
Analysing a Stream Authentication Protocol

using Model Checking

Philippa Broadfoot and Gavin Lowe

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
{philippa.broadfoot, gavin.lowe}@comlab.ox.ac.uk

Abstract. In this paper, we consider how one can analyse a stream au-
thentication protocol using model checking techniques. In particular, we
will be focusing on the Timed Efficient Stream Loss-tolerant Authenti-
cation Protocol, TESLA. This protocol differs from the standard class of
authentication protocols previously analysed using model checking tech-
niques in the following interesting way: an unbounded stream of messages
is broadcast by a sender, making use of an unbounded stream of keys; the
authentication of the n-th message in the stream is achieved on receipt
of the n + 1-th message. We show that, despite the infinite nature of the
protocol, it is possible to build a finite model that correctly captures its
behaviour.

1 Introduction

In this paper, we consider how one can capture and analyse a stream authentica-
tion protocol using model checking techniques. In particular, we will be focusing
on the Timed Efficient Stream Loss-tolerant Authentication Protocol, TESLA,
developed by Perrig et al. [PCTS00]. This protocol is designed to enable authen-
tication of a continuous stream of packets, broadcast over an unreliable medium
to a group of receivers; an example application would be to provide authenticated
streamed audio or video over the Internet.

This protocol differs from the standard class of authentication protocols pre-
viously analysed using model checking techniques in the following interesting
way: a continuous stream of messages is broadcast by a sender; the authentica-
tion of the n-th message in the stream is achieved on the receipt of the n + 1-th
message. Thus, receivers use information in later packets to authenticate earlier
packets. We give a complete description of the protocol below. A particular chal-
lenge when modelling and analysing this protocol is that it uses an unbounded
stream of cryptographic keys.

In [Arc02], Myla Archer analyses TESLA using the theorem prover TAME.
She states:

Model checking this kind of protocol is not feasible because an infinite
state system is required to represent the inductive relationship between
an arbitrary n-th packet and the initial packet.

We took this claim as a challenge, and the current paper is the result. In par-
ticular, we construct a finite CSP model [Hoa85,Ros97], which can be analysed
using the model checker FDR [For00], that correctly captures the unbounded
stream of keys. To simulate the unbounded stream of keys in the system, we
make use of the data independence techniques developed by Roscoe [Ros98].

The rest of this paper is organised as follows. In Section 2 we describe the
TESLA protocol in more detail. In particular, we describe the first two schemes
(out of five) presented in [PCTS00]. In Section 3 we present a natural but infinite
state model of the basic protocol (Scheme I) within our CSP/FDR framework, so
as to introduce many of the basic techniques. We reduce this system to an equiv-
alent finite version in Section 4 by applying the data independence techniques
to the generation of keys; we also present a number of techniques for reducing
the size of the model’s state space, so as to make the analysis more efficient. In
Section 5 we describe how we adapt our model to handle the second version of
the protocol (Scheme II), where each key is formed as the hash of the following
key. We conclude and discuss future work in Section 6. A brief introduction to
CSP is included in Appendix A.

The main contributions of this paper are:

– An application of data independence techniques to the analysis of a stream
protocol, demonstrating the feasibility of applying model checking techniques
to protocols of this class;

– An extension of existing techniques so as to deal with hash-chaining;
– The presentation of a number of state-space reduction techniques.

2 The TESLA protocol

The TESLA protocol is designed to enable authentication of a continuous stream
of packets over an unreliable medium. One important factor is efficiency of
throughput. Therefore, apart from the initial message, the protocol does not
make use of expensive cryptographic primitives such as public key signatures;
instead it makes use of message authentication codes (MACs) and commitments
using cryptographic hashes.

Perrig et al. [PCTS00] introduce 5 schemes for the TESLA protocol, each
addressing additional requirements to the previous one. We will consider only
the first two of these schemes in this paper.

Scheme 1 Informally, TESLA works as follows. An initial authentication is
achieved using a public key signature; subsequent messages are authenticated
using MACs, linked back to the initial signature.

In message n−1, the sender S generates a key kn , and transmits f (kn), where
f is a suitable cryptographic hash function, to the receivers, as a commitment to
that key; in message n, S sends a data packet mn , authenticated using a MAC
with key kn ; the key itself is revealed in message n + 1. Each receiver checks
that the received kn corresponds to the commitment received in message n − 1,
verifies the MAC in message n, and then accepts the data packet mn as authentic.

Message n also contains a commitment to the next key kn+1, authenticated by
the MAC, thus allowing a chain of authentications.

More formally, the initial messages are as follows:1

Msg 0a. R → S : nR

Msg 0b. S → R : {f (k1), nR}SK (S)

Msg 1. S → R : D1, MAC (k1, D1) where D1 = 〈m1, f (k2)〉

Msg 2. S → R : D2, MAC (k2, D2) where D2 = 〈m2, f (k3), k1〉.

nR is a nonce generated by the receiver to ensure freshness. The signature on
f (k1) in message 0b acts as an authenticated commitment to k1. When R re-
ceives k1 in message 2, he can be sure that it really was sent by S . This allows
R to verify the MAC in message 1, and so be assured of the authenticity of the
data m1. Further, R is assured of the authenticity of f (k2), the commitment to
the next key.

