proxy,b,a):xs) = Receive (a,Proxy,b):Send (Proxy,b,a):xs

>preProxy xs = xs

Once we know who the proxy received the message from we can work out all

possible traces that would result in our original event. However:

# We don’t let the intruder send messages to the wrong recipient;

# We don’t let the intruder fake with his own identity, with the wrong

sender’s identity, or to the wrong recipient.

>initial :: Agent -> Agent -> [Event] -> [[Event]]

>initial a1 b1 (Receive (a,Proxy,b):xs) = sends:fakes:hijacks

> where sends = if (honest(a) || b == b1) then

> (Send (a,Proxy,b)):(Receive (a,Proxy,b)):xs else []

> fakes = if (honest(a) && a == a1 && b == b1) then

> (Fake (a,Proxy,b)):(Receive (a,Proxy,b)):xs else []

> hijacks = [[Send (a’,Proxy,b),

> Hijack (a’,a,Proxy,b),

> Receive (a,Proxy,b)] ++ xs | a’ <- senders]

>initial _ _ xs = [xs]

We can apply a channel to the events each side of the proxy (apply only

looks at the first two events in each trace).

>applyChannel :: Channel -> [[Event]] -> [[Event]]

>applyChannel _ [] = []

>applyChannel cs ([]:xss) = applyChannel cs xss

>applyChannel (c,nf,nra,nr) ((x:y:xs):xss) =

> if (nfs nf (x,y) && nras nra (x,y) && nrs nr (x,y)) then

> (x:y:xs):(applyChannel (c,nf,nra,nr) xss) else

> (applyChannel (c,nf,nra,nr) xss)

> where nfs 0 _ = True

> nfs 1 ((Fake (a,Proxy,b)),y) = False

> nfs 1 ((Fake (Proxy,b,a)),y) = False

> nfs 1 _ = True

> nras 0 _ = True

> nras 1 (x,(Hijack (a,a’,Proxy,b))) = (a == a’) || (not $ honest(a’))

> nras 1 (x,(Hijack (Proxy,b,b’,a))) = True

> nras 1 _ = True

> nras 2 (x,(Hijack (a,a’,Proxy,b))) = (a == a’)

> nras 2 (x,(Hijack (Proxy,b,b’,a))) = True

> nras 2 _ = True

> nrs 0 _ = True

> nrs 1 (x,(Hijack (a,a’,Proxy,b))) = True

> nrs 1 (x,(Hijack (Proxy,b,b’,a))) = (b == b’) || (not $ honest(b))

> nrs 1 _ = True

> nrs 2 (x,(Hijack (a,a’,Proxy,b))) = True

> nrs 2 (x,(Hijack (Proxy,b,b’,a))) = (b == b’)

> nrs 2 _ = True

The function match takes a list of initial honest and initial dishonest

events and discovers which channel they correspond to.

>match :: [Event] -> [Event] -> Channel -> Channel -> Channel

>match hs ds (c1,nf1,nra1,nr1) (c2,nf2,nra2,nr2) = collapse (c,nf,nra,nr)
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> where c = if (c1 == 1 && c2 == 1) then 1 else 0

> nf = if (nf1 == 1 && nf2 == 1) then 1 else 0

> nra = minimum (map trd (map hEvents hs ++ map dEvents ds))

> nr = minimum (map fth (map hEvents hs ++ map dEvents ds))

The functions hEvents and dEvents tell which channel properties a certain

event implies.

>hEvents :: Event -> Channel

>hEvents (Send (Sender A,Proxy,Receiver B)) = (1,1,2,2)

>hEvents (Send (Sender A,Proxy,Receiver I)) = (1,1,2,1)

>hEvents (Send (Sender A,Proxy,Receiver B’)) = (1,1,2,0)

>hEvents (Fake (Sender A,Proxy,Receiver B)) = (1,0,2,2)

>hEvents (Fake (Proxy,Receiver B,Sender A)) = (1,0,2,2)

>hEvents (Send (Sender A’,Proxy,Receiver B)) = (1,1,0,2)

>hEvents (Send (Sender I,Proxy,Receiver B)) = (1,0,2,2)

>hEvents (Send (Sender A’,Proxy,Receiver I)) = (1,1,0,1)

>hEvents (Send (Sender I,Proxy,Receiver I)) = (1,1,2,2)

>hEvents (Send (Sender A’,Proxy,Receiver B’)) = (1,1,0,0)

>hEvents (Send (Sender I,Proxy,Receiver B’)) = (1,1,2,2)

>dEvents :: Event -> Channel

>dEvents (Send (Sender I,Proxy,Receiver B)) = (1,1,2,2)

>dEvents (Send (Sender I,Proxy,Receiver I)) = (1,1,2,2)

