
Capturing parallel attacks within the data independence framework

P. J. Broadfoot and A. W. Roscoe
Oxford University Computing Laboratory

Wolfson Building, Parks Road
Oxford OX1 3QD, UK

{Philippa.Broadfoot, Bill.Roscoe}@comlab.ox.ac.uk

Abstract

We carry forward the work described in our previous pa-
pers [3, 14, 12] on the application of data independence
to the model checking of cryptographic protocols using
CSP [13] and FDR [5]. In particular, we showed how tech-
niques based on data independence [7, 13] could be used
to justify, by means of a finite FDR check, systems where
agents can perform an unbounded number of protocol runs.
Whilst this allows for a more complete analysis, there was
one significant incompleteness in the results we obtained:
While each individual identity could perform an unlimited
number of protocol runs sequentially, the degree of paral-
lelism remained bounded (and small to avoid state space
explosion). In this paper, we report significant progress to-
wards the solution of this problem, by means anticipated
in [3], namely by “internalising” all or part of each agent
identity within the “intruder” process. The internalisation
of agents (initially only server roles) was introduced in [14]
as a state-space reduction technique (for which it is usu-
ally spectacularly successful). It was quickly noticed that
this had the beneficial side-effect of making the internalised
server arbitrarily parallel, at least in cases where it did not
generate any new values of data independent type. We now
consider the case where internal agents do introduce fresh
values and address the issue of capturing the state of mind
of internal agents (for the purposes of analysis).

1. Introduction

We carry forward the work described in our previous pa-
pers [3, 14, 12] on the application of data independence
to the model checking of cryptographic protocols using
CSP [13] and FDR [5], often via extensions to Casper [8].
Since FDR can only check a finite instance of a problem,
it was originally only possible to check small instances of
security protocols (only involving a few agents and runs).
This was excellent for finding attacks, but unsatisfactory

as a method of proof of correctness. There has been work
on getting round this limitation in a variety of related ap-
proaches to protocol modelling, for example [9, 11, 15].

In our previous papers we showed how techniques based
on data independence [7, 13] could be used to justify, by
means of a single finite FDR check, systems where agents
could undertake an unbounded number of runs of the pro-
tocol. Most of this work was devoted to showing how a
finite type could give the illusion (in a way guaranteed to
preserve any attack) of being infinite by a careful process of
on-the-fly mapping of values of this type (which might be
nonces or keys) once they have been forgotten by trustwor-
thy processes (i.e., become stale). Since the CSP codings of
security protocols, having been rather complex prior to this
work, became far worse with these mappings implemented,
their creation was automated Casper.

Aside from restrictions necessary to make our results
work (see below), and assumptions common across the
whole field arising from the symbolic representation of
cryptographic primitives, there was one significant incom-
pleteness in the results we obtained. This was that, while
each individual identity could perform an unlimited num-
ber of protocol runs, it usually had to do them in sequence.
(For small protocols it was possible to run two parallel in-
stances of an agent, but even that was of course far from
unbounded!)

We now report significant progress towards the solution
of this problem, by means anticipated in [3], namely by “in-
ternalising” all or part of each agent identity within the “in-
truder” process. The internalisation of agents (initially only
server roles) was introduced in [14] as a state-space reduc-
tion technique (for which it was usually spectacularly suc-
cessful). It was quickly noticed that this had the beneficial
side-effect of making the internalised server arbitrarily par-
allel, at least in cases where it did not generate any new
values of data independent type. But there were two prob-
lems which prevented us from immediately internalising all
agents so that the sequentiality problem disappeared.

• The first is that an internalised agent (or server) which

creates a value during a run can, if it has arbitrarily
many protocol runs “live” at the same time, require an
unbounded number of fresh values. Our existing meth-
ods of mapping stale values could not handle this sit-
uation, so there was no way of achieving the essential
goal of keeping types small and finite.

• An essential part of our CSP models is knowing what
a given agent believes about the progress of its proto-
col runs. To this end we have typically either treated
specific protocol messages they send or receive as ev-
idence for this or included specific signals (to the en-
vironment) in the definitions of processes representing
trustworthy agents. This is not an issue for server pro-
cesses, but it is much harder to “get into the minds”
of internalised agents, something necessary if their
progress on protocol runs plays a part in our specifi-
cation.

This paper is an extended version of our paper [4] (ex-
tended abstract presented at WITS’02 with no formal pro-
ceedings). We present the techniques we have evolved for
internalising agents, as well as the solutions we have de-
vised for the two problems described above. Our aim is
to give the reader an understanding of the most important
ideas and definitions behind our work. However there is not
space here for many technical details and proofs. These can
all be found in the first author’s D.Phil. thesis [2].

2. Data independence techniques

The data independence techniques allow us to simulate
a system where agents can call upon an unbounded supply
of fresh keys even though the actual type remains finite. In
turn this enables us to construct models of protocols where
agents can perform unbounded sequential runs and verify
security properties for them within a finite check. This is
achieved in the CSP models by (i) treating the types of the
values freshly supplied (such as keys and nonces) as data
independent and (ii) implementing a recycling mechanism
upon them. We give a brief and informal overview of this
approach below.

Special processes, known as manager processes, are re-
sponsible for supplying the network with fresh values when
requested. An observation this method relies upon is that a
trustworthy agent (or server) will typically only store these
values for a limited duration; for example, in the standard
protocols commonly analysed, an agent will typically re-
member fresh nonces and session keys solely for the dura-
tion of a single protocol run. We say that a fresh value v

is forgotten precisely when v is no longer known (stored)
by any trustworthy participants. The only component that
never forgets these values is the intruder, since he stores
all new messages seen across the network. It is upon these

fresh values stored in his memory that the collapsing func-
tions are applied. The recycling of a fresh value v involves
all instances of v being mapped to some representative stale
(or old) value, known as background value, throughout the
intruder’s memory. We refer to this mapping process as the
recycling mechanism of fresh values. Once such a value has
been recycled, the corresponding manager process can sup-
ply it to the network as fresh again. It is this mechanism that
enables us to create the illusion of having an infinite supply
of fresh values from a small finite source.

This technique is sound [12, 14], in the sense that any
attack that exists on the infinite system has a counterpart in
the transformed system.

