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Abstract

It is often difficult to specify exactly what a security protocol is in-
tended to achieve, and there are many example of attacks on protocol
which have been proved to satisfy the ‘wrong’, or too weak a specifica-
tion. Contrary to the usual approach of attempting to capture what it is
that protocol achieves in abstract terms, we propose a readily automatable
style of specification which simply asserts that a node can only complete
its part in a protocol run if the pattern of messages anticipated by the
designer has occurred. While this intensional style of specification does
not replace more abstract ones such as confidentiality, it does appear to
preclude a wide range of the styles of attack that are hardest to exclude
by other means.

1 Introduction

Over the past two years, the author and associates in Oxford have been investi-
gating the modelling of security properties and cryptographic protocols in CSP,
with particular reference to testing and verification on the model-checker FDR!
[5, 6, 10, 8, 9]. Work on protocols has fallen into two styles: safety and liveness
(no loss of service).

The overall approach taken has always been to infer the behaviour of indi-
vidual nodes from the protocol description and implement these as processes in
a CSP network. This network typically consists of a pair of trustworthy nodes,
a server if necessary, and a ‘spy’ process with two functions:

e to provide the behaviours of other nodes in the system, which are thereby
assumed untrustworthy but may, of course, behave properly, and
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¢ to interfere with communications between the trustworthy nodes by over-
hearing them, taking them from the communication medium so that they
do not reach their destinations, and faking messages (say introducing a
message that purports to be from A to B that the medium will deliver to
B).

The spy is allowed to perform any of these actions at any time, subject only to
the limitation that the messages it introduces must be feasible to produce from
its current state of knowledge (initial and what it has learned since) under the
rules of the cryptographic systems in use. The resulting network is shown in
Figure 1.

In coding protocols in such a way that liveness analysis makes sense, we have
had to address issues not usually covered in academic papers on this subject,
such as the handling of exception conditions and the synchronisation of commit-
ment between nodes. This inevitably leads to significantly more involved node
descriptions, which both involves extra effort and leads to proofs of correctness
(where possible) of protocols that are significantly refined beyond the ‘standard’
versions.

On the other hand, establishing the right specifications of systems designed
to meet liveness properties tend to be unproblematic. For a typical protocol
that is designed to set up a key for use in a session between a pair of nodes,
the specification comes in two parts. The first is that whenever either A or B
seek a session with the other then — provided the spy does not perform infinitely
many actions — they reach a state where they believe a session exists between
then, agreeing on the key, and that neither can ever reach this belief otherwise.
The second is that these keys never become known to the spy. The first of
these properties encompasses both the no-loss-of service specification and that
of authentication (a safety property), while the second represents the safety
property of confidentiality.

While any actual implementation of a protocol is likely to contain features
designed to ensure either transparent (from the external users’ point of view) no-
loss-of-service or some other way of handling and recovering from interference, it
remains true that the published descriptions of these protocols do not generally
encompass this. Thus to verify one of these protocols on its own terms we must
set up a CSP network describing the protocol as described and, since this will
certainly not meet no-loss-of-service specifications, seek only to prove safety
specifications.

The coding of the network is generally substantially easier, though one is still
forced to make some decisions such as what nodes do when a run is abandoned
(the obvious decision being that they back-off to their initial states). What
one quickly discovers, however, is that it tends to be harder to find the right
specifications, particularly in areas related to authentication. The problem here
is that it is inevitable that sometimes one participant in a run will believe it
has completed successfully while the other will believe it has been abandoned.
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Figure 1: Network for testing protocols



This is because the spy can always intercept the last message of the run. Nev-
ertheless a wide variety of published attacks on protocols relate to failures of
authentication so we do need an agreed way of specifying it.

In this paper we examine the modes of specification for authentication-like
properties that can be used for protocols implemented in CSP as described
above. I will concentrate on the distinction between extensional specifications,
which seek to establish what is achieved by the protocol without making de-
tailed analyses of the actual communications nodes have sent, and intensional
specifications which concentrate on checking that the designer’s expectations
about these communications are justified.

My main purpose is to introduce the canonical intensional specifications of
a protocol, which can be derived more-or-less automatically from its description
as a series of messages. While this style was motivated by the work on CSP, and
is readily automatable in that context, it can certainly be understood without
any knowledge of CSP and has potential both for automation in other tools and
for use in judging and classifying attacks found by other means.