>dEvents (Send (Sender I,Proxy,Receiver B’)) = (1,1,2,2)

>dEvents (Send (Sender A,Proxy,Receiver B)) = (1,1,1,2)

>dEvents (Send (Sender A’,Proxy,Receiver B)) = (1,1,1,2)

>dEvents (Send (Sender A,Proxy,Receiver I)) = (1,1,2,2)

>dEvents (Send (Sender A’,Proxy,Receiver I)) = (1,1,2,2)

>dEvents (Send (Sender A,Proxy,Receiver B’)) = (1,1,2,2)

>dEvents (Send (Sender A’,Proxy,Receiver B’))= (1,1,2,2)

>trd (_,_,x,_) = x

>fth (_,_,_,x) = x
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Appendix C

OpenID Authentication
protocols

C.1 OpenID provider first

User-controlled identity

Message 1 u → op : u, rp
Message 6.1 op→ u : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 6.2 u → rp : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 2.1 rp→ u : rp, u
Message 2.2 u → rp : u, op
Message 7.1 rp→ op : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 7.2 op→ rp : u
Message 8 rp→ u : m

#Channels

1 C NF NRA NR

6.1 C NF NRA NR

6.2 C NR-

7.1 C NR-

7.2 NF NRA-

8 NF NRA-

Session symmetric 1, 6.1

Session symmetric 6.2, 8

Session symmetric 7.1, 7.2

OpenID provider’s identity

Message 1 u → op : u, rp
Message 6.1 op→ u : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 6.2 u → rp : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 2.1 rp→ op : rp, u
Message 2.2 op→ rp : u, op
Message 7.1 rp→ op : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 7.2 op→ rp : u
Message 8 rp→ u : m
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#Channels

1 C NF NRA NR

6.1 C NF NRA NR

6.2 C NR-

2.1 C NR-

2.2 NF NRA-

7.1 C NR-

7.2 NF NRA-

8 NF NRA-

Session symmetric 1, 6.1

Session symmetric 6.2, 8

Session symmetric 2.1, 2.2

Session symmetric 7.1, 7.2

C.2 Relying party first

User-controlled identity and association established

Message 1 u → rp : u
Message 2.1 rp→ u : u
Message 2.2 u → rp : u, op
Message 3.1 rp→ op : rp, op
Message 3.2 op→ rp : nk, k
Message 4.1 rp→ u : op, u, nk, rp
Message 4.2 u → op : u, nk, rp
Message 6.1 op→ u : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 6.2 u → rp : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 8 rp→ u : m

#Channels

3.1 C NR-

4.1 NF NRA-

4.2 C NF NRA NR

6.1 C NF NRA NR

6.2 C NR-

8 NF NRA-

Session symmetric 3.1, 3.2

Session symmetric 4.2, 6.1

Session symmetric 6.2, 8

OpenID provider’s identity and association established

Message 1 u → rp : op
Message 3.1 rp→ op : rp, op
Message 3.2 op→ rp : nk, k
Message 4.1 rp→ u : op, nk, rp
Message 4.2 u → op : u, nk, rp
Message 6.1 op→ u : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 6.2 u → rp : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 8 rp→ u : m

#Channels
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3.1 C NR-

3.2 NF NRA-

4.2 C NF NRA NR

6.1 C NF NRA NR

6.2 C NR-

8 NF NRA-

Session symmetric 3.1, 3.2

Session symmetric 4.2, 6.1

Session symmetric 6.2, 8

User-controlled identity and direct verification

Message 1 u → rp : u, op
Message 2.1 rp→ u : u
Message 2.2 u → rp : u, op
Message 4.1 rp→ u : op, u, rp
Message 4.2 u → op : u, rp
Message 6.1 op→ u : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 6.2 u → rp : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 7.1 rp→ op : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 7.2 op→ rp : u
Message 8 rp→ u : m

#Channels

4.2 C NF NRA NR

6.1 C NF NRA NR

6.2 C NR-

7.1 C NR-

7.2 NF NRA-

8 NF NRA-

Session symmetric 4.2, 6.1

Session symmetric 6.2, 8

Session symmetric 7.1, 7.2

OpenID provider’s identity and direct verification

Message 1 u → rp : op
Message 4.1 rp→ u : op, rp
Message 4.2 u → op : u, rp
Message 6.1 op→ u : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 6.2 u → rp : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 7.1 rp→ op : op, u, rp, nr, nk, h(k, op, u, rp, nr, nk)
Message 7.2 op→ rp : u
Message 8 rp→ u : m

#Channels

4.2 C NF NRA NR

6.1 C NF NRA NR

6.2 C NR-

7.1 C NR-

7.2 NF NRA-

8 NF NRA-
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Session symmetric 4.2, 6.1

Session symmetric 6.2, 8

Session symmetric 7.1, 7.2
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