As in our previous papers, we restrict our attention to
protocols where each run involves a fixed number of par-
ticipants (in our examples invariably two plus perhaps a
server). While agents can rely on equality between two val-
ues of a given type (e.g. nonces) for progress, they never
rely on inequality (except perhaps with the members of a
fixed finite set of constants). A similar condition, termed
positive deductive system applies to the inferences made by
the intruder. For more details see [14]. We have recently
been interested to see that this condition is proving neces-
sary for protocol analysis within the rank functions and the
strand spaces framework [6].

3. Internalising agent roles

The natural view of an intruder is of an entity who is try-
ing to break the protocol by manipulating the messages that
pass between well-behaved agents and the server (if any).
Therefore placing either a server (alternatively known as
“trusted third party”) or an agent we wish to trust within the
intruder seems bizarre. However that is not really what we
are doing, which is to replace an agent/server with a set of
inferences of the style used within our coding of the intruder
that reflect what the intruder would see if it communicated
with the trustworthy agent. The intruder is never given the
secrets of a trustworthy process, only a logical picture of
what it looks like from the outside when using the other
party as an oracle.

Deductions performed by the intruder are usually mod-
elled by pairs of the form (X, f), where X is a finite set
of facts and f is a fact that it can construct if it knows the
whole of X . The functionality of internal agents that do not
introduce any fresh values is captured by this type of de-
duction within the intruder: we get a deduction (X, f) if,
after the agent is told the messages in X , it can be expected
to emit f (where f will be functionally dependent on X).
The server role in the TMN protocol [16] is such an exam-
ple, whose function is to receive two messages M1 and M3

and construct a corresponding third message M4, where M4

only contains variables in M1 and M3 (and so not introduc-

2

ing any fresh variables into the system). If we modelled
this server role internally, then the corresponding deduc-
tions would be all valid instantiations of {M1, M3} ` M4.

Internal agents that do introduce fresh values are cap-
tured by a special type of deduction, known as a generation.
A generation has the form (t, X, Y), where t is a non-empty
sequence of the fresh objects being created, X is a finite set
of input facts, and Y is the resulting set of facts generated
containing the fresh values in t. In the CSP implementation,
generations are modelled as events over the channel gener-
ate; the manager processes (responsible for supplying the
necessary fresh values) synchronise with the intruder upon
these events and determine which values are bound to t.

Example 3.1 Consider the following hypothetical protocol
description:

Message 1. A → S : {B, na}SKey(A)

Message 2. S → A : {na, kab}SKey(A)

where A is an agent introducing the fresh nonce na and S

is a server introducing the fresh key kab. If S is modelled as
internal, then its functionality is captured by the following
generation:

〈kab〉, {B, na}SKey(A) ` {na, kab}SKey(A)

Each time such a generation takes place, the key manager
synchronises with the intruder and determines which fresh
key is bound to kab.

Thus, we say that an agent A is internal when A’s func-
tionality is captured within the intruder component by a se-
ries of representative deductions and generations. We say
that an agent A is external otherwise (i.e. when A is mod-
elled as a CSP process in the standard way and placed in
parallel with the rest of the network).

When internalising roles (especially non-server ones) it
is often necessary to restrict the patterns of these deduc-
tions and generations within the intruder so that they corre-
spond more accurately to the behaviour of real agents. This
is done (see [2]) by means of a special class of constraint
processes called Supervisors. These are designed to ensure
that the internal agent’s behaviour, after a given generation,
follows the protocol sequentially and most particularly does
not miraculously “branch” into several continuations of the
same run.

There are two main advantages for modelling agents in-
ternally within the intruder. The first is that this approach
serves as an effective state space reduction technique (as
discussed and illustrated in [2]). The second advantage, and
one we will be focusing on in this paper, is that the internal
model of an agent A naturally captures a highly parallelised

version of A. If A does not introduce any fresh values (for
example, the server in the TMN protocol), then the intruder
is able to capture any degree of parallelism of A by per-
forming the standard deductions on behalf of A. On the
other hand, if A introduces fresh values, then the degree of
parallelism of A that the intruder can capture is dependent
on the supply of fresh values. In a model where there is an
infinite supply, the intruder is able to capture any degree of
parallelism of A; however, if this supply is bounded, then
the intruder may be restricted to only being able to perform
a small number of instances of A in parallel at any one time.

One of the problems that arises from this new modelling
approach is that if the intruder is unrestricted, then he can
perform any number of these generations he wishes, each
time requesting a fresh value; this will result in the corre-
sponding manager running out of fresh values (since there
is only a finite source). The intruder can do this, for ex-
ample, by using the same message 1 to generate many dif-
ferent message 2’s, each characterised by a distinct fresh
value. Furthermore, he can build up a store of these val-
ues and later use them one at a time with the honest agents.
For this reason, the recycling mechanism used elsewhere
cannot necessarily be applied to these multiple message
2’s held within the intruder. As an example, consider the
generation of the internal server in Example 3.1. If the
key manager is given a set of n fresh values to supply
the network and the intruder has intercepted the message 1
{Bob, NA}SKey(Alice), then the intruder could legitimately
perform the following sequence of generations:

〈K1〉, {Bob, NA}SKey(Alice) ` {NA, K1}SKey(Alice)

〈K2〉, {Bob, NA}SKey(Alice) ` {NA, K2}SKey(Alice)

...

〈Kn〉, {Bob, NA}SKey(Alice) ` {NA, Kn}SKey(Alice)

thereby always being able to cause the key manager to
run out of values, irrespective of the value bound to n. The
only way to keep the number of fresh values manageable (or
even bounded) is to prevent the intruder storing many fresh
values for later use.

Internal agents that generate fresh values raises the fol-
lowing problems: How can we reasonably limit the in-
truder’s appetite for fresh values when it has the capability
of requesting any number it wishes on behalf of the inter-
nal agents? Furthermore, can we restrict the intruder and
still be able to capture attacks for any degree of parallelism
within the internal agents? We address these questions in
this paper.