2 Extensional specifications

We classify a specification as extensional when it is independent of of the details
the protocol and would apply to any other protocol designed to achieve the same
effect. Thus, inevitably, it cannot mention the actual messages passing between
nodes during a protocol since these vary a great deal from one to another.
Instead it will test the states of mind (knowledge, belief, etc.) of the various
participants including the spy.

To make such a specification you clearly have to understand what you are
intending to achieve with the protocol. The properties proved then depend on
whether the specifications capture the right thing. A good example of what
can be achieved and what can be missed is provided by analysis of the TMN
protocol (which is well-known to suffer from flaws and therefore provides a good
test-bed for analytic techniques).

The TMN protocol [12] is described by the following series of messages:

1. A— S: B, ep(pks,ra)
2. S—B: Areg

3. B— S5: ep(pks,rd)
4. S — A: v(ra,rd)

where ep(k, m) is the public-key encryption of m under key k (the only such
key being pks, the public key of the server S) and v(ra,rb) denotes Vernam
encryption (bit-wise exclusive or). ra and rb are random objects generated by



A and B respectively. The purpose of this protocol is to establish a session
between A and B using rb as the key.

This, and a series of strengthened versions, were studied by the author using
FDR using a single extensional safety specification described as follows.

He programmed nodes so that they send each other messages using the keys
that have been exchanged, and making the contents of messages depend on
whom the node thinks it is connected with. Specifically A and B send each
other initially secret messages when they believe they are connected with each
other, so we can identify an error if either the spy learns one of these secrets
(a failure of confidentiality) or if A or B receives a message that fails to tie up
with the node it believes it is connected to (a failure of authentication). One
should regard these special messages as symbolic objects allowing us, god-like,
to examine system behaviour from the outside.

These rather appealing specifications (which are completely independent of
which key-exchange protocol is under consideration) allowed him to find many
different attacks (approximately 13, all of which would have worked on the orig-
inal protocol; some of these were variants of the well-known Simmons attack [11]
that depends on the symmetry of Vernam encryption) on a series of successively
stronger versions of TMN. A typical attack found is set out below (in precisely
the form produced by FDR except for the insertion of message numbers):

1: fake.A.S.B.Encrypt.pks.rspy.EndEncrypt,
2: comm.S.B.A.req,

3: comm.B.S.Encrypt.pks.rbl.EndEncrypt,

4: grab.S.A.Encrypt.rspy.rbl.EndEncrypt,
5: comm.A.S.B.Encrypt.pks.ral.EndEncrypt,
6: grab.5.B.A.req,

7: fake.B.S.Encrypt.pks.rbl.EndEncrypt,

8: comm.S.A.Encrypt.ral.rbl.EndEncrypt,

9: comm.B.A.Encrypt.rbl.dataBA.EndEncrypt

Here on message 1 the spy pretends (fakes) to be A and instigates a protocol
run with B using a key (rspy) known to it. In messages 2 and 3 the server and
B respond to this, and in message 4 the spy intercepts (grabs) the signal which
the server was sending back to A. The spy then, of course, understands rb1,
the key B has invented. Now when A does ask for a session with B (message 5)
the spy can intercept the second message and replay (for message 7) the third
message of the first run, and the server then sends the key rb1 back to A. Now
A and B both believe they have a session open with the other using rb1, so B
can send to A one of the symbolic message values dataBA. But the spy, since it
knows rb1, thus learns this value which raises an error.

By successively strengthening the protocol to eliminate the attacks found at
the previous stage, he eventually (in fact, the sixth version) arrived at a protocol
which apparently? satisfies the above specification. This is described below.

2Because FDR is only able to cope with finite-state processes, checks of protocols have



1. A— S: ep(pks,m1.B,ra,Sa)
2. S— B: A.req

3. B— S: ep(pks,m3.A,rb, Sg)
4. § = A: v(ra,rb)

Note that the names of the proposed partners now appear encrypted in the first
and third messages, together with secrets S4 and Sp which allow the server to
authenticate the origin of the encryptions. (Sx is known only to the server and
to X. It is just a simplified form of cryptographic signature that works here
because it is only ever used to the trusted server.) mI and m3 are just labels
indicating which message in the run this is: without them messages 1 and 3
have identical format and can be confused, giving the spy extra ammunition.

