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Abstract
We show how a variety of confidentiality properties

can be expressed in terms of the abstraction mecha-
nisms that CSP provides. We argue that determinism
of the abstracted low-security viewpoint provides the
best type of property. By changing the form of abstrac-
tion mechanism we are able to model different assump-
tions about how systems behave, including handling the
distinction between input and output actions. A de-
tailed analysis of the nature of nondeterminism shows
why certain security properties have had the paradox-
ical property of not being preserved by refinement – a
disadvantage not shared by the determinism-based con-
ditions. Finally we give an efficient algorithm for test-
ing the determinism properties on a model-checker.

1 Introduction
The type of problem that concerns us relates to

confidentiality issues: how can we specify and verify
that a system which interacts with more than one user
will not allow information to leak from one to another.
CSP is an excellent vehicle for this type of reasoning
because it is a calculus of how systems interact, typi-
cally over series of communications.

We will argue that the most satisfactory definitions
of security are based on the notion of determinism: a
system’s interface with a low-class user must not have
any nondeterminism that can be resolved by a high-
class user. CSP is therefore doubly well-suited to our
purpose, since it treats the study of nondeterminism
as fundamental.

The relevance of CSP ([7, 5], for example) to non-
interference properties has been recognised before (a
brief survey will be given in a later section), and per-
haps a majority of authors defining notions of infor-
mation flow and non-interference have produced defi-
nitions close in spirit to the previous paragraph. But
I am not aware of any previous work which connects
non-interference properties with the well-understood

standard representation of determinism in CSP. We
will see that not only does the combination give an
intellectually satisfying theory, but also provides the
key to efficient automated checking.

Let us suppose the process that is intended to be se-
cure is P , and that we have identified (disjoint) subsets
H and L which partition its alphabet, such that a user
interacting with P in L must not gain any information
about the interactions of P in H . The obvious model
for this is where H represents the communications of a
user with high security clearance, and L are those of a
lower-grade user, but any partially-ordered hierarchy
of non-interference could be established by using this
property over a variety of decompositions of the al-
phabet. For example, if A, B , C and D represent the
alphabets of users such that A’s communications must
be secure from the other three, B ’s from C and D , and
C ’s from B and D , then we could use, successively,
(H ,L) = (A,B∪C ∪D), (A∪B ,C ∪D), (A∪C ,B ∪D)
and (A ∪ B ∪ C ,D).

For clarity, we will henceforward assume the system
has two users: UL and UH , interacting with P in L
and H respectively.

The rest of this paper is structured as followed. We
will consider first a number of properties expressed
without explicit reference to determinism: these (in
common with several other authors) give security
specifications that are based directly on the underlying
semantic models (traces, and failures/divergences).

We will then show how the notion of determinism
provides an alternative characterisation of the security
properties, and argue that it does itself provide a nat-
ural and nearly model-independent notion of security.
Next we see how to allow, in one’s choice of security
property, for the nature of interactions between the
system and its users; in particular the distinction be-
tween inputs and outputs. If one is prepared to use
the more advanced model of CSP that includes infi-



nite traces, it turns out to be possible to characterise
the determinism properties as security with respect to
appropriately chosen ‘most nondeterministic’ user in
an interesting way.

After gaining an understanding through this work
that determinism seems to capture what is required
for security properties, there is next a section which
examines why this is in some detail: looking closely
at the nature of nondeterminism, refinement and se-
mantic models of concurrency. We will in particular
examine why other security properties have had the
paradoxical property of not being closed under refine-
ment (a property our determinism-based specifications
do have).

There is also a section comparing our work with re-
lated work in the literature and, finally, there is a con-
clusions section discussing how it might be extended
to encompass such things as details of timing and pri-
ority.

Several of the trace- and failure-based properties we
introduce during this paper are equivalent to proper-
ties proposed by other authors. Hopefully these are
signalled in the comparisons section, but I have delib-
erately not pointed out these similarities during the
text since the main object there is to set up both a
uniform way of describing the properties and a sys-
tematic notation.

The proofs of all theorems and several other de-
tailed items have been omitted from this version of
the paper because of space limitations. It is hoped
that a fuller version will appear elsewhere.

2 Trace and failures/divergences spec-
ifications

All previous authors (see Section 7) specifying secu-
rity properties via CSP have used specifications based
directly on the semantic models used to represent CSP
processes: either traces or failures/divergences. I will
ultimately argue that it is better to address confiden-
tiality via the determinism of an abstraction of the
system; but in order to see why and develop concepts
I will first introduce some properties of the first sort.

The traces of a process are the sequences of actions
it can communicate. Usually, as in this section, these
are restricted to finite traces, though later in this pa-
per we will also use infinite traces which represent a
communication history through all time.

At the this level, there is a simple assertion about
a process which seems to capture much of what we
require. In essence, it states that if two traces of P
differ only in their high-class (H ) actions, then the
subsequent behaviour of P as seen in L is identical
after these two traces. We will say that P is eagerly

trace-invariant with respect to L, or EtrINV L(P) if
and only if

tr , tr ′ ∈ tracesP ∧ tr \L = tr ′\L
⇒ (P/tr) \ H =T (P/tr ′) \ H

(Here, =T denotes trace-equality. Details of this, and
other CSP equivalences can be found in an appendix.)

The use of the term ‘eagerly’ here will be explained
at length later on: it derives from the semantics of the
CSP hiding operator, which is interpreted as though
the internalised actions are done eagerly.

‘Invariant’ is used to describe this property because
what it says is that the view in L does not change when
an H action occurs.

The condition EtrINV L can be paraphrased as
saying that the behaviour on any trace ignoring H -
actions, is equivalent once the observation of subse-
quent H -actions is prevented. While hiding the ac-
tions of H is one way of preventing their observation,
an interesting way of camouflaging them is provided
by interleaving1: if P is any process then P ||| RUN H

(where RUN H =?x : H → RUN H ) is one that has any
behaviour of P with the arbitrary insertion of elements
of H . There is no way of telling whether an element
of H came from P or from RUN H , but whatever hap-
pens this combination can never refuse an element of
H . We will say that P is lazily trace-invariant with
respect to H , or LtrINV L(P) if and only if

tr , tr ′ ∈ tracesP ∧ tr \L = tr ′\L
⇒ (P/tr) ||| RUN H =T (P/tr ′) ||| RUN H

This condition only differs from the former one in the
fact that H communications are made ambiguous (and
thereby disguised, or camouflaged) rather than con-
cealed. As the name of this condition suggests, the
conceptual difference is that this condition’s view is
that concealed actions need not happen immediately:
they can be delayed. In this case, though this will
not be true as we develop our model past traces, the
lazy condition is stronger than the eager one. The
implication comes from the fact that, in general,

(P ||| RUN A) \ A =T P \ A

so the interleaving style of equality implies the hiding
one.

The way this condition is stronger is that it, unlike
the earlier one, does not permit the set of available L-

1I will argue later that the hiding P \ H and interleaving
P ||| RUNH are alternative ways of abstracting a set H . They
will correspond to a different view of how H -actions then occur.



actions (the ones that are possible initial communica-
tions) to change when an H -action is communicated.2

The traces model gives a very weak notion of equiv-
alence for CSP processes, since it does not distinguish
between a process that can always perform a trace
and one that might also (nondeterministically) refuse
to. The standard model for untimed CSP is therefore
a richer one, the failures/divergences model (see Ap-
pendix). If we simply replace traces equivalence with
failures/divergence equivalence in the security prop-
erties we get somewhat stronger security conditions
EfdINV L and LfdINV L. These are discussed in detail
in the full version of this paper and in [16], but broadly
speaking they are equivalent to the trace conditions in
most cases where the latter are reasonable.