4. Just-in-time principle

In this section, we introduce a protocol model property,
referred to as just-in-time. This property allows us to derive

3

other protocol messages being sent or received by external agent processes.

generate.<X>

receive.X

represents a generation on behalf of an internal agent introducing the fresh value X.

represents the receiving of the fresh value X for the first time by an external agent.

generate.<K2> receive.K1 receive.K2generate.<K1>

Figure 1. Satisfying the just-in-time property.

and justify finite bounds upon the intruder that prevent him
from requesting an unbounded supply of fresh values, with-
out weakening our analysis (namely, not losing any attacks).
We firstly introduce a simple definition of equivalence.

Definition 4.1 (External equivalence) We say that two
traces ω and ω′ are “externally equivalent” precisely when
all behaviour involving external agents is identical in both
traces, namely:

ω � {|send, receive|} = ω′ � {|send, receive|}

where, for a given trace γ and set X , γ � X returns the
trace of events in γ that are also members of the set X .
{|send, receive|} is the set of all send and receive events.

Definition 4.2 (Just-in-time) Suppose we have a CSP pro-
tocol model with a number of externally modelled agents,
together with an internal agent S, where S introduces fresh
values of some type T .

We say that a fresh value t of type T , received by an
external agent, is generated “just-in-time” precisely when
t is freshly introduced (via the corresponding generation of
S) after all the protocol messages that precede the receipt
of t (in some message M) by the external agent.

We say that S satisfies the “just-in-time” property with
respect to type T precisely when, for every trace ω in the
system, either (i) all values of type T are generated just-in-
time in ω, or (ii) there exists another trace ω′ in the system
such that ω′ is externally equivalent to ω and all values of
type T received by an external agent are generated just-in-
time in ω′.

Notice that this property is concerned only with those
fresh values that are eventually passed on to external agent
processes and the point at which they are generated; the fact
that the intruder can store fresh values that he never passes
on to external agent processes is an issue we discuss later
on. Intuitively, if the just-in-time property holds, then there
is no advantage to be gained by the intruder to store this type
of fresh values, unknown to any external agent processes,
that will only be introduced into the network later on.

On the other hand, if a CSP protocol model does not sat-
isfy the just-in-time property, then there exists some trace
ω that relies on the intruder being able to store fresh values
before the point at which they are passed on to an external
agent process. By doing this, the intruder is able to con-
struct and send out messages using these values in a way
that cannot be reproduced just-in-time. Clearly, this type of
behaviour cannot be discarded or ignored, since it might be
crucial towards an attack upon the protocol being modelled.

Example 4.1 (Satisfying just-in-time) Consider the hypo-
thetical protocol description presented in Example 3.1,
where the server S is modelled as internal. Suppose there
are 2 instances of A declared as external agent processes,
all given the identity Alice. Consider the following valid
sequence of events:

• Message 1. Alice1 → IS : {Bob, N1}SKey(Alice)

• Message 1. Alice2 → IS : {Bob, N2}SKey(Alice)

• Generation 1:
〈K1〉, {Bob, N1}SKey(Alice) ` {N1, K1}SKey(Alice)

• Generation 2:
〈K2〉, {Bob, N2}SKey(Alice) ` {N2, K2}SKey(Alice)

• Message 2. IS → Alice1 : {N1, K1}SKey(Alice)

4

generate.<X1,X2>

receive.{X1,X2}

represents a generation on behalf of an internal agent introducing the fresh values X1 and X2.

represents the receiving of the fresh values X1 and X2 for the first time by an external agent.

other protocol messages being sent or received by external agent processes.

receive.{K2}generate.<K2, K3> receive.{K2, K3}

Figure 2. Violating the just-in-time property.

• Message 2. IS → Alice2 : {N2, K2}SKey(Alice)

where IS , Generation 1 and Generation 2 represents the
intruder acting on behalf of S.

In this trace, the intruder is not generating the fresh
value K2 just-in-time. However, we can construct an
equally valid trace of the system that does and is externally
equivalent to the trace above (as illustrated in Figure 1):

• Message 1. Alice1 → IS : {Bob, N1}SKey(Alice)

• Message 1. Alice2 → IS : {Bob, N2}SKey(Alice)

• Generation 1:
〈K1〉, {Bob, N1}SKey(Alice) ` {N1, K1}SKey(Alice)

• Message 2. IS → Alice1 : {N1, K1}SKey(Alice)

• Generation 2:
〈K2〉, {Bob, N2}SKey(Alice) ` {N2, K2}SKey(Alice)

• Message 2. IS → Alice2 : {N2, K2}SKey(Alice)

Example 4.1 illustrates how the intruder has the ability
legitimately to generate many messages on behalf of the
server S without necessarily passing them on immediately;
the number of fresh values he can request is dependent on
the number available. In this particular case, there is no ad-
vantage to be gained by the intruder from performing gener-
ations early and storing the fresh values; it does not enable
him to perform any deductions or further generations to-
wards constructing new messages that he otherwise would
not be capable of. The protocol only introduces a single
fresh key (encrypted under a public key) per run by the in-
ternal agent. At any point, he can only ever generate mes-
sages of that form and pass at most one fresh value onto an

external agent per run. Furthermore, any deductions that he
was able to perform earlier, he is always able to perform in
the future (since deductions are never disabled).

However, as soon as we start looking at larger protocol
examples, determining whether a given protocol satisfies
the just-in-time principle is much less intuitive and often
very complex. Example 4.2 gives an example of a protocol
that does not satisfy our property.