But close examination of even this protocol reveals various failures of au-
thentication that are too subtle for the extensional specification described above
to find. These are, on the whole, less severe but do represent patterns of be-
haviour under which A and B are deceived by the intruder about some aspect
of connections between them. The most obvious such attack is that the spy can
always generate message 2 which will lead B (naively, but then most computer
programs are naive!) to believe A has a requested a session with it. When B
responds to this its part in the protocol run is complete so it can move into a
state where it sends messages to A encrypted with the key it has invented. We
will see another, rather more convincing, attack of the same general sort in the
next section. In general, while an ‘attack’ like this one will often be discounted
as irrelevant, anyone using a protocol must be made aware of it because:

e it is likely to cause problems in achieving liveness on top of the protocol
and

e depending on the circumstances in which the protocol is used, there may
be insecurities that result, even though these are not apparent in the
protocol standing alone.

The essential problem here is that while the limitations of safety coding
prevent us from making strong assertions about the two ends of a protocol
always agreeing about the completion of a run, we can find ways of persuading
one end that it has completed a run in circumstances appear ridiculous when
we see them. It is difficult or impossible to find an extensional specification
that will find such attacks for us, since one’s interpretation of ‘ridiculous’ here
is certain to vary with the structure of the underlying protocol.

to be done on versions restricted to a fairly small number of sessions per node (perhaps 2)
and with small numbers of objects like keys and nonces. Therefore all one can show is that
no attack exists within the limits imposed for the check performed. Proving the adequacy of
finite checks like these is a current topic of research.



3 Intensional specifications

The term ‘extensional’ refers to a property of an object that reflects its externally
observable effect rather than how it was put together. There are well-known
principles of extensionality in set theory — two sets are equal if and only if they
have the same members — and function spaces — two functions of a domain D
are the same if and only if they produce the same value on each z € D. Thus
an extensional property of a protocol is one referring to the effects produced by
running it, but not about how it runs.

Most programming language semantics, particularly denotational semantics,
strive hard to achieve extensionality: they seek to model a program by the
essence of its effect rather than how this effect is achieved. But there are se-
mantics which try to capture the way a computation is achieved, and in some
circles these are termed intensional semantics (note the spelling). This word,
in a sense the opposite of extensional, means “relating to the intent of”. There-
fore we describe as intensionalany specification whose primary purpose is to
assert a property of the way, in terms of communications within the protocol, a
particular state is reached.

The intent (in this restrictive sense) of most security protocols is extremely
clear: they are usually described as a sequences of messages parameterised by
things like node names, nonces, keys and timestamps. But there is a structure-
clash between this style of description and the programs within the participating
nodes which have to run the protocol. From the overall description we have to
infer what each node’s view is, with the following natural assumptions:

e Provided a node gets all the communications it expects in a protocol run,
it will carry on with the protocol, irrespective of what other nodes may or
may not have done.

¢ When a node has completed all of its own communications it will assume
that the protocol has completed successfully relative to whatever param-
eters have occurred within the communications it has seen.

Most protocols are sufficiently well designed that if the sequence of messages
specified actually occurs between the intended nodes, then the appropriate re-
sult is obtained. Usually, attacks on these result from the spy participating in
a run and fooling one or more of the other nodes into believing it is someone
it is not. In other words, attacks generally result not from the overall protocol
runs proceeding as intended, but from various nodes believing a run has been
completed when it has not. A very natural specification we might want a proto-
col to satisfy is that no node can believe a protocol run has completed unless a
correct series of messages has occurred (consistent as to all the various param-
eters) up to and including the last message the given node communicates. We
call this the canonical intensional specification because it simply asserts that
the protocol runs as expected.



This form of intensional specification is on the one hand highly dependent
on the nature of the protocol under consideration, since it must contain a de-
scription of what a correct protocol run is. On the other hand it is a style of
specification which can be used independently of what the intended effect of the
protocol is. There is much similarity between this definition and the definition
of security given in [4]. We will give a detailed comparison in a later section,
since it is advantageous to understand our definition better before attempting
this comparison.