3 Examples
We now define some example processes that will

be used to demonstrate and judge various proper-
ties we propose, including EtrINV L and LtrINV L.
In each of them we will take H = {a, b, c, d} and
L = {w , x , y , z}.

1. P1 = a → x → P1 2 b → y → P1 is a process
we would certainly not regard as secure: which
element of L occurs depends directly on which
element of H immediately preceded it.

2. P2 = a → x → P2 2 b → x → P2 does not have
this problem: the element of L which occurs is
clearly independent of the H action. It does have
the problem that the very fact that x is possible
shows that some H action has occurred. Whether
this constitutes a breach of security depends on
what sort of communications a and b are, and
how the high-class user interacts with the process.

3. P3 = a → x → P3 2 b → x → x → P3 shows this
up more sharply, since the number of x ’s we can
do depends on which of a and b has occurred. A
similar, but more extreme example is

4. P4 = a → P4 2 b → x → P4, since the existence
of an x implies that a b has occurred.

5. We would expect to allow communications in L
to influence those in H , so the process

P5 = x → (a → P5 2 x → P5 2 y → P5)
2 y → (b → P5 2 x → P5 2 y → P5)

should be considered secure. So far as UL is con-
cerned, this process is one that is always prepared
to communicate either x or y .

2That this is allowed for EtrINV L is illustrated by several
examples below.

6. Finally we have a process modelling one which
deals with either high-level or low-level enquiries,
giving appropriate responses.

P6 = w → y → P6

2 x → z → P6

2 a → c → P6

2 b → d → P6

Of these processes, only P1 fails EtrINV L, this be-
ing because the traces 〈a〉 and 〈b〉 satisfy the precon-
ditions of the condition, but (P1/〈a〉) \ H =T x →
RUN {x ,y}, while (P1/〈b〉) \ H =T y → RUN {x ,y}.

Each of P2, P3 and P4 has the property that
(Pi/tr) \ H = RUN {x} for any trace tr at all. Thus
each of them trivially has the property EtrINV L even
though they can all be argued to breach our idea of
security in some way. The breaches in P2 and P3 are
somewhat subtle and depend somewhat on our view
of communications. That in P4 is not subtle at all,
and should make us very careful of the weaker trace
condition. The fundamental problem in P4 is that, by
communicating a’s, UH is able to postpone the avail-
ability of x indefinitely but never make it impossible.

These three processes all fail the lazy condition
LtrINV L, because in each case the set of available
L actions can vary with an H -action.

P5, on the other hand, satisfies this condition: for
any trace tr , we have P5/tr ||| RUN H = RUN H∪{x ,y}.

P6 satisfies EtrINV L and fails LtrINV L. The rea-
son for this failure is that, after the communication of
one of the H -events {a, b}, the L-events are not pos-
sible until after the communication of the c or d as
appropriate. Whether this really constitutes a breach
of security depends on the nature of the communica-
tions {c, d}. If these are things that the high-security
user can delay indefinitely, then UL can detect that
UH has communicated something by his own inability
to communicate with P . If, on the other hand, {c, d}
take the form of output signals to UH that cannot be
delayed (the output corresponding to the immediately
preceding input, perhaps), then it is harsh to count
this as a security breach.

One can argue that in this case the lazy trace con-
dition is a little too strong and that we ought to be
counting the output/signal H -events as ones to be
dealt with by hiding in the manner of EtrINV L, while
the rest are dealt with as in LtrINV L. We will ulti-
mately propose something very similar to this, but in
terms of pure traces this is not adequate because of
the problems associated with P4 above.



4 Determinism
The use of a specific semantic model (such as traces

or failures/divergences) in the way we have defined
properties so far makes strong assumptions about
what observations an intruder can make. It is cer-
tainly possible to imagine a user who could take into
account either of the following:

• The failures/divergences model does not distin-
guish between processes that could be observed
distinct by a user who could record what events
happen after given refusals, as well as before.

• Nor does it distinguish between processes which
have the same ranges of nondeterministic be-
haviours, but with very different probability dis-
tributions.

The difficulty of modelling these things, especially the
probabilistic one, leads me to the conclusion that it is
better, wherever possible, to restrict our sort of secu-
rity analysis to deterministic processes P , or at least
to processes whose appearance to UL is determinis-
tic. There is a detailed examination of both of these
problems (choice of semantic model, and the nature of
nondeterminism) in Section 8.

The appealing feature of this characterisation via
determinism is that, intuitively, the only way infor-
mation can leak from UH to UL is via the process
behaving differently towards UL depending on what
UH has done. This will appear exactly as though UH

is resolving some nondeterminism in how the process
behaves towards UL. The most convincing way of en-
suring that this nondeterminism never gets resolved is
to show that there is none there to resolve: in other
words to make the process appear completely deter-
ministic to UL.

This view is re-inforced when we observe that,
thanks to the following result, determinism always im-
plies the trace- or failure- based conditions and, in the
case of a deterministic P , is usually equivalent.

Theorem 1

1. If P \H is deterministic, then P satisfies EtrINV L

and EfdINV L.

2. If P ||| RUN H is deterministic, then P satisfies
LtrINV L and LfdINV L

3. If P is deterministic, P \H is divergence-free and
P satisfies EtrINV L, then P \ H is deterministic.

4. If P is deterministic and P satisfies LtrINV L,
then P ||| RUN H is deterministic.

This tells us that, for deterministic P , the trace-
based conditions are sufficient. Furthermore, it shows
that what these conditions really tell us is that, under
alternative interpretations of how to abstract away H
communications, the L interface is deterministic and
therefore cannot have been influenced by H . Last but
not least, it gives us efficient ways of deciding the con-
ditions. (We will see in an appendix that checking
determinism is a mechanically tractable operation.)

Following the conventions of earlier definitions, we
give names to these conditions as follows:

• EINDL(P) holds if P \H is deterministic. We say
that P is eagerly independent with respect to L.

• LINDL(P) holds if P ||| RUN H is deterministic.
In this case P is lazily independent with respect
to L.

As we have indicated before, and will discuss in de-
tail in the next section, both of these conditions are
based on ways of abstracting away the behaviour of
UH . A third one3, which is interesting in the con-
text of this view of security through determinism, is
to build a model of the most nondeterministic possible
UH , and to show that the view of UL is determinis-
tic even when the process is given this extreme UH .
The standard properties of CSP refinement then show
this view will remain deterministic for any UH . This
condition, which we will term SINDL, or strongly in-
dependent is defined:

• (P |[H ]| CHAOSH ) \ H is deterministic.

(Here, CHAOSA = STOP u?x : A → CHAOSA is the
most nondeterministic divergence-free process which
communicates in A.)

This condition has been called the strong indepen-
dence condition because it is equivalent to the con-
junction of the other two.

Theorem 2 A process satisfies SINDL if, and only
if, it satisfies each of EINDL and LINDL.