For n > 1, the n-th message is:2

Msg n. S → R : Dn , MAC (kn , Dn) where Dn = 〈mn , f (kn+1), kn−1〉.

An authenticated commitment to kn−1 will have been received in message n −2;
the receipt of this key assures R of the authenticity of the data received in
message n − 1, and also the commitment to kn in that message. Later, when kn

is received in message n +1, R will be assured of the authenticity of the data mn

and the commitment f (kn+1) in message n.
The protocol requires an important time synchronisation assumption, the

security condition: the receiver will not accept message n if it arrives after the
sender might have sent message n + 1 (otherwise an intruder can capture mes-
sage n + 1, and use the key kn from within it to fake a message n). Thus the
agents’ clocks need to be loosely synchronised; this is achieved within an initial
exchange.

Scheme II Scheme II differs from Scheme I by not generating a stream of fresh
keys, but instead generating a single key km , and calculating each key kn , for
n < m, by hashing km m − n times: kn = f m−n(km). Hence each key acts
as a commitment to the next: when the receiver obtains kn he can verify that
f (kn) = kn−1. Thus the explicit commitment can be dropped, and the protocol
simplified to:

Msg 0a. R → S : nR

Msg 0b. S → R : {k0, nR}SK (S)

Msg 1. S → R : m1, MAC (k1, m1).
1 The message numbering scheme is a bit clumsy, but has the advantage that data

packet mn is received in message n and authenticated using key kn .
2 In the original version [PCTS00], the n-th MAC is authenticated using f ′(kn), instead

of kn , where f ′ is a second hash function; we can omit the use of f ′ for modelling
purposes.

And for n > 1:

Msg n. S → R : Dn , MAC (kn , Dn) where Dn = 〈mn , kn−1〉.

One aim of this second version is to be able to tolerate an arbitrary number of
packet losses, and to drop unauthenticated packets, yet continue to authenticate
later packets.

3 Modelling the basic protocol

In this section, we present a natural, but infinite state model of the basic protocol
(Scheme I), explaining some of the techniques we use for modelling and analysing
security protocols within the CSP/FDR framework. In the next section we re-
duce this system to an equivalent finite version, by applying data independence
techniques.

The basic idea is to build CSP models of the sender and receiver, following
the protocol definition. We also model the most general intruder who can interact
with the protocol, overhearing, intercepting and faking messages; however, as is
standard, we assume strong cryptography, so we do not allow the intruder to
encrypt or decrypt messages unless he has the approriate key. These processes
synchronise upon appropriate events, capturing the assumption that the intruder
has control over the network, and so can decide what the honest agents receive.
We then define a specification process that captures the security requirements
to be analysed; FDR can be used to discover if the specification is satisfied.
See [Low96,?,?] for more details and examples of the technique.

We will actually consider a slightly simplified version of the protocol: we omit
the old key kn−1 from the MAC, since it seems to be redundant:

Msg n. S → R : mn , f (kn+1), kn−1, MAC (kn , 〈mn , f (kn+1)〉).

This simplification is fault-preserving in the sense of Hui and Lowe [HL01]: if
there is an attack upon the original protocol, there is also an attack upon this
simplified protocol; hence if we can verify the simplified protocol, we will have
verified the original protocol.

3.1 Sender and receiver processes

The sender and receiver nodes are modelled as standard CSP processes that
can perform send and receive events according to the protocol description. We
assume that the intruder has complete control over the communications medium;
hence all communication goes through the intruder, as in Figure 1.

As discussed in Section 2, the TESLA protocol relies upon a time synchronisa-
tion between the sender and receiver processes (known as the Security Property

in [PCTS00]). We capture this requirement in our models by introducing the
special event tock that represents the passage of one time unit. The processes

Sender

Key Manager

Receiver

send

receive

pickKey

getData
Intruder send

receive
putData

Fig. 1. Overview of the network.

representing the sender S and receiver R synchronise upon tock , modelling the
fact that the two agents’ clocks are loosely synchronised. This allows R to tell
whether it has received message n before S might have sent message n + 1.

We begin by presenting a process to represent the sender. It would be nat-
ural to parameterise this process by the infinite sequence of keys that are used
to authenticate messages. However, in order to ease the transition to the next
model, we instead arrange for the keys to be provided by an external process,
KeyManager , and for the sender to obtain keys on a (private) channel pickKey

(see Figure 1).
The sender is initially willing to receive an authentication request (mes-

sage 0a) containing a nonce nR; it responds by obtaining a key (k1) from the
key manager, and sending back the initial authentication message (message 0b);
it then waits until the next time unit before becoming ready to send the next
message; if no initial authentication request is received, it simply stays in the
same state:

Sender0(S) =

2R : Agent , nR : Nonce •

receive .R .S . (Msg0a , 〈nR〉) → pickKey?k1 →
send .S .R . (Msg0b , 〈{f (k1), nR}SK(S)〉) → tock → Sender1(S , R, k1)

2

tock → Sender0(S).