Example 4.2 (Violating just-in-time) Consider a proto-
col defined by the following sequence of messages:

Message 1. A → B : {k1, A}PK(B)

Message 2. A → S : {B, ia}SKey(A)

Message 3. S → B : {k2, k3, ia}SK(S)

Message 4. B → S : {nsec, ia}k2

Message 5. A → B : {npub, ia}k1

Message 6. B → A : npub

where k1, k2 and k3 are keys introduced freshly by the agent
A and the server S respectively; ia is an index value intro-
duced freshly by A; and finally, nsec and npub are fresh
nonces introduced by B and A respectively. Suppose S is
modelled as internal and captured by the generation:

〈k2, k3〉, {B, ia}SKey(A) ` {k2, k3, ia}SK(S)

Suppose further that the system is composed of one external
instance each of A and B with identities Alice and Bob re-
spectively. Consider the following valid sequence of events:

1. Message 1. Alice → IBob : {K1, Alice}PK(Bob)

2. Message 2. Alice → IS : {Bob, I1}SKey(Alice)

5

3. Generation: (on behalf of S)
〈K2, K3〉, {Bob, I1}SKey(Alice) ` {K2, K3, I1}SK(S)

4. Intruder deduces {K2, Alice}PK(Bob) using the mes-
sage generated in the previous step.

5. Message 1. IAlice → Bob : {K2, Alice}PK(Bob)

6. Message 3. IS → Bob : {K2, K3, I1}SK(S)

The message 3 generated on behalf of the server (in step 3)
does not satisfy the just-in-time property in this trace, since
he does not immediately pass K3 on to an external agent.
Instead, he deliberately chooses to gather it first and use the
fresh key K2 to construct a new message 1. The intruder
then sends this message to Bob in step 5, pretending to be
from Alice. It is only at this point that he sends the server-
message generated earlier, to Bob in step 6.

In order to construct an externally equivalent trace that
satisfies the just-in-time property, we need to be able to con-
struct a trace such that the generation of the server-message
is delayed until immediately before it is sent on to Bob; in
other words, after step 3 and before step 6. However, this is
not possible since the intruder specifically wants the fresh
value bound to k1 in message 1 to be the same as that bound
to k2; in this trace he uses the K2 generated on behalf of
the server, as illustrated in Figure 2.

Example 4.2 illustrates how there are cases where it is
advantageous for the intruder to store fresh values, unknown
to any external agents, that he will only pass on to the net-
work later in the trace (thereby violating the just-in-time
principle). The mere fact that storing fresh values gives the
intruder an advantage means that it is impossible to find an
externally equivalent trace where all the messages are gen-
erated just-in-time. Such cases arise when the intruder can
exploit dependencies between fresh values and the ways in
which they are used within the protocol description.

Being able to determine whether a protocol model satis-
fies our just-in-time property is not straightforward; we dis-
cuss how we achieve this later on in this paper. However,
once we have established that this property is satisfied by
a given protocol model, we are able to derive bounds upon
the intruder that prevent him from requesting an unbounded
number of fresh values through internal agents’ generations
and justify that no behaviour of the system is lost.

5. Constructing a reduced protocol model

In this section, we present an extension to our CSP proto-
col models that involves introducing special values, referred
to as dummy values, into the data independent types being

generated. Together with the just-in-time property we intro-
duced in the previous section, this extension often enables
us to map a protocol model with an infinite supply of fresh
values to an equivalent reduced system with a finite source
of fresh values. By equivalent, we mean that no attacks are
lost through the mapping; thus, if no attack is found upon
the reduced system, then we can conclude that none exists
upon the original infinite version of the system.

5.1. Dummy values

The just-in-time property is concerned only with the
fresh values that are generated by the intruder and passed
on to external agents; it says nothing about any other fresh
values he generates and never sends out. We will refer to
this latter class of values as internal fresh values. It may ini-
tially seem rather odd that the intruder would want to gener-
ate fresh values and then never pass them on to any external
agent processes. However, without placing any restrictions
upon the number of fresh values he can request and having
an infinite supply of them, the intruder is free to do and be-
have how he pleases. There are two main reasons why the
intruder may want to store internal fresh values. The first is
simply because he is able to do so and therefore stores them
with no particular gain (in terms of enabling deductions).
The intruder can do this, for example, by using the same
antecedent to generate many different resulting messages,
each characterised by distinct fresh values.

The second motivation for storing internal fresh values is
that it might enable further generations and deductions for
the intruder to take advantage of and construct new mes-
sages that he could not have built otherwise. This ability to
internally manipulate messages and construct every possi-
ble valid message is crucial when working towards devel-
oping a complete analysis of protocols, since it considers
the full range of the intruder’s abilities towards attacking
them.

Distinguishing between these two classes of fresh val-
ues in any given trace is the key to how we extend our CSP
models and justify finite bounds upon the intruder. The ob-
servation we make is that it does not actually matter which
internal fresh values are supplied; what is important is that
they exist in some form for the purposes of allowing the in-
truder to perform whatever manipulations he needs in order
to construct the necessary messages. It is not even necessary
for these values to be fresh, since they are never passed on
to external agents. The intruder could just as easily perform
subsequent deductions and generations with any values that
were strictly for internal use only.

Based on this observation, we introduce a new class of
values, referred to as dummy values, that will be added to
the data independent types being generated. These extra
values have the special characteristic that they are not ac-

6

cepted as genuine by any honest process (so the latter will
never accept any message involving one). The intruder can
use these values itself like any others, in particular doing
deductions involving them. The trick is that we allow the
intruder to perform, at any time, a “generation” based on a
valid input set X , but unless the number of fresh values he
is currently storing is less than the given bound, the result
will always be based on a dummy value; otherwise, the re-
sult may be either a fresh or dummy value. Hence, for a
given bound N upon the intruder, we allow the intruder to
perform a generation (t, X, Y) for a given input set X and
a fresh value t precisely when the intruder stores fewer than
N fresh values unknown to any external agent processes.
In Section 7, we discuss what these bounds should be for
various classes of protocols.

In practice, we typically declare one dummy value per
generated data independent type. However, there is the
possibility that this technique introduces false attacks. An
example would be where the value being introduced is a
key K, and one of the messages contains something en-
crypted under K that the intruder would not otherwise
learn; representing K by the dummy value, which the in-
truder could learn from elsewhere, would allow him to de-
duce the contents of the message, as a false attack. A so-
lution (also applied to the background values [14] to avoid
false attacks), is to use two dummy values: one that is cre-
ated in circumstances where we would expect the intruder
to learn it legitimately, and one that is created in other cases.
However, a single value appears to suffice more frequently
than in the analogous case of background values.

In the rest of this paper, we will refer to the implementa-
tion of dummy values within our CSP protocol models (as
described above) as the dummy-value strategy.