To some extent we can say this condition is not
lazy like the interleaving condition, because it does
care about the possibility of infinite sequences of H -
actions, and is not eager because the user may at any
time refuse the whole of H (which, semantically, has
the effect of showing up the refusals of P when it can
still do H -actions).

While we could have defined a condition for gen-
eral failures/divergences using this form of abstrac-
tion, emulating EfdINV L and LfdINV L, it would not

3This was suggested by Paul Gardiner.



have had the same elegant relationship with the other
two. To some extent this is because of the limitations
on reasoning about processes which appear nondeter-
ministic to UL that were discussed at the start of this
section (specifically, the one relating to what may be
observed after refusal).

We will later develop this theme that a security
condition contains an implicit model of the most non-
deterministic conceivable UH .

5 Inputs and outputs
In the context of the usual CSP interpretation of

what communication means, it is clear to me that
the interleaving-based lazy security property is what
we want. That interpretation is that all events are
things which both the process and environment must
agree on; they cannot happen until this agreement is
reached.

We are seeking to specify that no information about
what the high-security user does, or does not do, can
leak to the low-security one. In the context of a high
security user whose co-operation is required for an
event to take place, we should not make the assump-
tion that this co-operation will be forthcoming. This
implies that the set of actions accepted (and subse-
quent behaviours) should be the same before any H -
action as before any of whatever choice of H -action is
eventually made, if such a choice is made before any
L-action is communicated. This is very much what
the interleaving conditions say. In summary, the in-
terleaving properties do not assume that high-security
actions take place so quickly that no refusals can be
observed by UL between them.

But that is exactly what the hiding conditions do.
They only record refusals when all high-security ac-
tions are exhausted. The usual CSP argument for
this set of refusals when abstracting away a set A of
events is that a user interfacing in the complementary
set cannot be sure that what he or she sees refused
will continue to be refused for ever until all actions
in A have been exhausted (for subsequent A-actions
might change the offered set). This makes the cru-
cial assumption that abstracted (i.e., hidden) actions
happen as soon as they become available, or at least
within some bound. We can thus describe CSP hiding
as a sort of eager abstraction, while our interleaving
construct P ||| RUN A effectively abstracts from the
same set A lazily.

In fact, of course, a user might interact with a sys-
tem in more ways than synchronisation requiring both
parties’ agreement. In particular there may be many
communications which are effectively unresistable by
the user: for example the appearance of information

on a VDU screen. We will call these “signal” commu-
nications (under which name they have been consid-
ered in the real-time concurrency world), but in most
cases they will take the form of output communica-
tions from a system to the external environment.

Where an output communication takes place the in-
stant it becomes available, clearly no refusal is observ-
able before it occurs. In this case there is a strong ar-
gument for taking the view provided by the hiding con-
dition: so far as the low security user is concerned, the
(guaranteed) transient occurrence of a high-security
output event is indistinguishable from the ordinary
internal actions of the process which occur as the re-
sult of previous events. It may therefore be thought
unreasonable to insist that the system must be able
to perform L-events before this action (or perhaps as
extensive a range of them as after it). For example,
if the events {c, d} in example P6 are signals it is un-
reasonable to call this process insecure: at all times
when refusal is observable, what is refused is entirely
uninfluenced by the history of H -actions, as is the set
of available L-actions. (Notice that if z is not a sig-
nal then the H -refusals are affected by the history of
L-actions, but that does not concern us as we are not
worried about information-flow in this direction.)

My assertion, then, is that we should divide the set
H into two parts: D , the events on which UH can
delay the system (those which are like usual CSP ac-
tions) and S , the signals.4 In many cases these will be,
respectively, the inputs and outputs. We should then
deal with the D-events using the interleaving model of
abstraction, and the S -events using hiding.

This generates the following hybrid, or mixed con-
ditions:

• MtrINV
(D,S)
L holds of P if

tr , tr ′ ∈ tracesP ∧ tr \L = tr ′\L ⇒
((P/tr) \ S ) ||| RUN D =T ((P/tr ′) \ S ) ||| RUN D

• MIND
(D,S)
L (P) holds if (P \ S ) ||| RUN D is de-

terministic.

The reason why there is now a superscript alphabet
component as well as the usual subscript is because the
abstraction is treating elements of H (the complement
of the usual subscript L) in different ways.

The order of the two abstractions is immaterial
since if D and S are disjoint we have

(P \ S ) ||| RUN D = (P ||| RUN D ) \ S

4Wherever we use D and S in this way it will be assumed
that they partition H , just as H and L partition Σ.



at all levels of CSP equivalence. P6 satisfies all of these
with D = {a, b} and S = {c, d}.

These conditions are related to each other and those
previously described as follows:

Theorem 3

• If P satisfies MIND
(D,S)
L then it satisfies

MtrINV
(D,S)
L .

• If P is deterministic and P \ S is divergence-

free then it satisfies MIND
(D,S)
L if it satisfies

MtrINV
(D,S)
L .

I believe that the determinism based independence
condition is, for essentially the reasons set out in the
last section, the most persuasive and satisfying of the
mixed conditions. This result shows that in the con-
text of a deterministic P and lack of infinite sequences
of signal events, the mixed conditions are, as was the
case for the other two levels, equivalent.

It is clear that the possibility of introducing diver-
gence when we hide a set of events in CSP has a consid-
erable impact on our conditions whenever they involve
hiding. Basically, except for pure trace conditions, we
are regarding as dangerous any situation where there
is an infinite unbroken sequence of hidden (by the con-
dition) high-security events. The reasons for this are
discussed in the full version of this paper.

6 Abstract models of UH

When we introduced the condition SINDL it was
motivated with the idea that the CHAOSH pro-
cess represented the most nondeterministic conceiv-
able UH . Since it represents the widest range of be-
haviours the real UH might display, the determinism
of the system interacting with CHAOSH implies its
appearance to UL will be independent of whatever the
real UH might choose.

All three of our other determinism properties can
be expressed in the same form: “(P |[ H ]| U ) \ H is
deterministic” for suitably chosen processes U . In the
case of the hiding condition it is trivial: U = RUN H

because P |[ H ]| RUN H = P in CSP for all P and H .
The others are a good deal more subtle: this is clear
from the fact that the lazy condition does not for-
bid infinite sequences of H -actions, even though they
are to be hidden. The solution is to be found in a
model of CSP we have not mentioned hitherto: the
infinite traces model where each process is identified
with a triple (F ,D , I ) where F and D are the fail-
ures and divergences as before, and I is the set of all
infinite traces the process can perform. This model,
introduced in [12], is required when we want to reason

about infinitely nondeterministic CSP processes. It is,
for example, required to model properly the hiding of
infinite sets.

What is important for us about the infinite traces
model is that when divergence is introduced by hiding
this is now inferred from an actual infinite sequence of
hidden actions rather than because all finite approx-
imations to the infinite sequence are possible. There
are now processes that have all finite prefixes of an
infinite trace u but not u itself: all that is required
that however far we get down u it is possible for the
process to refuse some future element of u as well as
accept it. The most extreme example of this is the pro-
cess FINITEA which has the same failures (all with
traces from A∗) and divergences (none) as CHAOSA,
but while CHAOSA has every infinite trace of A (i.e.,
Aω), FINITEA has none. Another way of describing
FINITEA is u{Qn | n ∈ N} where

Q0 = STOP and Qn+1 = a : A → Qn

(this uses the infinite nondeterminism operator u
which itself requires the more refined model).