The sender obtains the next key (k2), gets the first piece of data to be sent
(mcurr) from some channel getData, and then sends the data and the commit-
ment to the next key, including a MAC using the current key (message 1); it then
waits until the next time unit before becoming ready to send the next message:

Sender1(S , R, k1) =
pickKey?k2 → getData .S?mcurr →
send . S .R . (Msg1, 〈mcurr , f (k2), MAC (k1, 〈mcurr , f (k2)〉)〉) →
tock → Sendern(S , R, k1, k2).

Subsequent behaviour is very similar to the previous step, except the previous
key (kprev) is included in each message. This is the last time the sender uses this
key, so he can now forget it, modelled by the event forget . kprev ; we include this

forgetting as an explicit event to ease the transition to the next model:

Sendern (S , R, kprev , kcurr) =
pickKey?knext → getData . S?mcurr →
send . S .R . (Msgn , 〈mcurr , f (knext), kprev , MAC (kcurr , 〈mcurr , f (knext)〉)〉) →
forget . S . kprev → tock → Sendern(S , R, kcurr , knext).

It is straightforward to model the process KeyManager that issues keys; it is
parameterised by the sequence of keys that are issued:

KeyManager(xs) = pickKey . head(xs) → KeyManager(tail(xs)).

It is precisely this mechanism of generating fresh keys that needs to be adapted
in Section 4 in order to reduce the model to an equivalent finite version.

Before defining the receiver process, it is convenient to define the sets
AllCommits and AllMacs of key commitments and MACs that the receiver might
receive. The receiver is unable to tell immediately whether it has received a valid
commitment or MAC, so should also be willing to receive an arbitrary bit-string;
we model such bit-strings using a special value Garbage:

AllCommits = {f (k) | k ∈ Key} ∪ {Garbage},

AllMacs = {MAC (k , 〈m, f 〉) | k ∈ Key , m ∈ Packet , f ∈ AllCommits}
∪ {Garbage}.

The receiver begins by sending a nonce to the sender as an authentication
request (message 0a). It then becomes willing to receive an appropriate initial
authentication message (message 0b); it becomes ready to receive the next mes-
sage in the next time unit. If the initial authentication message is not received
before the end of the current time unit, the receiver should abort.

Receiver0(R, nR) =

u S : Agent • send .R . S . (Msg0a , nR) → Receiver ′
0(R, S , nR),

Receiver ′
0(R, S , nR) =

2 fnext : AllCommits •

receive . S .R . (Msg0b , {fnext , nR}SK (S)) → tock → Receiver1(R, S , fnext)
2

tock → Abort(R).

The receiver is then willing to receive an appropriate message 1; note that it
should be willing to accept an arbitrary key commitment and MAC, because it
is not yet able to verify either. If the message is not received before the end of
the time unit, the receiver should abort.

Receiver1(R, S , fcurr) =

2mcurr : Packet , fnext : AllCommits , maccurr : AllMacs •

receive . S .R . (Msg1, 〈mcurr , fnext , maccurr 〉) →
tock → Receivern(R, S , fcurr , fnext , mcurr , maccurr)

2

tock → Abort(R).

The receiver has now reached the phase where it can receive a message each time
unit. For each message received, the authenticity of the previous message is veri-
fied by checking that (i) f (kprev) is equal to the key commitment in the previous
message, fprev ; and (ii) the MAC is authentic, i.e. MAC (kprev , 〈mprev , fcurr 〉) is
equal to the MAC sent in the previous message, macprev . If these conditions
are satisfied, then the receiver outputs the data on a channel putData; he then
forgets the old key and moves to the next time unit. If either of these checks
fails, or no message arrives, then the protocol run is aborted.

Receivern(R, S , fprev , fcurr ,mprev ,macprev) =

2mcurr : Packet , fnext : AllCommits , kprev : Key , maccurr : AllMacs •

receive . S .R . (Msgn , 〈mcurr , fnext , kprev , maccurr 〉) →
if f (kprev) = fprev ∧ MAC (kprev , 〈mprev , fcurr 〉) = macprev then

putData .R . S .mprev → forget .R . kprev →
tock → Receivern(R, S , fcurr , fnext , mcurr , maccurr)

else Abort(R)
2

tock → Abort(R).

If the receiver aborts a protocol run, represented by the process Abort , it simply
allows time units to pass.

Abort(R) = tock → Abort(R).

3.2 Intruder process

The intruder model follows the standard Dolev-Yao [DY83] model. He is able
to act as other agents, which might or might not behave in a trustworthy way;
overhear all network messages; prevent messages from reaching their intended
recipients; and finally, fake messages to any agent, purporting to be from any
other.