Because of the expressive power of CSP, this style of specification is relatively
easy to describe for FDR. The approach we have taken is set out below.

e The first thing to do is to identify a stage in the protocol, or other event,
which should not be reached without a legitimate run having occurred.
The natural points to identify here are the last communications in the
run of each participating node, or specially introduced events that are
communicated by the nodes when they think a successful run has occurred.
Ordinarily, one would do this for each ‘proper’ node (i.e., not a server) that
participates on the basis that these are the nodes which are likely to take
further action on the basis that the run has completed. Thus we will get
a separate canonical specification for each such node.

Since there is likely to be more than one node, we are likely to get several
(probably similar but not identical) stages in the protocol from this anal-
ysis. We will simply assume that separate checks are performed for each,
though it is possible to combine them (though, in our experience, quite
complex). For example, in the well-known Needham Schroeder Secret Key
protocol (NSSK, whose messages may be found below) since A sends and
B receives the last message, A believes the run is complete once it is sent,
and B when it is received.

o We then give a description of the possible sequences of messages that ought
to have occurred before this stage in the proceedings. Now it is important
to realise that each communication has two significant moments: when it
is sent and when it is received. Note that the actions of the spy can make
either of these happen without the other, and that the nodes cannot dis-
tinguish between the events corresponding to successful communications
(in our CSP codings, typically the comm channel representing both output
and input) and those interfered with by the spy (typically grab and fake).

A run of the NSSK protocol can be defined by the following CSP process,

which contains in a slightly different form the same sort of information
contained in our earlier descriptions of TMN protocols:

comm.A.server.B?Na ->
[1 k:FRESH_KEY @
(comm.server.A.encrypt (pk(4),



Na.B.k.encrypt (pk(B),k.A)) ->
comm.A.B.encrypt (pk(B) ,k.A) ->
[ Nb:FRESH_NONCE @
(comm.B.A.encrypt(k,Nb) ->
comm.A.B.encrypt(k,Nb.yes) ->
STOP))

The ranges of the three parameters of the run (two nonces and one key)
are introduced in the above by input (?Na) or by specifying their ranges
explicitly. pk(X) is a private key between the server S and node X.

This can be compared with a more traditional description of the same
protocol:

1. A= S: B,Na

N4, B,kap, e(pk(B),kan, A))

3. A— B: e(pk(B),kas,4)
4. B— A: e(kan,NB)
5. A— B: 6(kAB,NB—1)

Clearly we would expect that the successive messages in the protocol have
first been output, and then input, by the appropriate nodes in order. We
have to transform the above process a little to take account of this dis-
tinction, and it is also helpful to put some ‘signal’ events in. The sequence
of messages representing a single legitimate session up to the point where
A has completed a run with B in NSSK is represented by the following
process. Apart from the non-protocol events call_req.A.B (the external
request to A to connect with B and connected.A.B (which A emits for
our convenience when it thinks it has connected with B), all the commu-
nications are labelled either outp (representing a node sending a commu-
nication) and inp (a node receiving one). All but the last communication
appear as outp, then inp, for the reasons discussed above.

OneSessionA = call_req.A.B —>
outp.A.server.B?Na ->
inp.A.server.B!Na ->
[1 k:FRESH_KEY @
(outp.server.A.encrypt (pk(A),
Na.B.k.encrypt (pk(B) ,k.A)) ->
inp.server.A.encrypt (pk(4),
Na.B.k.encrypt (pk(B),k.A)) ->
outp.A.B.encrypt(pk(B),k.A) ->
inp.A.B.encrypt (pk(B) ,k.A) ->



[ Nb:FRESH_NONCE @
(outp.B.A.encrypt(k,Nb) ->
inp.B.A.encrypt(k,Nb) ->
outp.A.B.encrypt(k,Nb.yes) ->
CABs))

CABs = connected.A.B -> sync -> CABs

You should think of this as the series of messages that must have occurred
to justify the event connected.A.B. The role of the process CABs and the
event sync will be explained below.

We can now make up the specification by combining together as many of
the above processes as we wish to consider sessions. They can be combined
together in different ways depending on whether we are prepared to allow
our system to engage in parallel sessions or not. Assuming that we are,
then the process

NSessionsA = (OneSessionA

[I{sync}!]