FINITEA is the ‘user’ process U we need for the
lazy condition: it does not permit the occurrence of
the infinite sequences of H -events that allows diver-
gence in EINDL and SINDL. The following result
has a proof almost identical to that of Theorem 2:
the only difference is that divergence is excluded by
different means.

Theorem 4 P satisfies LINDL if, and only if, (P |[
H ]| FINITEH ) \ H is deterministic.

We should perhaps remark here that the definition
of determinism is not changed by the introduction of
infinite traces: it is still decided by finite traces and
failures. The infinite traces of a deterministic process
are completely determined by its failures: they are the
obvious closure of the process’ finite traces. Thus it is
not possible to remove any infinite trace from RUN H ,
for example (which is a deterministic process).

The corresponding process for the mixed condi-

tion MIND
(D,S)
L is, as one might expect, RUN S |||

FINITED . The result establishing this is the follow-
ing.

Theorem 5 P satisfies MIND
(D,S)
L if, and only if,

(P |[D ∪ S ]| (RUN S ||| FINITED )) \ (D ∪ S ) is deter-
ministic.

These various ‘users’ suggest a more general ap-
proach to security specification: for a particular con-
text, choose a process U which characterises all possi-
ble behaviours of UH under which it is expected that
confidentiality will be maintained. Usually this will be



all its behaviours, but it is possible to imagine other
circumstances, for example if the system P represents
a mail system where it is allowable for a high-security
user to send a message to a low-security one, we might
expect to maintain confidentiality so long as no such
messages are sent. (This type of property is known as
conditional non-interference.) The general approach
is as follows:

• The finite traces of U will be the elements of
H ∗ which, provided UH has communicated within
this set, no information must leak to UL.

• The refusals after a given trace will be the set of
those events that UH can delay. (Usually these
will not vary with the trace.)

• The infinite traces will be those which UH might
allow where there is a danger of thereby preempt-
ing events available to UL (as discussed in the
previous section).

• U is always divergence-free.

There are as many possibilities here as there are
processes. One example is given by the following,
which defines the process specifying that there are as

in the case of MIND
(D,S)
L a set of delayable events

D and a set of signals S , but which assumes that UH

will not attempt an event from D until at least one S
signal has appeared since any previous member of D .

U = R |[D ]| FINITED , where

R = x : D → y : S → R
2 y : S → R

If a process P has (P |[D∪S ]|U )\(D∪S ) deterministic,
then it guarantees not to transmit information to UL

provided UH keeps to the regime set out above.5

The properties of CSP refinement easily imply
that the more nondeterministic the process U is, the
stronger a security condition it yields. In particular,
CHAOSH gives the strongest property since this is the
most nondeterministic divergence-free process.

It is interesting how we have characterised security
properties using a combination of unbounded nonde-
terminism and determinism: a process is considered
secure if it is capable of factoring out all the nonde-
terminism contained in a process like FINITEH , and
leaving a deterministic result.

5One can imagine that this and similar approaches can begin
to bring in explicit timing information, with the events from S

denoting the ticks of a clock. This particular condition would
then say that no information leaks provided UH does not exceed
a particular speed of interaction.

7 Comparisons with other work
A number of authors have proposed methods of

specifying this type of security property, both in CSP
and otherwise. We will deal with these separately.

7.1 CSP

Authors using CSP to analyse non-interference
have tended to use either intuitive rationale or traces
only, rather than using the failures/divergences model
and its ability to analyse determinism. An excellent
survey can be found in Graham-Cumming’s thesis [5].

Some of the proposed conditions have been essen-
tially the same as LtrINV , others have been equiva-
lent to EtrINV , and others different to both.

The definitions of non-interference given by Allen
[1], Graham-Cumming [5] and Ryan [17] are all essen-
tially equivalent to LtrINV , the latter also encompass-
ing LfdINV . Graham-Cumming demonstrates that
these three are essentially equivalent, and it is not at
all hard to show that Allen’s definition (here altered
to reflect our notation and conventions):

t ∈ tracesP ⇒

t \L ∈ tracesP ∧ (P/t)0 ∩ L = (P/(t \L))0 ∩ L

(where P0 denotes the initial events of P) is equiv-
alent to ours. Paraphrased, it says that the events
available to UL at any time are exactly the same as
they would have been if UH had never communicated.
This corresponds closely to the intuition of interleav-
ing ||| used in the definition of LtrINV , but perhaps
the easiest way to see that the definitions are the same
is to observe that LtrINV L holds of P if and only
if LINDL holds of the (unique) deterministic process
Pdet with the same traces. Thanks to the charac-
terisation of LINDL given in Section 6, this holds if
and only if (Pdet |[ H ]| FINITEH ) \ H is determinis-
tic. This, in turn, implies that (Pdet |[ H ]| Q) \ H =
(Pdet |[H ]|FINITEH )\H whenever Q w FINITEH . If
t is any trace of P , two allowable Q ’s are STOP and

the process Q(t \H ) which communicates its trace ar-
gument and then stops. The fact that

(Pdet |[H ]| STOP)) \ H = (Pdet |[H ]| Q(t \H )) \ H

which we can derive from LtrINV simply says that the
behaviour of Pdet visible to UL when UH communi-
cates any trace is the same as though UH did nothing
at all. The reverse argument (that the Allen condi-
tion implies ours) is an inductive proof going through
many of the same arguments as those we made for
earlier results.



McCullough [9] gives a definition that is essentially
equivalent to our definition LtrINV :

t ∈ tracesP ⇒
∀ h ∈ H .(P/t) \ H =T (P/t 〈̂h〉) \ H

Jacob [7] gives a definition of non-interference
which, though cast in different notation, specifies that

P |[H ]| STOP =T P \ H

In other words, any trace that UL can observe is pos-
sible when UH does nothing at all. To some extent
these conditions can be thought of as even lazier than
our lazy conditions. They are problematic even in the
context of traces. Suppose H and L each consist of
one (obviously named) channel, and

LEAKY = low?x → LEAKY
2 high?x → low !x → LEAK

where

LEAK = high?x → low !x → LEAK

This satisfies the above condition, even though we
can guarantee that whatever UH communicates will be
transmitted direct to UL! One might argue that UL

will not know that what he is seeing is UH ’s behaviour
rather than random noise produced by the initial state
(though entropy tests, etc., seem to provide a rebuttal
to this). But as soon as we start to consider refusals,
the process is obviously insecure: as soon as UL sees
any of his own communications refused, he knows that
UH has communicated and that everything he sees
subsequently will be a copy of UH ’s actions!

CSP-based conditions have sometimes been
thought to be impractical to verify. The development
of the model-checker FDR6, and the determinism algo-
rithm presented in the second appendix of this paper,
show emphatically that this not true any more.

7.2 Other approaches
Once again a fuller survey can be found in [5].
Non-interference properties have always been ex-

pressed in terms of some sort of labelled transition
system (LTS), whether the deterministic automata of
Goguen and Meseguer [4], the formulations in CSP
(which can be viewed as a specially designed notation
for building and reasoning about LTS’s) or LTS’s di-
rectly as in Johnson and Thayer [8].