The formal model is built around a set Deductions representing the ways in
which the intruder can deduce new messages from messages he already knows,
for example by encrypting and decrypting with known keys: each element (m, S)
of Deductions represents that from the set of messages S , he can deduce the
message m. The intruder process is parameterised by the set IK of messages
that he currently knows. He can intercept messages (on the channel send) and
add them to his knowledge; send messages that he knows to honest agents (on
the channel receive); and deduce new messages from messages he already knows.

Intruder(IK) =
send?A .B .m → Intruder(IK ∪ {m})
u

um : IK , A,B : Agent • receive .A .B .m → Intruder(IK)

u

u(m, S) : Deductions , S ⊆ IK • infer . (m, S) → Intruder(IK ∪ {m}).

For reasons of efficiency, the actual intruder implementation used is built as
a highly parallel composition of many two-state processes, one process for each
fact that the intruder could learn. This model was developed by Roscoe and
Goldsmith [RG97] and is equivalent to the process above.

The intruder’s knowledge is initialised to a set IIK containing values that the
intruder could be expected to know, including all agents’ identities, all public
keys, all data values, his own secret key, a nonce and key different from those
used by the honest agents, and the value Garbage that represents an arbitrary
bit-string.

3.3 Overall system

The above processes are combined together in parallel, as illustrated in Figure 1,
and all events except for the getData, putData and tock events are hidden (made
internal):

Agents = Sender0(S) ‖
{|pickKey|}

KeyManager(Ks)) ||| Receiver0(R,N1)

System0 = Agents ‖
{|send,receive|}

Intruder(IIK)

System = System0 \ {| send , receive, pickKey , forget |}

3.4 Specification processes

We now verify that the system meets a suitable specification. According to Per-
rig et al. [PCTS00], TESLA guarantees that the receiver does not accept as
authentic any message mn unless mn was sent by the sender; in fact, mn must
have been sent in the previous time interval.

We capture this by the following CSP specification. The specification captures
our security requirement by defining the order and timing by which messages
can be sent by the sender and get accepted by the receiver as authentic. We can
use FDR to verify that all traces (i.e. sequences of external events) of the system
are traces allowed by the specification.

In the initial state, the specification allows the sender S to input a packet
mcurr , before evolving after one time unit into the state Spec ′(S ,R,mcurr). Alter-
natively, time is allowed to pass without changing the state of the specification.

Spec(S ,R) =
getData . S?mcurr → tock → Spec′(S ,R,mcurr)
u
tock → Spec(S ,R).

Subsequently, the receiver can, but might not, output on putData the value mprev

received in the previous time unit. The sender can input a new value mcurr . These

events can happen in either order, giving the following specification.

Spec′(S ,R,mprev) =
getData . S?mcurr → tock → Spec′(S ,R,mcurr)
u
getData . S?mcurr → putData .R . S .mprev → tock → Spec′(S ,R,mcurr)
u
putData .R . S .mprev → getData . S?mcurr → tock → Spec′(S ,R,mcurr).

FDR can be used to verify that the system meets this specification when the
key manager is initialised with a finite sequence of keys. The following section
describes how to adapt the model to deal with an infinite sequence of keys.

4 A finite model of an infinite system

In this section we show how to transform the model of TESLA from the previous
section to an equivalent finite model, which can be analysed using FDR. We make
use of the data independence techniques developed by Roscoe [Ros98].

The data independence techniques allow us to simulate a system where agents
can call upon an unbounded supply of fresh keys even though the actual type
remains finite. In turn this enables us to construct models of protocols where
agents can perform unbounded sequential runs and verify security properties for
them within a finite check.

The basic idea is as follows: once a key is no longer held by any honest par-
ticipant (i.e., each agent who held the key has performed a corresponding forget

event), we recycle the key: that is, we allow the same key to be subsequently
re-issued to the sender; hence, because there is a finite bound on the number of
keys held by honest participants, we can make do with a finite number of keys.

However, at the point where we recycle a key k , the intruder’s memory will
include messages using that key, because the intruder overhears all messages that
pass on the network; in order to prevent FDR from discovering bogus attacks,
based upon reusing the same key, we need to transform the intruder’s memory
appropriately. The transformation replaces k with a special key Kb , known as
the background key ; more precisely, every message containing k in the intruder’s
memory is replaced by a corresponding message containing Kb . The effect of this
is that anything the intruder could have done using k before the recycling, he can
now do using Kb . Thus we collapse all old keys down to the single background
key.

Note that this key recycling is a feature of the model rather than of the
protocol. We argue below that it is safe in the sense that it does not lose attacks.
Further, it turns out not to introduce any false attacks.