[I{sync}I]
OneSessionA) \ {sync}

(with N copies of OneSessionA) is one that will allow each of the first N
connected.A.B events only if they have disjoint but possibly overlapping
(in time) protocol runs between A and B justifying them. After this
the processes can all communicate sync and allow more connected.A.B’s
(since we are only considering the first N sessions).

We can now define the complete specification by

IntSpec =
NSessionsA| | |
RUN(diff (Sigma,{connected.A.B}))

This is a trace specification that allows any events at all except that it
only allows the first N connected.A.B’s with justification.

This is then a specification for trace refinement of the complete system
modified so that the communications’ names match those in the specifi-
cation. This is a simple CSP renaming together with a simple trick for
turning each ordinary communication between nodes into both an output
outp and an input inp.



The specifications we are using here are really quite sophisticated: they say that
disjoint sequences of communications must occur somewhere in the sequence in
order for the chosen stage in the protocol to be reached. In some cases we have
found that the normalisation which FDR performs on specifications is expensive
because of this, but it has always been possible to overcome this by following a
few simple strategies.

We will discuss the behaviour of the NSSK protocol relative to this specifi-
cation and the complementary one looking for intensional attacks on B later.

3.1 When an intensional specification fails

When a canonical intensional specification fails you will have shown that the
protocol under consideration can reach the chosen stage without the correct
communications happening in the order used to describe the protocol. This
may or may not represent something one might legitimately call an “attack”,
but it will certainly illustrate a way in which the system can reach the chosen
point in a way where the communications happened in an unexpected order —
almost certainly because the spy was able to take part in a less trivial way than
simply acting as a faithful messenger.

A good example of a seemingly harmless intervention by the spy comes in
both versions of TMN. Running the intensional specification for A’s completion
(the opposite one to the one which would produce the simple attack described
at the end of the last section) produces a behaviour in which the spy anticipates
the server sending the completely unprotected second message to B, placing this
message before the arrival of the first. Indeed, B might send the third message
(which is trapped by the spy) before A does anything. The actual order of
visible actions of the spy found in our version of this is:

grab.A.S.Encrypt.pks,ml.ral.B.sa.EndEncrypt
fake.S.B.A.req,
fake.A.S.Encrypt.ral.B.sa.EndEncrypt,
grab.S5.B.A.req,
comm.B.S.Encrypt.pks.m3.rbl.A.sb.EndEncrypt,
comm.S.A.Encrypt.ral.rbl.EndEncrypt

This sort of behaviour, while seemingly innocent, was almost certainly un-
expected by the protocol designer. If something like this is found you have two
real options:

e The first is to take on board fully the implications of the unexpected
behaviour, for example making sure it does not interfere with any other
analysis you may have done which assumed the order of communications
was the expected one. This will result in you weakening your mental
picture of the protocol to encompass a wider range of actions on the part of
the nodes, and should result in you weakening the intensional specification
so that it now allows the behaviour which it previously pointed out. This
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outp.A.S.ep(pks,ml.A.ra.sa) f

Figure 2: Temporal order of a weakened intensional specification

can readily be done for TMN. Rather than quote the CSP description of
this it is perhaps clearer to show the weakened intensional specification
as a diagram (Figure 2) illustrating the temporal order between actions
that we are now requiring. (The meaning of the figure is that, with time
increasing upwards, the two sequences of events below the vertex can be
interleaved arbitrarily. The dotted line represents the ‘natural’ order in
which everything on the left-hand leg precedes everything on the right-
hand one.)

The range of possibilities here is quite large. For example, in protocols
where a server issues other node’s public keys on request (suitably signed
and perhaps with a timestamped ‘life’ for security), you are likely to find
‘attacks’ where the spy copies previously issued certificates of this sort,
but if forced by the signatures to do so reliably and therefore creates no
mischief. The way to allow this, should you want to, would be to drop the
insistence that the server has to make a separate output of this message
for each run.

e The second is to stiffen the protocol up to avoid the unexpected behaviour.



The obvious way to do this is to add nonces or timestamps. For example,
we can add a nonce challenge into the second and third messages of the
TMN protocols to avoid the attack described above.