I should perhaps remark that, since any LTS can
be interpreted in the same semantic models as CSP,
all of the conditions developed in this paper can be
adapted to these other worlds: give us an LTS and
the conditions can be defined and tested directly.

6FDR is a product of Formal Systems (Europe) Ltd.

Many formal notations, such as Z, have been used
which do not express communicating behaviour as nat-
urally as CSP. The definitions of systems have there-
fore tended to be direct specifications of the transition
functions of the overall state machines. This has re-
sulted in very heavy use being made of so-called un-
winding theorems which allow non-interference to be
inducted from behaviour over single actions of an LTS.

Johnson and Thayer [8] give a non-interference def-
inition over LTS’s which is very close to our definition
LfdINV : it is constructed in terms of testing equiva-
lences, a process-algebraic theory very closely related
to failures equivalence.

8 The arguments for determinism
I have argued that determinism of a low-security

viewpoint provides the natural specification of non-
interference properties. In this section I will try to
provide more insight into this by showing that this re-
striction effectively circumvents two specific impreci-
sions that are introduced into many models of concur-
rency. These relate to the precise nature of nondeter-
minism, and to the way nondeterminism is modelled.
They are discussed in the following subsections. Both
were alluded to earlier: in this section we provide more
detailed analysis.

8.1 The nature of nondeterminism

I believe that all of the CSP security properties I
have quoted (both mine and due to others) that were
not based on determinism suffer from the refinement
paradox: it is possible to have a process P that is
considered secure, but with refinements that are in-
secure. That the determinism-based conditions are
closed under refinement is an elementary consequence
of the fact that deterministic processes are maximal
under the refinement order, and each condition takes
the form:

• C [P ] is deterministic

for a context C [·] that is monotone (like all other CSP
constructs) under the refinement order. It would ap-
pear to me to require a high order of sophistry to argue
that a process which is allowed to behave as though it
were insecure can be secure.

To back up this argument, consider the case where
there are two channels: high and low, and that the
process LEAK is defined as in the last section. If our
system is constructed LEAK u CHAOSΣ where the
internal choice is viewed operationally as something
that gets resolved immediately (perhaps with a prob-
ability biased towards LEAK), then even though the



system is equivalent to CHAOSΣ and would be de-
clared secure by most conditions other than the de-
terminism ones7, it does not seem sensible to accept
a proc ess built operationally like this one as secure.
Clearly LEAK refines this process and is anything but
secure.

The first, subtler, and I think more important of the
two imprecisions, since it will apply to more models
of computation than just models of concurrency, re-
lates to the nature of nondeterminism. Most models,
both of CSP and more generally, identify two different
types of nondeterminism which can be summarised as
probabilistic and under-specification. I think that the
refinement paradox is one manifestation of this confu-
sion.

Probabilistic nondeterminism is perhaps the easier
sort to comprehend: it arises when a process is gen-
uinely random in its behaviour, and exhibits patterns
of behaviour according to the laws of probability. A
process exhibiting probabilistically nondeterministic
behaviour can in some sense be relied on to behave in
particular ways, for example controlled by the (strong
and weak) laws of large numbers in probability theory.
For a full model of such a system, we need to know
the distributions of behaviour, though only a few (and
very complex) models of concurrency do this success-
fully. Most models (including all of the usually-seen
models of CSP) simply take the set of all possible out-
comes without giving the distributions, thereby pre-
venting us from making any inference, in the models,
about the relative likelihood of different outcomes.

Under-specification, or don’t-care nondeterminism
is most often how people building models of concur-
rency understand by nondeterminism. Saying that a
process is nondeterministic in this sense does not im-
ply that it genuinely must exhibit all the behaviours
shown in its model, merely that every behaviour it
does exhibit is taken from the set. It is entirely per-
missible to implement the process P u Q by Q . It is
valid to implement this sort of process by any imple-
mentation that always keeps its patterns of behaviour
within those that the process allows. Such a process
might be

• Deterministic: always selecting the same answer
to the same stimulus.

• Probabilistically nondeterministic, provided that
the range of choice is within the overall allowed.

• Having nondeterminism which is resolved by
agents, or at a modelling level, that we do not

7Those that fail are those where hiding H in CHAOSΣ

causes divergence.

model. For example, modelling a system at the
level of detail provided by real-time can often ex-
clude behaviours which cannot be excluded in un-
timed semantics, or show a deterministic depen-
dence of the outcome on the precise time when
some earlier action happened. Similarly, it is of-
ten only possible to get a satisfactory probabilistic
model in a real-time context, since the distribu-
tion of outcomes might be heavily influenced by
the precise times when earlier actions have oc-
curred. Thus, if modelling these systems in an
untimed context, we are forced to present a sim-
ple range of behaviours without being able to give
a reliable distribution of their likelihoods. We are
not given sufficient information to deduce a pre-
cise distribution.

In identifying refinement with the reduction of non-
determinism, it is clear that we are thinking of non-
determinism of this type. After all, if we were to take
a coin that gives heads and tails with equal proba-
bility, we would be unlikely to accept a ‘refinement’
that always gives a head. Indeed, a process which
only exhibits probabilistic nondeterminism should be
thought of as fully refined. There are no satisfactory
treatments (as far as I am aware) of the combination
of these forms of nondeterminism: this is a fascinating
research problem.

Let us try to understand how the two sorts of non-
determinism fit into the security picture. Information
can leak from high to low security only if the appear-
ance of the process in alphabet L differs depending on
what has, or has not, been communicated in H . If the
process viewed from L appears deterministic, we have
seen that no information can be transmitted in how
H -behaviour resolves nondeterminism. In a reason-
able model, the nondeterminism that is introduced by
abstracting away the H behaviour is not probabilistic,
for it would be against the spirit of what we are do-
ing to assume a distribution of how the high security
user will behave. We should (as was done, for example
in the failures-based properties) consider the different
appearance in L depending on an arbitrary pair of
H behaviours. Let B1 and B2 be the appearance in
L given h1 and h2 respectively. If we are modelling
nondeterministism without probability (i.e., recording
only the range of possible behaviour, rather than their
distribution) then there are four possibilities:

• B1 and B2 are identical and deterministic. In this
case L is certain to see the same behaviour given
h1 or h2, so L cannot distinguish them

• B1 and B2 are identical and nondeterministic. In



this case there is certainly no concrete evidence of
insecurity, since we cannot tell that the behaviour
is different depending on h1 and h2, but nor can
we tell that it is not, since the actual behaviour
of the process might be (i) resolved to specific
different behaviours by h1 and h2 by some mech-
anism at a finer level than we are modelling (as
might happen in the abstraction between timed
and untimed CSP, for example). Even if all of
the behaviours represented in B1 = B2 remain
possible given h1 and h2, (ii) probability distri-
butions may exist and be different (even though
we are not modelling them), thereby allowing dis-
crimination between h1 and h2 up to some (and in
some cases any) confidence level. As an example,
suppose B1 and B2 were respectively Ca,b(p) and
Ca,b(q), where 0 ≤ p < q ≤ 1 and

Ca,b(r) = a → Ca,b(r) ur b → Ca,b(r)

and ur is a probabilistic choice operator that
chooses its left- and right-hand argument with
probabilities 1 − r and r respectively. However
close p and q are, watching the ratio of as and bs
for long enough gives an arbitrarily (below cer-
tainty) discrimination between B1 and B2 and
thereby between h1 and h2.