The technique is implemented within the CSP protocol model by adapting
the key manager process (which issues keys to the sender), so that it keeps
track of which honest agents currently hold which keys. It synchronises on the
messages where agents acquire new keys (pickKey events in the case of the
sender, and receipt of all messages in the case of the receiver) and release keys

(forget events); when a key has been released by all agents, the manager triggers
the recycling mechanism, remapping that key within the intruder’s memory, as
described above. (We need to adapt the model of the receiver slightly so that it
releases all keys when it aborts.) That key can then be re-issued.

We write System ′ for the resulting system, and System ′
0 for the system with-

out the top level of hiding (analagous to System0). Since System ′ is a finite
model, we can check that it refines Spec automatically using the model checker
FDR.

In [RB99], Roscoe proves that this transformation is sound; we outline the
argument here. The critical property that justifies this transformation is

System ′ v System. (1)

If we then use FDR to verify that Spec v System ′, we can deduce that Spec v
System, by the transitivity of refinement.

Let φ be the function over traces that replaces each key from the infinite
model wtih the corresponding key in the finite model, in particular replacing
keys that have been forgotten by all honest agents with the background key Kb .
Equation (1) holds because of the following relationship between System0 and
System ′

0, noting that all the keys are hidden at the top level:

traces(System ′
0) ⊇ {φ(tr) | tr ∈ traces(System0)} (2)

In turn, property (2) holds because the corresponding property holds for each
individual agent in the system3:

traces(Agents ′) = {φ(tr) | tr ∈ traces(Agents)}

traces(Intruder ′(IIK)) ⊇ {φ(tr) | tr ∈ traces(Intruder(IIK))}

The first property holds by construction of the new key manager, and because
the sender and receiver processes are data independent in the type of keys. The
latter holds because of the following property of the deduction system:

(m, S) ∈ Deductions ⇒ (φ(m), φ(S)) ∈ Deductions

which says that for any deduction the intruder can make in the original system,
he can make the corresponding deduction in the reduced system.

Modelling the protocol directly as above is fine in theory, but in practice leads
to an infeasibly large state space. Below we discuss a number of implementation
strategies that help overcome this problem. For ease of presentation, we discuss
the optimisations independently, although in practice we combined them.

Number of data packets One interesting question concerns the number of distinct
data packets that we need to include in our model. It turns out that it is enough
to include just two distinct packets M0 and M1: if the protocol fails in a setting

3 We write “Agents ′” and “Intruder ′” for the new models of the honest agents and
intruder, respectively.

where more than two packets are used, then it will also fail in the model with just
two packets. To see why this is the case informally, suppose there were an error
in the former case represented by trace tr ; this error must be because the receiver
had received a particular packet M̂ incorrectly; consider the effect of replacing
in tr all occurrences of M̂ by M1, and all occurrences of other packets by M0;
it is easy to see that this would be a trace of the model with just two packets,
and would be an error because the receiver would accept M1 incorrectly. This
argument can be formalised, making use of a general theorem by Lazić [Laz99]
[Ros97, Theorem 15.2.2].

Splitting protocol messages Large protocol messages comprising many fields are
expensive to analyse using FDR, because they lead to a large message space and a
large degree of branching in the corresponding processes. Splitting such messages
into several consecutive ones is a simple, yet effective reduction technique that
we frequently use to handle this situation. In the case of TESLA, we split the
main message:

Msg n. S → R : mn , f (kn+1), kn−1, MAC (kn , 〈mn , f (kn+1)〉).

into the following two consecutive smaller messages:

Msg na . S → R : mn , f (kn+1), kn−1

Msg nb . S → R : MAC (kn , 〈mn , f (kn+1)〉).

This strategy speeds up checking by an order of a magnitude. Hui and Lowe
prove in [HL01, Theorem 11] that this transformation is sound in the sense that
a subsequent verification of the transformed protocol implies the correctness of
the original protocol.

Associating incorrect MACs The model of the receiver allows him to receive an
arbitrary MAC in each message:

Receivern(R, S , fprev , fcurr ,mprev ,macprev) =

2 . . .maccurr : AllMacs •

receive . S .R . (Msgn , 〈mcurr , fnext , kprev , maccurr 〉) → . . . ,

where AllMacs contains all valid MACs and also the special value Garbage that
models a bit-string not representing a valid MAC. However, if the MAC does not
correspond to mcurr and fnext then it will be rejected at the next step. Therefore
the above model allows the receiver to receive many different incorrect MACs, all
of which are treated in the same way. We can reduce the state space by an order
of magnitude by collapsing all of these incorrect MACs to a single value, namely
Garbage, noting that there is no essential difference between a behaviour using
this value and a behaviour using a different incorrect MAC. Thus we rewrite the
receiver to:

Receivern(R, S , fprev , fcurr ,mprev ,macprev) =

2 . . .maccurr : {MAC (k , 〈mcurr , fnext〉) | k ∈ Key} ∪ {Garbage} •

receive . S .R . (Msgn , 〈mcurr , fnext , kprev , maccurr 〉) →

This transformation can be justified in a similar way to the transformation
that reduced the key stream to a finite stream. Equation (2) holds when we use
the reduction function φ that maps all incorrect MACs onto Garbage. Note that
in particular (using obvious names for the old and new versions of the processes):

traces(Receiver ′) = {φ(tr) | tr ∈ traces(Receiver)},

by the above argument; and

traces(Intruder ′(IIK)) ⊇ {φ(tr) | tr ∈ traces(Intruder(IIK))},

because the intruder can always send the value Garbage in place of an incorrect
MAC.