5.2. Constructing an equivalent reduced model

Given a protocol model that satisfies the just-in-time
property and has an infinite supply of fresh values of the
data independent types generated, we can construct an
equivalent reduced model where there is only a finite source
of fresh values and that incorporates the dummy values for
the relevant types. By equivalent, we mean that for every
trace in the original infinite model, we can find an exter-
nally equivalent trace in our reduced model. Such a trace is
constructed by mapping all the internal fresh values to the
dummy values, leaving only those fresh values in the trace
that are passed on to external agent processes (and therefore
generated just-in-time). Proposition 5.1 captures this more
formally.

Proposition 5.1 Suppose System(AS) is a protocol model
with the set of roles AS, where some role A in AS is mod-
elled as internal and introduces fresh values of some data
independent type T . Suppose further that System(AS) is

provided with an unbounded supply of fresh values of type
T . If System(AS) satisfies the just-in-time property, then we
can construct a reduced (finite) system SystemR(AS) such
that, for every trace ω in System(AS), there exists a trace ω′

in SystemR(AS) where ω and ω′ are externally equivalent.
SystemR(AS) is constructed as follows:

1. The dummy-value strategy is implemented for type T .

2. The maximum number of fresh values of type T the
intruder can store (unknown to any external agents) is
equal to the maximum number of them he can pass on
to an external agent in a protocol message.

A formal proof is presented in [2].

We illustrate this mapping more intuitively in the follow-
ing example.

Example 5.1 Consider a simple protocol defined as fol-
lows:

Message 1. A → S : {na}SKey(A)

Message 2. S → A : {k1, na}SKey(A)

Message 3. S → A : {k2, na}SKey(A)

where na is a fresh nonce introduced by A, k1 and k2 are
keys supplied freshly by the server S and SKey(A) is a sym-
metric key known only by S and A. Consider the following
trace, where the server is modelled as internal, there is one
instance of A declared externally with identity Alice and no
dummy values are implemented:

• Message 1. Alice → IS : {NA}SKey(Alice)

• Generation 1:
〈K1〉, {NA}SKey(Alice) ` {K1, NA}SKey(Alice)

• Generation 2:
〈K2〉, {{NA}SKey(Alice), {K1, NA}SKey(Alice)}

` {K2, NA}SKey(Alice)

• Message 2. IS → Alice : {K2, NA}SKey(Alice)

• Message 3. IS → Alice : {K1, NA}SKey(Alice)

By storing the two server-generated messages 2 and 3, the
intruder is able to replay them in reverse order. This trace
does not conform to the just-in-time property, since K1 is
not generated just-in-time. However, there exists an exter-
nally equivalent trace in this model that does, for example:

• Message 1. Alice → IS : {NA}SKey(Alice)

• Generation 1:
〈K3〉, {NA}SKey(Alice) ` {K3, NA}SKey(Alice)

7

• Generation 2:
〈K2〉, {{NA}SKey(Alice), {K3, NA}SKey(Alice)}

` {K2, NA}SKey(Alice)

• Message 2. IS → Alice : {K2, NA}SKey(Alice)

• Generation 3:
〈K1〉, {NA}SKey(Alice) ` {K1, NA}SKey(Alice)

• Message 3. IS → Alice : {K1, NA}SKey(Alice)

where the fresh key K3 is not subsequently used, but exists
for the sole purpose of allowing the intruder to gain access
to a message 3 from the server to replay as a message 2
to Alice. The generation of a message 2 can be performed
again with the same antecedents and another fresh key (K1)
just-in-time for supplying it as a message 3 to Alice. Thus,
if we implement the notion of dummy values, we can map
this trace to the following corresponding one in the reduced
model:

• Message 1. Alice → IS : {NA}SKey(Alice)

• Generation 1:
〈KD〉, {NA}SKey(Alice) ` {KD, NA}SKey(Alice)

• Generation 2:
〈K2〉, {{NA}SKey(Alice), {KD, NA}SKey(Alice)}

` {K2, NA}SKey(Alice)

• Message 2. IS → Alice : {K2, NA}SKey(Alice)

• Generation 3:
〈K1〉, {NA}SKey(Alice) ` {K1, NA}SKey(Alice)

• Message 3. IS → Alice : {K1, NA}SKey(Alice)

Example 5.1 provides a useful and simple example of
how we can map a trace in the original protocol model (with
potentially infinite supply of fresh values) to an externally
equivalent one in the reduced model. In this particular ex-
ample, the intruder needed to perform a generation with a
dummy value in order to gain access to the second server-
message, before passing on the first. Since intruder deduc-
tions and generations are never disabled, he can simply use
the same antecedents (in this case, {NA}SKey(Alice)) to gen-
erate another server-message 3 just-in-time. Which actual
fresh value gets supplied does not matter (since the type is
data independent), as long as it is fresh. Thus, this has the
same effect as gathering the two messages and playing them
in reverse order.

As discussed in the introduction, a protocol model with
an infinite supply of fresh values enables the intruder to per-
form attacks for any degree of parallelism among the inter-
nal agents. By being able to map an infinite model with

an internal agent A to an equivalent reduced one (for pro-
tocols that satisfy the just-in-time property), means that we
are able to capture attacks upon protocols for any degree
of parallelism within A by performing a finite refinement
check.

There are two main questions that we still need to con-
sider. The first is how we determine whether a given proto-
col model satisfies the just-in-time property. The second is,
given a protocol model that satisfies this property and makes
use of the dummy values, what should the finite bound upon
the intruder be to prevent him from using fresh values for
internal purposes only, while still ensuring that he can per-
form all possible interactions with the external agent pro-
cesses? We address these questions in the remaining part of
this paper.

6. Factorisability of internal agents

We now introduce a new property, referred to as the fac-
torisability of internal agents, and show that when satisfied
by an internal agent A within a protocol model, we can ap-
ply the just-in-time principle to justify the bounds placed
upon the intruder with regards to the fresh values introduced
on behalf of A (via the corresponding generations).

The factorisability property is quite a restrictive one and
there are many protocol examples that do not satisfy it.
However, it has proved to be extremely useful towards de-
termining and justifying finite bounds upon the intruder
with regards to the number of fresh values he can request
through internal agent generations.