In this case we therefore have no evidence from
our modelling either of information leakage or the
lack of it.

• B1 and B2 are different but have some common
refinement. Unless we have some way of know-
ing that all of the behaviours represented within
B1 and B2 are actually possible within the im-
plementation, this case is actually essentially the
same as the last one: it might be the case that
the way(s) B1 and B2 actually appear are indis-
tinguishable, or they may be different. The only
difference with the previous case is that one or
other process might exhibit a behaviour which we
can tell at this level of modelling is not possible
for the other.

• B1 and B2 have no common refinement (as will,
for example, be the case where they are deter-
ministic and different). In this case the behaviour
after h1 and h2 is certainly different and (depend-
ing perhaps on what is communicated in L), it is
possible to distinguish them.

If, on the other hand, nondeterminism is being
modelled purely probabilistically, in the sense that B1

and B2 are both precise distributions of behaviour,

then it is clear that no distinction can be made be-
tween h1 and h2 if these distributions are the same.
If they are different then some (perhaps Bayesian or
probabilistic) inference can be made.

The element of uncertainty introduced by non-
probabilistic nondeterminism has thus meant that
there are three possible conclusions about the security
or otherwise of a system: secure, insecure or don’t
know. I think that people have devised properties
that imputed security, but were not closed under re-
finement, by assuming that a process’ behaviour was
accurately described by the range of nondeterministic
behaviour it could take (implicitly assuming that all
such behaviours would arise with no usable measure of
probability, or perhaps equal probability). As we have
already stated, a completely determined probabilistic
process cannot be refined, so the refinement paradox,
where a refinement of a secure process fails to be se-
cure, arises out of the confusion that non-probabilistic,
underspecified, nondeterminism that can be refined
with the other sort.

The only sense in which such conditions could rea-
sonably be asserted to establish security is on the as-
sumption that an inquisitive agent uses exactly the
same mathematical model to analyse it as we do. In
other words, the most complete picture that agent can
have of the process is the description of the system in
our mathematical model, and draws no further infer-
ence by, for example, watching how nondeterminism
is resolved in practice8. Taking the view, as we do,
that the agent might well have, or be able to collect,
knowledge of the system at a more detailed level than
our model, the most we can say about the security
of a system which looks nondeterministic to the low
security user is ‘don’t know’; refinement could resolve
this don’t know either to ‘secure’ or ‘insecure’.

Assuming for a moment that we are accepting the
possibility of an agent who only models the system
at our level, then it is not the refinement of a non-
probabilistically nondeterministic system which can
create an insecurity (for the system was certainly al-
lowed to behave the same way before it was refined as
after) but the refinement of the agent’s knowledge of
the system that comes from our rather particular view
of how he is gaining information from it, that creates
the refinement paradox. In other words, we can refine

8This latter view must be almost untenable, given that in
many cases the only knowledge that will be drawn of a system
is what can be deduced from observing it. Faced with a pro-
cess which happens to resolve the nondeterminism in CHAOS

as LEAK (as defined earlier), it seems hard to believe an agent
could not make the inference he was seeing something interest-
ing, even if he knew nothing a priori about the system.



the system as long as we can keep this refinement as
secret as we have to keep the inner workings of the
system in order to keep this view of security even re-
motely sustainable.

Of course the virtue of specifying that the interface
to a low-security user should be deterministic is that
all these difficulties, philosophical and otherwise, are
entirely removed. Assuming the low-security user is
only making the sort of observations we are modelling,
then no matter what he knows about how the system
is built, and therefore how its choices affect what he
sees, he can make no inference about the high-security
interactions.

And because a deterministic process is already
maximal under the refinement order, security prop-
erties of this sort will invariably be closed under re-
finement.

8.2 How is the system observed?

Semantic models always make implicit assumptions
about what sort of things are interesting about a pro-
cess’ behaviour. There have been a remarkable num-
ber of models of concurrent behaviour, making sub-
tly different assumptions about how processes are ob-
served and thereby compared. This creates a further
problem when we come to consider the problems of
computer security, since by using a specific model we
are implicitly assuming that our inquisitive agent is
using only the type of observations of the system that
our particular model contains. In the last section we
were essentially worrying that he might have sufficient
knowledge of how our system works that he can infer
things from the resolution of nondeterminism which is
visible at this level of observation. We should equally
worry that the agent might be using a different sort of
observation and gaining information that way.

Here, the idea of using determinism comes to our
rescue yet again. For, with one major exception (the
divide between timed and untimed models) all the
different models of concurrency that treat nondeter-
minism at all (essentially all those more sophisticated
than the traces model) collapse at the deterministic
processes. In other words, a process will be consid-
ered deterministic in one if and only if it is considered
deterministic in them all, and a pair of deterministic
processes will be identified in one of these models if
and only if they are identified in them all. This says
that if our criterion for security is that the low-security
interface is deterministic, then (apart from the timing
question) judging determinism in one model (for ex-
ample failures/divergences) implies that an observer
who uses the observations of another semantic model
(e.g., refusal testing or bisimulation) will be no more

able to gain information.
To see what might happen outside this area of

agreement, consider the following pairs of processes
(which might be the behaviour visible to the low-
security user after high security behaviours h1 and h2).

B1 = a → (b → STOP u c → STOP)
B2 = (a → b → STOP) u (a → c → STOP)

RT1 = STOP u (a → STOP 2 b → STOP)
RT2 = STOP u (a → STOP u b → STOP)

All of these processes are nondeterministic. Neither
the pair {B1,B2} nor {RT1,RT2} are distinguishable
in the failures/divergences model, so any security con-
dition which expected the pairs to be the same in that
model would be satisfied. If an observer, or indeed
anything else, has the ability to make copies of the sys-
tem in mid-flow (perhaps by generating a core dump)
then one should believe B1 and B2 inequivalent (this
corresponds to bisimulation equivalence). For if the
two systems are copied after a is communicated, the
two versions of B2 are guaranteed to agree on the next
communications (for the choice between b and c must
already have been made) whereas the two versions of
B1 may not agree (for the choice may not have been
made when the copies are created). For RT1 and RT2,
suppose (much less speculatively!) that the observer
chooses to record what he sees after a set of actions
is refused by the process (note that failures do no do
this). When observing RT1, once the refusal of the set
{a} has occurred, it is not possible for the process to
communicate b. This is not the case with RT2, mak-
ing these processes observably different. This latter
model is known as refusal testing.

9 Conclusions and prospects
It seems that both from the point of view of what

is intuitively right and from that of automation, con-
fidentiality conditions based on determinism are the
most satisfactory.

The determinism conditions, unlike the others, have
the important property that they are preserved under
refinement: if P is secure and P v P ′ then P ′ is se-
cure. This is a much more satisfactory position than
the reverse, since the usual interpretation of refine-
ment (in CSP, at least) is that if P ′ refines P then
one can never tell, when looking at P ′, that one is not
looking at P . We saw in Section 8 why other condi-
tions confuse types of nondeterminism and give rise to
the refinement paradox.

The examples seen in this paper have all been ex-
tremely simple, for straightforward examples are easy
to define and bring out the various properties clearly.



Given the automatability of the decision process, our
conditions are capable of being applied to a wide va-
riety of systems of a much larger size. Indeed we have
already applied a prototype determinism checker to
check security properties of communications protocols
and a file system[15]. The fact that the algorithms
are so closely related to those of FDR means that the
security condition checking will be able to take ad-
vantage of features such as state-machine compression
when these are implemented for FDR.