Placement of tests One can also obtain a large speed up by careful placement of
the test that verifies the previous MAC. In the earlier model, the receiver was
willing to receive any key in message n, and then checked the previous MAC. It
is more efficient to simply refuse to input any key that does not allow the MAC
to be verified, as follows:

Receivern(R, S , fprev , fcurr ,mprev ,macprev) =

2 kprev : Key , f (kprev) = fprev ∧ MAC (kprev , 〈mprev , fcurr 〉) = macprev •

2mcurr : Packet , fnext : AllCommits , maccurr : AllMacs •

receive . S .R . (Msgn , 〈mcurr , fnext , kprev , maccurr 〉) →

This reduction can be justified in a similar way to previous reductions.

Placement of forget actions Recall that the sender and receiver perform forget

events to indicate that they have finished using a key. It turns out that placing
this forget event as early as possible—i.e. immediately after the last event using
that key—leads to a large reduction in the size of the state space.

Combining events In our previous model, we included different events within the
sender for obtaining the key from the key manager and for sending the message
using that key. It is more efficient to combine these events into a single event,
arranging for the sender to be able to use an arbitrary key, and arranging for the
key manager to allow an arbitrary send event using the key it wants to supply
next, and synchronising these two processes appropriately. It is also possible
to combine the getData event with the send event, meaning that the sender’s
environment chooses the value sent.

Sender1(S , R, kcurr) =

2 knext : Key , mcurr : Packet •

send . S .R . (Msg1, 〈mcurr , f (knext), MAC (kcurr , 〈mcurr , f (knext)〉)〉) →

Once the whole system has been combined, a renaming can be applied for com-
patibility with the specification. It is also possible to combine the forget events
with appropriate messages, although we have not done this.

Combining these state space reduction techniques with the key recycling
mechanism, we have been able to construct a reduced model of TESLA that
simulates the key chain mechanism. The agent processes are able to perform
an unbounded number of runs; the use of the recycling mechanism gives the
appearance of an infinite supply of fresh keys within a finite state model.

5 Modelling key chaining and re-authentication

In this section we show how to adapt the protocol so as to deal with Scheme II,
where explicit key commitments are omitted, but instead each key is formed as
the hash of the following key. Most of the adaptation is straightforward, except
for the key chaining, which we describe below. We also extend the model to allow
new initial authentications following packet loss or failed checks by the receiver.

5.1 Modelling key chaining

Recall that the n-th key kn is calculated by hashing some fixed key km m − n

times. The receiver should accept a key kcurr only after checking that it hashes to
the previously accepted key kprev . Clearly we cannot model this hash-chaining
through explicit modelling of the hashes, for there is no fixed bound on the
number of hashes, and so the state space would be infinite.

Our model of the hash-chaining instead makes use of the following observa-
tion: kcurr hashes to kprev precisely when kprev and kcurr are keys that were issued
consecutively by the key manager. We therefore introduce a key checker process
that keeps track of the order in which keys were issued, and allows the event
check . k1 . k2 if k1 and k2 were consecutively issued; we then model the checking
of hashes by having the receiver process attempt the event check . kprev . kcurr ;
synchronising the two processes upon check events ensures that only appropriate
checks succeed.

In more detail:

– The key checker allows an event check . k1 . k2 for fresh keys k1 and k2 pre-
cisely when those keys were consecutively issued.

Hence the receiver will accept a foreground key precisely when it was issued
immediately after the previously accepted key, which corresponds to the case
that it hashes to the previous key. The key checker should allow additional
check events in the situation where the intruder has managed to get the receiver
to accept a key that has already been recycled:

– The key checker allows the event check .Kb . k for fresh or background keys k .

The key checker should at least allow check .Kb . k if k is the key issued im-
mediately after a foreground key that could correspond to this Kb (because a
corresponding check event would have been possible if we were not using the re-
cycling mechanism). We allow more such check events, which is sound, because

it only gives the intruder more scope to launch attacks; this turns out not to
introduce any false attacks, essentially because if the intruder had managed to
get the receiver to accept Kb , then he would have already broken the protocol
anyway.

One might have expected the key checker to also allow events of the form
check . k1 .Kb for fresh keys k1 when the key issued after k1 has been recycled.
However, it turns out that allowing such checks introduces false attacks into the
model: if the key following k1 has been recycled, the intruder can fake a MAC
using the background key, even though there is no corresponding behaviour in the
infinite state model. We avoid this problem by enforcing that keys are recycled
in the same order in which they are issued, so as to prevent this circumstance
from arising.