Definition 6.1 (Factorisability) We say that an internal
agent A is factorisable with respect to some data indepen-
dent type T precisely when, for each run R of A that gener-
ates fresh values v1, . . . , vk of type T , the following condi-
tions are satisfied:

1. We can construct runs R1, . . . , Rk of A, where each
run Ri contains the fresh value vi and the dummy
value only.

2. For each output message M in R, there exists at least
one Ri that contains M , where i ∈ {1, . . . , k}.

3. For all vi and vj of type T generated on behalf of A,
where vi 6= vj: if A receives vi back in some protocol
message, then no subsequent message sent or received
by A contains vj .

An intruder with an internalised factorisable agent A

is equivalent to one in which A has been replaced by A′,
where A′ can only deliver one fresh value per independent
run.

8

Internal S

(Msg 2) (Msg 3){K , na} {K , nb}
SKey(Alice)

{K , na}

1 2

2

{na, nb} {na, nb}

SK1
SK

D

SKey(Alice)

SKey(Alice)

SKey(Alice)

SKey(Alice)

Figure 3. Factorisable internal server S in Example 6.1.

Thus, the ability for the intruder to store messages that
contain fresh values (generated on behalf of some internal
agent A) in an infinite model for the purposes of replaying
them in a different order, is simulated here by the intruder
being able to perform an independent run with A for each
message (and fresh value) required. By the definition of fac-
torisability, he can achieve this by replaying external agent
messages as input to the various internal agent runs he is in-
terested in, since there exists a run for each internally gen-
erated message and fresh value (where all the other fresh
values generated are dummy values).

The fact that the other values generated are dummy val-
ues means that the generation of any message containing a
fresh value on behalf of an internal agent A is not depen-
dent on A being able to distinguish the runs of the protocol;
otherwise one could not replay the same messages as input
to A. Hence the need for the 3rd condition in the definition.

To illustrate the factorisability property more clearly,
consider the following example of a simple protocol whose
internal server is factorisable.

Example 6.1 (Factorisable internal server) Consider the
following protocol:

Message 1. A → S : {na, nb}SKey(A)

Message 2. S → A : {k1, na}SKey(A)

Message 3. S → A : {k2, nb}SKey(A)

where na and nb are nonces freshly introduced by agent A,
and k1 and k2 are keys freshly introduced by the server S.

S modelled as internal is factorisable, since it satisfies
the conditions required in Definition 6.1. As illustrated in
Figure 3, it is straightforward to see that we can factor the
runs of S such that each run only ever produces a single
fresh value (the rest being dummy values). Since there are

only the two messages generated on behalf of S where a sin-
gle fresh value is introduced in each, every possible output
message of S can clearly be generated in one of the inde-
pendent runs of S. Furthermore, S does not depend on re-
ceiving any fresh values previously introduced, thereby sat-
isfying the 3rd requirement of the factorisability definition.

Example 6.1 provides a simple example of a factorisable
internal server S and as a consequence, how the intruder
can gain access to the fresh values bound to k1 and k2 by
performing independent runs with S. He achieves this using
the dummy values (as illustrated in Figure 3) and the fact
that, by definition, he is able to simply replay the external
agent A’s message 1 to S for each run. Without the use of
dummy values, the intruder could achieve the same result by
performing the same independent runs, where the dummy
values are replaced by freshly supplied ones.

The motivation for introducing the factorisability prop-
erty is to help determine which protocols satisfy the just-in-
time property. The relationship between these two proper-
ties is captured by Proposition 6.1.

Proposition 6.1 Consider a CSP protocol model compris-
ing a number of external agents and an internal agent A,
where A introduces fresh values of some data independent
type T . If A is factorisable, then A satisfies the just-in-time
property.

Proof For A to satisfy the just-in-time property, it must
be the case that, for every trace ω in the system, we can
construct an equally valid trace ω′ of the system such that
ω′ is externally equivalent to ω and all the values of type T

are generated just-in-time in ω′.
Suppose ω is a trace of our system (with the factorisable

internal agent A). If all the values of type T are generated

9

just-in-time in ω, then clearly our implication is satisfied.
However, if this is not the case, then we can construct an-
other trace ω′ that is externally equivalent to ω and satisfies
the just-in-time property with respect to T , as follows.

When constructing ω′, we need to consider every fresh
value of type T in ω that is received by an external agent
B (in some message M) for the first time, but arose in a
generation of A before the last protocol message preceding
the receipt of M by B. Suppose t is such a value, Mt is the
message that passes t on to any external agent B for the first
time, and MS is the sequence of protocol messages, sent
and received by external agents, that occur after the genera-
tion of t and before the receipt of Mt by B. Furthermore, let
Gt be the generation of A that introduces the fresh value t

and takes the form 〈t〉, X ` Y , where X is the antecedent
(set of input messages), known by the intruder (otherwise
he would not be able to perform this generation!), and Y is
the set of messages generated as a result.

By definition, we know that no messages in MS contain
t (since Mt is the first) and therefore none of them rely on
the fact that Gt is introducing a fresh value t (as opposed to
a dummy one). Their construction may, nevertheless, rely
on Gt taking place; for example, the intruder may use other
components in the set Y (resulting from Gt) to construct
some of them (either directly or through further deductions
being enabled), or prompt deductions or generations of A

that follow on from Gt. Thus, when constructing ω′ from ω,
we cannot necessarily move this generation forward on the
trace to satisfy the just-in-time property. We can, however,
construct this sub-trace of ω′ (with respect to t satisfying
our property) as follows. Firstly, we replace the genera-
tion Gt with the generation GDT

, whose only difference is
that the dummy value DT (for type T) is supplied instead
of the fresh value t; GDT

uses the same antecedent as Gt

and therefore takes the form 〈GDT
〉, X ` Y ′ (Y ′ differs

from Y above only in that all instances of t are replaced
by DT). Secondly, all instances of t in subsequent deduc-
tions and further generations within the intruder, that take
place before the receipt of Mt by B, are replaced by DT .
Thirdly and finally, by the definition of factorisability, we
extend the trace with a new independent run Rt of A after
the last message in MS and before the receipt of Mt by B,
such that the fresh value required in Mt, namely t, is gen-
erated on behalf of A; any other values generated in Rt are
bound to the dummy value. The intruder can simply replay
the same messages he used earlier on in the trace, to prompt
A (through the corresponding deductions and generations
of A) to perform Rt. The fact that S is factorisable means
that the intruder is always able to achieve this, and therefore
generate these fresh values just-in-time.