What our work really captures is how to charac-
terise notions of independence in CSP. Other potential
applications are in fault tolerance: showing that error
actions do not affect ordinary behaviour, and feature
interaction: showing that a pair of services added to
(for example) a telephone exchange do not interact.

Since the initial version of this paper was written,
the methods developed in it have been applied to a
variety of applications by the author and others. One,
[15], studies how our techniques may be applied to
state-based systems specified in Z, using a file-system
as a case-study. Others include encryption protocols,
ATM security, and railway signalling systems. The
relationships between our conditions and those of oth-
ers (especially separability – the factorisation of a pro-
cess into two independent parallel parts) have been
further investigated in [16], which also proves various
results about the compositional behaviour of the in-
dependence properties set out in this paper.
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10 Appendix: CSP reference
We give here a summary of the main features of

CSP used in this paper, in particular the definitions
of the operators which we made significant use of. A
general reference to CSP is [6], and further theoretical
background can be found in [2, 13, 12], for example.

Three models for untimed CSP have been men-
tioned in this paper: Traces, Failures/Divergences and
Infinite Traces. What they have in common is that
they each provide an abstract way of representing a
process as the set of behaviours it can have in one or

more categories. The models are all compositional, in
the sense that the value in a model of any compound
process can be computed from the values of its parts,
and thereby give rise to denotational semantics for the
language. In each case it is possible to prove that the
value computed by the semantics is the same as we
would expect from making direct observations of the
operational semantics of CSP.

10.1 Traces Model
All the models are based on the set Σ of all com-

munications a process might make. In general, Σ may
be finite or infinite.

A trace is a communication history of a process: the
sequence of all events it has communicated by some
point. In the Traces model we will only consider finite
traces, but later we will see that infinite traces also
perform a useful role.

The Traces model was the first abstract model of
CSP to be defined, and represents each process as a
subset P of Σ∗, the set of finite sequences from Σ. P
must satisfy the following pair of simple axioms to be
in TΣ, the Traces model over Σ.

(T1) P is non-empty.

(T2) P is prefix-closed: i.e., if s t̂ (the concatenation
of s and t) is in P , then so is s . We say that s is
a prefix of w if there is t such that s t̂ = w ; this
is abbreviated s ≤ w .

Each CSP operator other than recursion reduces to
a pointwise operator over the constituent traces of a
process, so for example:

• P \A = {s \A | s ∈ P}, where s \A = s \(Σ−A).

• P |[A]|Q =
⋃

{s |[A]|t | s ∈ P∧t ∈ Q∧s \A = t \A},
where

s |[A ]| t = t |[A ]| s
s |[A ]| 〈 〉 = {s}

provided s \A = 〈 〉

〈a 〉̂ s |[A ]| 〈a 〉̂ t = {〈a 〉̂ w | w ∈ {s |[A ]| t}
if a ∈ A

〈a 〉̂ s |[A ]| 〈b 〉̂ t = {〈b 〉̂ w | w ∈ {〈a 〉̂ s |[A ]| t}
if a ∈ A and b 6∈ A

〈b 〉̂ s |[A ]| 〈c〉̂ t = {〈c〉̂ w | w ∈ {〈b 〉̂ s |[A ]| t}
∪{〈b 〉̂ w | w ∈ s |[A ]| 〈c〉̂ t}
if b, c 6∈ A

The interface parallel operator |[A]| is a generalisation
of the parallel operators found in [6]. Its two process



arguments are run in parallel and are allowed to com-
municate freely, except that all communications in the
interface set must be agreed. It can express both the
‘alphabetised’ parallel and the pure interleaving oper-
ators as follows: if the alphabets of P and Q are A
and B respectively, then (provided P and Q cannot
communicate outside their alphabets)

P |[A | B ]| Q = P |[A ∩ B ]| Q

and interleaving is achieved by synchronising on noth-
ing:

P ||| Q = P |[ ∅ ]| Q

Over this model (as for both the others), we say
that one process P refines another Q if P ⊆ Q . In the
case of the Traces model this order is the opposite of
the one used to compute fixed points. This is because
the Traces model is largely only able to specify safety
properties: ones which say the process will never com-
municate incorrectly, so that the more active a process
is the less safety properties it will satisfy.

In the body of this paper, tracesP means the repre-
sentation of P in the traces model. It is worth noting
that this set is always equal to the set of finite traces
predicted by the two other models provided the process
P is divergence-free. The obfuscation required past
divergence by the other two means that it does not
usually hold for divergent processes (such as P4 \ H ,
where P4 is as defined in the text).

10.2 Failures/Divergences Model
The most standard model for (untimed) CSP is the

failures/divergences model, where each process is rep-
resented by two sets of behaviours:

• failures are pairs (s ,X ) where s is a finite trace of
the process and X is a set of events it can refuse
after s ;

• divergences are finite traces on which the process
can perform an infinite sequence of consecutive
internal actions.

For various technical reasons it is more difficult to
model accurately the behaviour of a process after the
possibility of divergence than on traces where no such
possibility has arisen. Therefore, after each minimal
(under the prefix order) divergence trace, the model
identifies a process with ⊥, the most nondeterministic
process. The clearest way to understand accurately
what the model represents is that

• the failures on non-divergent traces are precisely
those (s ,X ) where the process can, after s , come
into a stable state (one with no internal progress
possible) that has no transition in X ;

• the minimal divergences are the actual least
traces after which the process can perform an in-
finite sequence of τ ’s (internal actions);

• all failures on divergent traces, and non-minimal
divergences, are present because of our decision
not to model this type of behaviour: the fact that
they are there carries no information (positive or
negative) about what the process can actually do.
It is a deliberate obfuscation, introduced to get
the theory to work better.

The failures/divergences model NΣ over a given al-
phabet Σ of communications is the set of all pairs
(F ,D), F ⊆ Σ∗ × P(Σ), D ⊆ Σ∗ satisfying

(F1) (F 6= ∅) ∧ ((s t̂ , ∅) ∈ F ⇒

(s , ∅) ∈ F )

(F2) (t ,X ) ∈ F ∧ Y ⊆ X ⇒ (t ,Y ) ∈ F

(F3) ((t ,X ) ∈ F ∧ (t 〈̂a〉, ∅)) 6∈ F ⇒

(t ,X ∪ {a}) ∈ F

(D1) s ∈ D ⇒ s t̂ ∈ D

(D2) s ∈ D ⇒ (s t̂ ,X ) ∈ F .

These are straightforward healthiness conditions set-
ting out what a reasonable processmust look like. For
example (F3) says that if a process can refuse the set
of events X then it can additionally refuse any events
which it can never perform after the current trace t .

The process P = (F ,D) refines P ′ = (F ′,D ′), writ-
ten P ′ v P , if and only if

F ⊆ F ′ and D ⊆ D ′ .

which means that every behaviour of P is one of P ′:
we cannot tell, if looking at P , that we are not looking
at P ′.

The semantics of CSP over this model may be found
in many places, including [3, 6]. Shortly we will give
the semantics of the operators that have been most
important in this paper. Some important structural
properties are summarised below.