If the first of these approaches (i.e., checking against the weakened intesional
specification) is taken with the improved TMN protocol, an attack is found
(provided the intensional specification for at least two sessions is used) under
which the spy can convince A that a second session has been opened with B
using the same key as an earlier one, when B has no inkling of the second
session. The attack is described by the following series of messages (seen from
the perspective of the spy).

1: comm.A.S.Encrypt.pks.ml.ral.B.sa.EndEncrypt,
2: comm.S.B.A.req,

3: comm.B.S.Encrypt.pks.m3.rbl.A.sb.EndEncrypt,
4: comm.S.A.Encrypt.ral.rbl.EndEncrypt,

5: comm.A.S.Encrypt.pks.ml.ra2.B.sa.EndEncrypt,
6: grab.S5.B.A.req,

7: fake.B.S.Encrypt.pks.m3.rbl.A.sb.EndEncrypt,
8: comm.S.A.Encrypt.ra2.rbl.EndEncrypt

The essential point about this is that there is no guarantee that the message
sent by B containing the key is fresh, so the spy can re-use (message 7) an old
one. The fact that A can be persuaded to re-use an old key makes this attack
more dangerous since an old key might have been compromised, and even if not
B’s messages from the first session can be replayed. Subjectively, it seems more
dangerous than the attack on B described in the last section.

This type of behaviour — which intensional specifications are very good at
identifying — generally would be regarded as a genuine attack representing a flaw
in the protocol. It is interesting that exactly the same strengthening suggested
in the second approach above will avoid this replay attack. It is possible to argue
in this case that, even though the first unexpected behaviour was not something
we should regard as an attack, it was a symptom of the same weakness that led
to the attack. Subject again to the caveat that checks are performed on systems
with finitely bounded capabilities, we could find no intensional attack on A in
the system with a nonce challenge between the second and third messages.

3.2 When an intensional specification succeeds

It is both the strength and the weakness of intensional approach that all it does
is test the implemented protocol’s behaviour against the designer’s expectations.
The strength comes from the likelihood that the designer probably has a pretty
good idea of what the protocol achieves when it runs as anticipated: quite
probably capturing more subtleties than any given extensional specification.
The main weakness is that it tells us nothing in any abstract sense about
what the protocol does, so some method must be used to gain confidence about



this. This could either be establishing some extensional specification such as
confidentiality or performing abstract (i.e., using some logic such as BAN) anal-
ysis.

You should also bear in mind that canonical intensional specifications will
not catch any attack which takes the form of the spy replaying the contents of
a completed session through the server (or another node), perhaps modified, to
learn things about it. A good example of this is provided by the original TMN
protocol. While the attack described in which the spy learns a current session
key between A and B would have counted for various reasons as an intensional
attack, there is another one with the same effect that does not. In this one A
and B are allowed to set up a session normally, and then the spy (posing either
as A or a third party C but in either case using a key it knows) requests a
session to B, intercepts the outgoing request from the server and replays the
third message of the first session. The spy is then told the key of the current
session by the server encrypted under a key it knows. All this has happened
without A or B being involved in the second ‘session’ at all. Usually, as in this
case, there seem to be other attacks on the same protocols which do trip the
canonical intensional specifications, but it would be unwise to rely on this.

4 The behaviour of NSSK

We used this protocol earlier to illustrate how a canonical intensional specifica-
tion is created. It, and weakened versions of it, provide another useful insight
into how this specification works. Consider first the original protocol, defined by
the series of messages set out as a simple CSP process earlier. On feeding this
into FDR we discovered no attack (i.e., the size of check we were able to perform
succeeded) on the assumption that the spy cannot guess nonces in advance. But
if it can guess them — as would be the case if the nonces were, for example, gen-
erated by a counter — then the specification fails because the spy can predict
the nonce to be used by A in message 1 and thereby get a reply from the server
to A’s initial request before it is made. When A does make the request, this is
intercepted and the message recorded from the server is replayed. While this
does not directly breach security, it creates cryptanalytic possibilities. In other
words, we have to distinguish two separate levels of nonce here: uniqueness and
unpredictability. It appears that the two nonces used in this protocol are at
different levels here, since no attack is found on the assumption that the second
nonce is predictable (but unique).