To construct ω′, we simply repeat this process for every
fresh value t of type T not generated just-in-time in ω.

7. Bounding the intruder’s appetite

The results of Sections 3–5 are the key to constructing
CSP models within the scope of FDR that address the ex-
istence or otherwise of attacks that require a high degree
of parallelism in agents. Furthermore, they allow a vari-
ety of sets of structural results implying factorisability and
hence the capture of attacks requiring any degree of par-
allelism amongst internal agents. The involves deriving
bounds upon the number of fresh values the intruder may
store at any one time (unknown to any external agents) and
justifying them using Proposition 5.1.

The most obvious and trivial one of these is the case
where (i) an internal agent A generates 0 or 1 fresh value
(of some data independent type T) per protocol run and (ii)
any protocol message (within the system) contains at most 1
value of type T . It follows immediately from Definition 6.1
that A is factorisable and therefore by Proposition 6.1, A

satisfies the just-in-time property. By Proposition 5.1, we
can construct a reduced (finite) system SystemR by imple-
menting the dummy-value strategy (Condition 1) and only
allowing the intruder to store at most 1 value of type T (de-
rived from (ii) above) at any given time, unknown to any
external agent (Condition 2). Since this reduced system is
externally equivalent to the same system with an unbounded
supply of fresh values of type T and an unrestricted intruder,
SystemR will capture attacks for any degree of parallelism
within A. This simple class would include, for example,
server roles whose function is to supply agents with a fresh
session key for every run or to simply recompose messages
(like the server in the TMN protocol).

An example of a more complex class is defined by the
following proposition.

Proposition 7.1 Suppose System(AS) represents the CSP
model for some protocol P , where AS is the set of roles
in P . Suppose further that we model the role A in AS as
internal, where A introduces fresh values of some type T .
We claim that if the following conditions are satisfied:

1. A introduces at most 1 value of type T per message.

2. The progress of A never depends upon the receipt of
previously introduced values of type T on behalf of A.

3. The intruder can store N fresh values of type T , un-
known to any external agents, where N is the maxi-
mum number of values of type T in any single protocol
message.

then no attack found upon System(AS) implies that no
attack exists upon P for any degree of parallelism within A.

Proof As discussed earlier, if System(AS) is given an in-
finite supply of fresh values of type T , the intruder would

10

be able to capture any degree of parallelism within the in-
ternal agent A and therefore perform attacks, irrespective
of the number of instances of A required. For this propo-
sition to hold, it must be the case that every trace of such
an infinite version of this system can be mapped to an ex-
ternally equivalent trace in the reduced model, defined by
the conditions presented above. We prove this by firstly
proving that A satisfies the just-in-time property and then
justifying how this reduced system is externally equivalent
to the corresponding infinite version. To prove the just-in-
time property, we make use of our factorisability argument
and Proposition 6.1.

Suppose R is a run of A represented by a sequence of
deductions and generations DGR performed by the intruder
on behalf of A, resulting in the set of output messages MSR.
Furthermore, suppose that t1, . . . , tk are fresh values gener-
ated by the generations G1, . . . , Gk of A respectively, in R.
R can be factored into k independent runs of A, according
to the factorisability definition, as follows.

For each fresh value ti (∈ {t1, . . . , tk}) generated by
the generation Gi of A, the intruder can construct an in-
dependent run Ri on behalf of A, by performing the same
sequence of deductions and generations in DGR, where the
fresh value ti is indeed generated as fresh in Gi and all other
generations of A are supplied with the dummy value DT

for type T . Consequently, all instances of ti in the resulting
output messages MSRi

from run Ri will remain the same,
whereas all instances of the other fresh values introduced
in R on behalf of A will be mapped to DT . The intruder
is able to perform these independent runs on behalf of A

by simply re-using the same antecedents each time; this re-
flects the intruder replaying the same input messages to A, k
times. He can choose to perform these runs in any order, ei-
ther sequentially or interleaved. We know, from condition 2
above, that A never relies on the receipt of previously intro-
duced fresh values (by A) in order to generate fresh values;
therefore, A is not able to distinguish the runs with regards
to the input stimuli given.

We must ensure that each output message in MSR is
present in one of the factored runs. This is the case, since by
definition (condition 1 above), all protocol messages gener-
ated on behalf of A contain at most one value of type T .
Therefore, for each fresh value ti (∈ {t1, . . . , tk}), the mes-
sages in MSR containing ti will be generated in run Ri; the
fact that the other values are mapped to dummy values, does
not affect these output messages (since they only contain
one fresh value, namely ti). Hence A is factorisable. By
Proposition 6.1, A therefore also satisfies the just-in-time
property.

By Proposition 5.1, we can conclude that the version of
System(AS) with an infinite supply of fresh values of type
T can be reduced to an equivalent one (traces are exter-
nally equivalent) with a finite source under the condition

placed upon the the intruder, since (i) System(AS) satisfies
the just-in-time property, (ii) the dummy-value strategy is
implemented and (iii) the number of values of type T that
the intruder is able to store (unknown to any external agents)
is equal to the maximum number of them an external agent
can learn for the first time. Therefore, any attack that ex-
ists upon the protocol model that supplies A with an infi-
nite number of fresh values of type T (reflecting any de-
gree of parallelism of A) and allows the intruder to store
any number of them, can be mapped to an equivalent attack
upon the reduced version of the system, where the intruder
is bounded by condition 3 above.

8. Basing specifications on internal agents

When an agent A is modelled as a standard external
process, signal events (capturing the state of mind of A

for specification purposes) are constructed through the ap-
propriate renaming of messages sent and received by A.
An internal agent no longer performs send and receive
events, since its functionality is solely captured within the
intruder’s deductive system.

Capturing the sending of a message M by A is relatively
straightforward, as this corresponds to the deduction or gen-
eration of A resulting in M . On the other hand, constructing
signal events for an internal agent A that are bound to the
receiving of some message M by A is more complicated,
since the intruder’s deductive system does not directly cap-
ture this information. A solution to this is to ensure (artifi-
cially if necessary) that such receipts are immediately fol-
lowed by the same agent performing some send.