1. The least process under the refinement order, ⊥,
equates to any process that can diverge immedi-
ately (i.e., without performing any visible actions
first). The refinement order, under the restric-
tions given, is complete provided Σ is finite (ways
of dealing with the case when Σ is infinite are
discussed in [13]), and its maximal elements are
the deterministic processes: divergence free and,
after each trace s , only able to refuse those events
that it cannot communicate after s .



2. Every divergence-free process is the nondetermin-
istic composition (componentwise union) of its
deterministic refinements.

3. Each standard CSP operator can be defined as an
operator over NΣ; each is monotonic with respect
to the refinement order; using that order and least
fixed points for the semantics of recursion gives
a denotational semantics that is congruent to a
natural operational semantics.

The failures and divergences of a CSP process P
are respectively denotes Failures(P) and Divs(P).

The semantics of hiding and parallel now become:

Divs(P \ A) = {(s \ A)̂ t | s ∈ Divs(P)}
∪{s | {t | (t , ∅) ∈ Failures(P)

∧t \ A ≤ s} is infinite}

Failures(P \ A) = {(s ,X ) | s ∈ Divs(P \ A) ∧ X ⊆ Σ}
∪{(s \ A,X ) |

(s ,X ∪ A) ∈ Failures(P)}

Divs(P |[A ]| Q) = {v ŵ | ∃ s , t .(s , ∅) ∈ Failures(P)
∧(t , ∅) ∈ Failures(Q)∧
(s ∈ Divs(P) ∨ t ∈ Divs(Q))∧
v ∈ s |[A ]| t}

Failures(P |[A ]| Q) = {(s ,X ) | s ∈ Divs(P |[A ]| Q) ∧ X ⊆ Σ}
∪{(v , (X ∩ Y ) ∪ (X ∩ A) ∪ (Y ∩ A))
| ∃ s , t .(s ,X ) ∈ Failures(P)∧
(t ,Y ) ∈ Failures(Q) ∧ v ∈ s |[A ]| t}

Both these definitions contain specific ‘closure’
components to preserve the catastrophic divergence
conditions D1, D2. The ‘ordinary’ cases of how to con-
struct a refusal set are both interesting: in the case of
hiding, a refusal of P only relates to a refusal of P \A
when P can refuse the whole of A, for if an element of
A is accepted we assume P moves on immediately and
does not have time to refuse anything9. In the case of
P |[ A ]| Q , an event outside A can only be refused if
both P and Q refuse it, for either is allowed to commu-
nicate it independently. An event in A, on the other
hand, requires the co-operation of both sides and so
either can propagate a refusal. The most interesting
thing about the above definitions is how divergence
is introduced by hiding: a process that communicates
an infinite sequence of hidden events can diverge, but
there is no direct representation of infinite traces here
so we have to infer the existence of an infinite trace
from the finite ones.

The accuracy of the failures/divergences model is
confined to just when this inference is valid. Provided

9It is precisely this that makes the basic hiding security con-
ditions ‘eager’.

we make sure that the operational branching structure
of processes is only finitely nondeterministic, namely
that a given process can only have finitely many dif-
ferent results from a single action (whether visible or
invisible), then everything is alright. However a num-
ber of operators one might desire, including the hiding
operator P \A when A is infinite, do not preserve this
property and so require a more sophisticated model.

10.3 Infinite Traces Model
This model [12] is the same as the Fail-

ures/Divergences model except that processes are now
given a third component, the set of all infinite traces
from Σω they can perform. This set is always simply
the closure T = {u ∈ Σω | u = s û ′∧s ∈ Σ∗ ⇒ s ∈ T}
of the set T of finite traces, in the case that the pro-
cess satisfies the finite nondeterminism constraint set
out above. The Infinite Traces model UΣ over Σ is
just the set of triples 〈F ,D , I 〉 where 〈F ,D〉 satisfies
the five axioms of NΣ and three further properties are
satisfied, the details of which may be found in [12].

All the CSP operators (a set now extended to in-
clude the infinitely nondeterministic ones) have def-
initions of UΣ that are straightforward extensions of
those over NΣ. The only really interesting differences
are in recursion, where it becomes much more difficult
to justify both the use of, and existence of, least fixed
points, and in the divergence clause of hiding. Here we
no longer have to make inferences and so can define:

Divs(P \ A) = {(u \ A)̂ t | u ∈ Infs(P)∧
u \ A is finite}
∪{(s \ A)̂ t | s ∈ Divs(P)}

A good example of the sort of process we can model
in UΣ but not in NΣ is FINITEA as defined in Section
6. This is indistinguishable from CHAOSA over NΣ

but, as we have seen, has a very different interpreta-
tion and uses.

11 Appendix: Decision procedures for
finite-state systems

The properties we have introduced are simple to
state but, unusually, none is a property that can be
checked by refinement. This is because they are not
behavioural specifications (assertions that each indi-
vidual behaviour satisfies some condition), but are
rather statements about the entire set of a process’
traces. Thus they are not amenable to verification
on the oroginal version of FDR, which can only check
behavioural conditions.

Nevertheless it is possible to check them via algo-
rithms that are closely related to those which FDR
uses. Here we only describe the algorithm for check-
ing determinism, which is both faster and checks the



most satisfactory conditions, The approach to other
conditions is described in the full version of the paper.

All our algorithms, like those of FDR, are based on
representations of finite-state processes as members of
labelled transition systems.

A standard LTS (SLTS) (V ,E , v0), with nodes V ,
labelled edges E and initial node v0 is one where τ
actions are permitted in addition to the visible actions
from Σ, nodes may have multiple edges out of them
with the same label, and nodes have no marking which
is significant to the interpretation of the behaviour of
the LTS. The usual operational semantics of CSP gives
each term a meaning as an SLTS.

A node of an SLTS is said to be stable if it has no
τ actions possible.

11.1 Determining determinism

Our algorithm for checking whether a process P
represented as (V ,E , v0) is deterministic comes in two
parts. The first is to find a deterministic process Q
that refines P . This may be done by resolving all the
nondeterminism that is encountered during a search
through (V ,E , v0) starting at v0: if a non-stable node
is found we arbitrarily select one of its τ -successors;
while for a stable node we select a single representative
successor for each action it can perform. This search,
either finds a divergence in P (which answers the de-
terminism question in the negative) or delivers a de-
terministic LTS (one where all actions are visible and
there is no ambiguity of successors under any action
at a node) representing a deterministic Q such that
P v Q . The second phase of the algorithm is simply
to check whether Q v P . For clearly P is determinis-
tic if and only if P =FD Q , as the deterministic pro-
cesses are all maximal (and therefore incomparable)
in the failures/divergences model.

Because of the construction of Q , it is an easy spec-
ification to check against. (For example, the normal-
isation process is greatly simplified for processes that
are known to be deterministic.) The final check might
either be a full failures/divergences check or, if we can
exclude the possibility of divergence some other way,
the faster failures-only check. It will, for example, be
sufficient to use the failures check on P ||| RUN H pro-
vided P is divergence-free.

Theorems 1 and 3 make the above a very powerful
tool for deciding whether all our security conditions
hold, not just the ones based explicitly on determin-
ism. At the time of writing (November 1994), an im-
plementation of the above algorithm for extracting a
deterministic implementation has been produced and
tried with promising results (using the standard refine-
ment FDR routines for the refinement check phase).
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