We can then model the receiver process as follows:

Receivern(R, S , kprev ,mprev ,macprev) =

2 kcurr : Key , MAC (kcurr ,mprev) = macprev •

check .kprev .kcurr → forget .R.kprev →

2mcurr : Packet , maccurr : AllMacs •

receive . S .R . (Msgn , 〈mcurr , kcurr , maccurr 〉) →

Note that the check and forget events are performed as early as possible, to
reduce the size of the state space. Further state space reductions techniques
from Section 4 can be applied.

The reduction, from a model that uses explicit hashes to form the keys to the
finite model described above, can be justified as before. Equation (2) holds for the
function φ over traces that replaces keys and inserts check events appropriately.
In particular

traces(Receiver ′ ‖
{|check |}

KeyChecker \ {| getKey |}) ⊇ {φ(tr) | tr ∈ traces(Receiver)}.

5.2 Modelling new initial authentications

We can also adapt the model of the protocol to allow the receiver to attempt
new initial re-authentications. We can adapt the Abort state of the receiver to
allow him to re-start after a nondeterministic amount of time:

Abort(R) = tock → Abort(R) u RECEIVER0(R).

However, the receiver should use a different nonce each time it attempts a
re-authentication, and so we need to model an infinite supply of nonces. Doing so
is simple: we simply recycle nonces in the same way that we recycled keys, using
a nonce manager process that issues fresh nonces to the receiver, and recycles
nonces that are no longer stored by any agent.

We can then adapt the model of the sender to accept such re-authentication
attempts, by adding the following branch to the Sendern process:

Sendern (S ,R, kprev) =
“as before”

2

2R : Agent , nR : Nonce •

receive .R . S . (Msg0a , 〈nR〉) → pickKey?knext →
send . S .R . (Msg0b , 〈{kprev , nR}SK (S)〉) → Sendern (S , R, kprev).

6 Conclusions

In this paper, we described how to model and analyse the Timed Efficient
Stream Loss-tolerant Authentication Protocol presented in [PCTS00], using
model checking techniques within the CSP/FDR framework. This was initially
motivated by a challenging statement by Archer [Arc02] claiming that this class
of protocols is infeasible to analyse using model checking techniques.

We started by presenting a CSP model for Scheme I of the protocol using
an unbounded supply of fresh cryptographic keys. We then showed how one can
apply the data independence techniques presented in [Ros98,?] to reduce this
system to an equivalent finite version. This was achieved by implementing the
recycling mechanism upon a finite set of fresh keys, creating the necessary illusion
of having an unbounded stream of them. A number of reduction strategies were
developed and incorporated into the model to keep the state space within a
feasible range.

This protocol model was then extended to capture Scheme II. In particular,
we had to develop a technique for modelling unbounded hash-chains. We also
had to adapt the model, to allow recycling of nonces, so as to allow an unbounded
number of repeat authentications.

Our analysis showed that the protocol is correct, at least when restricted to
a system comprising a single sender and a single receiver. It is interesting to ask
whether we can extend this result to larger systems. We can argue informally as
follows.

– It is easy to extend this result to multiple receivers: the intruder would
not learn anything from interactions with additional receivers except more
nonces, and these would not help him, because he could only use them in
the same way that he could use his own nonces; further, any failure of the
protocol when executed by multiple receivers would correspond to a failure
for one of those receivers, which we would have discovered in the above
analysis.

– It is also easy to extend the result to multiple senders with different identities:
if the intruder were able to replay messages from a server S2 and have them
accepted as coming from another server S1, then in the model of this paper
he would have been able to use his own messages in the same way as the

messages of S2 so as to have them accepted as coming from S1, which again
we would have discovered in the above analysis.

– Finally, it is not possible to extend the result to the case where a single
server runs the protocol multiple times simultaneously, issuing different data
streams, but using the same key for the initial authentications; indeed in this
circumstance it is possible for the intruder to cause confusion between these
data streams.

Our model of Scheme II allows the receiver to recover from the loss or corrup-
tion of packets only by performing a repeat authentication. TESLA itself allows
the receiver to recover from d successive lost or corrupted packets, by checking
that the next key received, when hashed d + 1 times, gives the previously ac-
cepted key. It would be interesting to extend our model to consider this case,
at least for a limited range of values of d . However, we believe that it is not
possible to consider this extension for arbitrary values of d , because the system
seems inherently infinite state. Further, even for small values of d , one would
run into problems with a state space explosion; however, a parallel version of
FDR, designed for execution on a network of computers, is now available, which
could be employed on this problem.

In [PCTS00], Perrig et al. present three further versions of the TESLA pro-
tocol.

– Scheme III looks at how one can achieve faster transfer rates. One of the re-
strictions in the previous schemes is that the receiver must receive packet Mn

before the corresponding key is disclosed in packet Mn+1. Under Scheme III,
the key for packet Mn is disclosed in some later packet Mn+d , where d is
some suitably chosen parameter.