An interesting weakening of NSSK is obtained by dropping the name B from
the contents of message 2. This at first seems reasonable since A ought to be
able to know the message was for a session with B because of the nonce. But
dropping this name leads to the attack where the spy intercepts message 1 and
replaces B’s name with its own. A then effectively opens a session with the spy,
in the mistaken belief it is talking to B.



If we allow the second nonce to be repeated, then we find a replay attack in
which the spy can persuade B that a second session (on the same key) is open
with A when it is not. It is found by the canonical intensional specification since
there is not activity in A to justify two sessions.

For comparative purposes, the extensional safety specification seen earlier
finds only the ‘no name’ attack, while our coding of NSSK to achieve no loss of
service finds the second and third, but not the distinction between predictable
and non-predictable first nonces. It does, however, find an attack when we allow
the first nonce to be repeated (which the extensional safety specification does
not).

5 Utility relative to known attacks

Except for attacks which depend on some cryptanalytic power, or similar, on the
part of the spy, almost all the attacks on protocols known to the author would
be detected by the canonical intensional specifications for the given protocols.
Classic patterns of attack that will always be found are

e Reflection attacks, where the node A (say) makes some sort of challenge to
B, and the spy is able to answer this challenge by replaying the challenge
to A (using it as an oracle).

o Man-in-the-middle where the spy conducts simultaneous sessions with A
and B in such a way that one of A and B is deceived into thinking that a
session has been opened with the other (which generally is unaware that
this has been attempted). An example of this is provided by Lowe’s new
attack on the Needham-Schroeder Public Key protocol [5, 6].

e Parallel Session attacks are a generalisation of this and simply represent
any situation where the spy manipulates interleaved sessions to deceive
one or more of the legitimate participants. A large number of these are
set out in [3].

It has often been observed that no protocol could be proof against the spy
acting as a faithful messenger between A, B and (where needed) servers.
Our specifications will allow this sort of behaviour, but will forbid man-
in-the-middle style attacks where the messages delivered are not quite
the same as those sent so that each of A and B believe they have run
the protocol with each other but disagree on some aspect of the contents
(perhaps the key, or amount of money exchanged!).

o Duplicate session attacks, where the spy can convince one node, say A4,
that the other is participating in a second protocol run, though B has
not heard of the second run. A good example of this is the one found on
A in the improved TMN protocol earlier. Some authors classify these as



freshness attacks, since they generally involve persuading a node to re-
accept an object it has accepted before. This is a slightly dangerous term,
since authors frequently seek to guarantee freshness with timestamps and
it is important to ensure that a message containing a timestamp 7' cannot
be re-accepted within the validity of the 7.

Freshness attacks are detected simply unless they (like the Denning-Sacco
and similar attacks on NSSK) depend on a key being broken. See the next
section for discussion of this.

6 Timing and intensional specifications

Time appears in security protocols and their analysis in at least three ways.
The most obvious is the frequent use of timestamps in protocol messages to
help verify freshness of messages and perhaps signify a message’s lifetime as
a ‘certificate’. The second is that one would expect any reasonable protocol
implementation, even where no time is mentioned explicitly in the abstract
protocol description, to involve timeouts: any node sending a message to which
it expects a reply will set a time limit on the response.?> And finally, there is
the rather abstract concept of freshness as captured, for example, in BAN logic
[2] where the only distinction is between things that are fresh and things that
are not.

It is possible to model all of these in CSP. The first two are rather similar
except that with timestamps we require a new class of symbolic object in our
programs as well as a representation of the passage of time. In the final one
we will typically include an event that can happen at any time, separating
the old from the new, and which resets all nodes to their base states (with no
runs in progress). One use of this latter model would be to make one or more
keys used before this dividing line available to the spy after it (representing the
assumption that old keys can become compromised) and seeing what effect this
has on whether the protocol satisfies its specification.

While the choice of whether or not to use time is not directly related to
the question of whether intensional specifications are used, if it is used in any
of these forms the presence of time in the model can be used to tighten the
specifications to include our expectations about how a protocol run happens in
time.

o With timeouts one will immediately gain an expectation of the length
of time a protocol run will take. In a timed model (whether in CSP or
any other suitable notation) it would be straightforward to include this
and similar expectations in intensional specifications since one could place
bounds on the times at which the series of events required occur.

3In the absence of this the spy can deadlock the node by persuading it to send out a
message to which no response will ever come.



¢ With timestamps one would have the same possibility (in suitable cases)
and also include the relationships between timestamps, and between times-
tamps and event times, in the specifications.

o With the model with a reset to detect freshness we would probably wish to
assert that every session comes completely before or after the reset action,
and could of course test intensional specifications like any other in the
context of the compromised old keys.

We have found (using FDR) a number of variants of the Denning-Sacco attack
on the NSSK protocol (the basis of all of which are that there is nothing to
convince B that the third message is fresh). This, of course, comes into the last
category above.

It would be interesting to investigate the phenomena described in the en-
tertainingly named section ‘freshening the breath of the wide-mouthed frog’ of
[1]. There are variations on an attack on this protocol using the server as an
oracle to gradually increase the timestamp inside an encrypted message. I be-
lieve (though have not yet implemented this) that these would be an excellent
example what could be found by an intensional specification of the second type
above. It would be necessary here to use a somewhat weakened specification.

7 Conclusions and comparisons

What I am advocating in this paper is the use of specifications which take a
global view of the communications in the network resulting from the imple-
mentation of a protocol and assert that they (the communications) only follow
anticipated patterns. Particularly for protocols involving an element of authen-
tication, the canonical intensional specifications appear to provide a readily
accessible way of seeking and judging attacks. They are very strong specifica-
tions, but it seems obvious that it is better to start with a specification that is
too strong and be forced to weaken it after careful thought than to make one
that is too weak.

Ire-iterate that they provide a separate criterion for judging a protocol to the
more abstract extensional specifications one may be able to invent and should
not be thought of as a substitute, except perhaps in the area of authentication.

The power of this style of specification in classifying authentication errors
is shown in Lowe’s recent work [7]. There he points out a number of subtle
mis-behaviours of protocols all of which demonstrate failures of the canonical
intensional specification. Whether or not one would wish to assign as strong a
term as attack to all of these (and I believe there is good reason to particularly
when one imagines attempting to achieve no-loss-of-service on top of them), they
are all behaviours of which anyone considering using them should be aware.

It is interesting that one of these is the STS protocol defined in [4], since, as
stated earlier, that paper’s definition of authentication is the the one closest to



our own and these authors claim that the STS protocol is secure. In fact, Lowe’s
attack (in which the spy persuades Alice that she has a connection with Bob
even though Bob has never heard of Alice, believing it has had an incomplete
run with a third party) would seem close to violating the definition of ‘secure’
given in [4], the relevant part of which is (paraphrased)

A run is insecure if Alice accepts the other party’s identity when the
the other party’s record of the run does not match Alice’s.

which is clearly an intensional specification, though as we will see not quite the
canonical one. The sense in which Lowe’s attack might not be said to violate
this is because of the definition given of ‘matching’, where ‘only those parts of
the messages relevant to authentication’” must match. Obviously, in this case,
the identity of the person with whom Bob believes he is communicating is not
considered relevant. In other words, at the point where Alice accepts Bob’s
identity, their two runs do ‘match’, even though they believe the messages that
match were transacted between different parties! This is not as bizarre as it
sounds, since the address and sender fields of messages are not generally consid-
ered secure. Nevertheless it does point to a clear way in which our specification
is stronger than theirs.

There are others: firstly, there is nothing in their specification which would
forbid a message arriving before it was sent (due to the spy predicting a message,
as in the TMN protocol example where the spy forecast the unprotected third
message), and they do not explicitly consider multiple sessions between a given
pair of participants, so that it is not clear that messages corresponding to distinct
sessions must be disjoint. Finally, their definition only considers protocols with
communications only between a given pair of nodes, and thus does not include
the server.

Intensional specifications are, in a sense, verifications of authentication. But
what we are authenticating is actually the beliefs of the designer about how the
protocol runs. This style of specification can be used with equal effect over a
much wider range of protocol than authentication, though it must be recognised
that the further away from this area one gets the more likely it is that one will
have to use something a little weaker than the canonical one.
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