– Scheme IV extends the protocol to allow for dynamic packet rates.
– Scheme V extends the protocol further to accommodate a broader spectrum

of receivers. This is achieved by introducing multiple authentication chains
with different disclosure rates, thereby allowing the receivers to choose those
that are most efficient to their setup.

In principle, one could extend our models to consider these extensions, although
to a limited extent: for example one could consider a limited range of values for d

in Scheme III, and a limited range of receivers in scheme V. However, similar
limitations apply to those discussed above concerning recovery from packet loss.

We would also like to investigate an alternative method for recycling the
keys: use a fixed set of keys, K1, . . . ,Kn for a suitable value of n (in the setting
of Section 5, we need n = 5) and arrange that at each stage the new key issued
is K1; in order for this to work, we would need to arrange a re-mapping of
keys on each tock event, both within the states of the honest agents and the
intruder: we replace K1 with K2, replace K2 with K3, . . . , and replace Kn with
the background key Kb . Thus each key Ki represents the key introduced i − 1
time units ago. The effect of this is that each message sent by the sender would
introduce K1, have the MAC authenticated using K2, and disclose K3. This
increased regularity should cause a decrease in the size of the state space.

TESLA is based upon the Guy Fawkes Protocol [ABC+98]; it would seem
straightforward to adapt the techniques of this paper to that protocol. A fur-
ther protocol of interest is the second one presented in [PCTS00], the Efficient
Multi-chained Stream Signature Protocol (EMSS). TESLA does not provide non-
repudiation; EMSS is designed to fulfill this requirement. Non-repudiation is a
property that is easily captured within the CSP/FDR framework; see [Hui01].

Acknowledgements

This work was partially funded by the UK Engineering and Physical Sciences
Research Committee as part of the e-science program.

References

[ABC+98] Ross Anderson, Francesco Bergadano, Bruno Crispo, Jong-Hyeon Lee,
Charalampos Manifavas, and Roger Needham. A new family of authen-
tication protocols. Operating Systems Review, 32(4):9–20, 1998.

[Arc02] Myla Archer. Proving correctness of the basic TESLA multicast stream
authentication protocol with TAME. In Workshop on Issues in the Theory

of Security, 2002.
[DY83] D. Dolev and A. C. Yao. On the security of public-key protocols. Commu-

nications of the ACM, 29(8):198–208, August 1983.
[For00] Formal Systems (Europe) Ltd. Failures-Divergence Refinement—FDR2

User Manual, 2000. Available via http://www.fsel.com/fdr2_manual.

html.
[HL01] Mei Lin Hui and Gavin Lowe. Fault-preserving simplifying transformations

for security protocols. Journal of Computer Science, 9(1, 2):3–46, 2001.
[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[Hui01] Mei Lin Hui. A CSP Approach to the Analysis of Security Protocols. PhD

thesis, University of Leicester, 2001.
[Laz99] Ranko Lazić. Theorems for mechanical verification of data-independent CSP.

D.Phil, Oxford University, 1999.
[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key proto-

col using FDR. In Proceedings of TACAS, volume 1055 of Lecture Notes in

Computer Science, pages 147–166. Springer Verlag, 1996. Also in Software—

Concepts and Tools, 17:93–102, 1996.
[PCTS00] Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Xiaodong Song. Ef-

ficient authentication and signing of multicast streams over lossy channels.
In IEEE Symposium on Security and Privacy, pages 56–73, May 2000.

[RB99] A. W. Roscoe and P. J. Broadfoot. Proving security protocols with model
checkers by data independence techniques. Journal of Computer Security,
7(2, 3):147–190, 1999.

[RG97] A. W. Roscoe and M. H. Goldsmith. The perfect ‘spy’ for model-checking
crypto-protocols. In Proceedings of DIMACS workshop on the design and

formal verification of cryptographic protocols, 1997.
[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,

1997.
[Ros98] A. W. Roscoe. Proving security protocols with model checkers by data

independence techniques. In 11th IEEE Computer Security Foundations

Workshop, pages 84–95, 1998.

A CSP notation

An event represents an atomic communication; this might either be between
two processes or between a process and the environment. Channels carry sets of
events; for example, c.5 is an event of channel c. The event tock represents the
passage of one unit of time.

The process a → P can perform the event a, and then act like P . The process
c?x → Px inputs a value x from channel c and then acts like Px .

The process P 2 Q represents an external choice between P and Q ; the
initial events of both processes are offered to the environment; when an event is
performed, that resolves the choice. P u Q represents an internal or nondeter-
ministic choice between P and Q ; the process can act like either P or Q , with
the choice being made according to some criteria that we do not model.

The external and internal choice operators can also be distributed over a
set of processes. 2 i : I • Pi and u i : I • Pi represent replicated external
and nondeterministic choices, indexed over set I . The range of indexing can be
restricted using a predicate; for example, 2 i : I , p(i) • Pi restricts the indexing

to those values i such that p(i) is true.