It is thus possible to verify authentication specifications
where those roles satisfying the just-in-time principle are
arbitrarily parallel. Such proofs do not at present exclude
one-to-many attacks in which A and B can think they are
having different non-zero numbers of runs with each other.

9. Towards a more complete analysis

Being able to construct signal events for internal agents,
strengthens our work even further, since it allows our mod-
els to capture parallelism amongst agents that are part of
a specification. Further still, it opens potential avenues
for capturing more complete results upon protocol analysis,
than simply parallelism of internal agents. This involves
carefully selecting which agent roles are internalised and
which are modelled as external; this is dependent on the
specification being verified. In this section, we suggest how
this could potentially be achieved for secrecy and authenti-
cation properties in turn. This work is part of future research
we are interested in pursuing.

11

9.1. Secrecy specifications

A specification of the form Secret(A, s, [B1, . . . , Bn])
represents the following property: A believes that the value
bound to variable s is a secret shared only with the agents
B1, . . . , Bn. We require only one type of signal event
within our protocol model when verifying these specifica-
tions; it is identified with the last message received by A.
(The same applies to other types of secrecy specifications
defined by Lowe [8]. For the purposes of illustration in this
paper we will only consider the standard one.)

Suppose we are interested in modelling a protocol P

with the set of roles AS, and verifying secrecy speci-
fications of the form Secret(A, s, [B1, . . . , Bn]), where
A, B1, . . . , Bn are members of AS. Suppose further that
we construct this CSP model as follows:

1. All agents in AS that are modelled as internal.

2. One instance of A is modelled as an external agent pro-
cess.

3. The necessary signal events (required for A only) are
constructed for the external instance of A; none are
constructed for any internal instances of A.

We believe that, under appropriate bounds upon the in-
truder (such as that derived in Proposition 7.1), if no secrecy
attack found in this model, then none exists upon P for any
degree of parallelism amongst AS.

We justify this claim as follows. The functionalities
of all the agents in AS are internalised within the intruder
and therefore, given that we have calculated an appropriate
bound upon him, this represents an unbounded degree of
parallelism amongst them (for the same reasons described
in the earlier propositions). By definition, a secrecy specifi-
cation Secret(A, s, [B1, . . . , Bn]) is broken precisely when
there exists an instance of A who believes that the value v

bound to s is shared only with B1, . . . , Bn, while in fact the
intruder has been able to deduce v. It does not matter which
instance of A this is; the only requirement is that there exists
one of them. Our model has one external instance AE of A

with the appropriate signal event linked to it, and so any at-
tack the intruder can perform upon an internalised instance
of A, he can also perform upon AE . Therefore, it suffices to
have signal events for the secrecy specifications linked only
to AE , and none associated to the internal instances of A.

Our current limitation with this result is that we have not
derived bounds upon the intruder for all general cases; our
current propositions are somewhat limited when internalis-
ing multiple agent roles. However, deriving such bounds
is a current area of our future research, thereby making a
more complete analysis of protocols as presented above, a
feasible achievement.

9.2. Authentication specifications

We can apply a similar approach for capturing authen-
tication properties for any degree of parallelism within the
models. The class of authentication specifications we con-
sider are those that do not demand a one-to-one relationship
between the runs of the agents in question (the reason for
this becomes apparent later on).

The authentication specification Auth(A, B, xs) repre-
sents the property: A must be authenticated to B and agree
on the values bound to the variables in xs. Two types of sig-
nal events are required: Signal.Running and Signal.Commit
events. The former of these is identified with the last mes-
sage sent by A and the latter is bound to the last message
participated by B.

Suppose we model a protocol P with the set of roles
AS, and verify authentication specifications of the form
Auth(A, B, [x1, . . . , xn]), where A and B are members of
AS. Suppose further that we construct this CSP model as
follows:

1. All agents in AS that are modelled as internal.

2. One instance of B is modelled as an external agent
process.

3. The Signal.Commit events (required for B) are con-
structed for the external instance of B only; none are
constructed for any internal instances of B.

4. The Signal.Running events (required for A) are con-
structed for all internal instances of A.

We believe that, under appropriate bounds upon the in-
truder (such as those derived in the earlier propositions), if
no authentication attack found in this model, then none ex-
ists upon P for any degree of parallelism amongst AS.

We justify this claim as follows. The functionalities of
all the agents in AS are internalised within the intruder and
therefore, given that we have calculated appropriate bounds
upon him, this represents an unbounded degree of paral-
lelism amongst them. We know that the specifications in
question do not demand a one-to-one relationship between
the runs of the two agents being verified. An attack will
be found upon these specifications if there exists at least
one case where if some instance of B (and we don’t care
which!) commits himself to a run of the protocol believing
he has done so with A, when in fact A has not been run-
ning the protocol (according to the definition of one of the
three possible specification we are considering). For each
specification, it does not matter which instance of A per-
forms the necessary Signal.Running as long as there exists
one of them that is in that state. Therefore, we can inter-
nalise all instances of A within the intruder and capture the
Signal.Running events that we are interested in through the

12

corresponding deductions and generations. Furthermore, it
does matter which instance of B participates in the run that
leads to the authentication attack; any authentication attack
the intruder can perform upon an internalised B, he can also
perform upon the one external instance BE of B. It there-
fore suffices to have Signal.Commit events for the linked
only to BE , and none associated to the internal instances of
B.

We expect that similar arguments to those used earlier
for a single internal agent will allow the restriction of the
intruder’s appetite for fresh values to manageable propor-
tions in many cases, but this, together with widening the
range of specifications, remains work in progress.

10. Conclusions

As well as proving to be a highly effective state space
reduction strategy (by 2 orders of magnitude [2]), we have
shown that the internal agent model frequently permits pro-
tocols to be analysed with some agents having an arbitrary
degree of parallelism. An example protocol we used for
testing purposes was an extended version of the hypothet-
ical ffgg protocol by Millen [10], where the secrecy attack
requires three instances of an initiator agent, together with
a single instance of a responder. Using old modelling tech-
niques, this model is infeasible to run; using our new tech-
niques and internalising the initiator role, this attack was
found very easily. Details concerning this model and other
examples can be found in [2].

Further work planned includes broadening classes of
conditions and specifications where we can use these tech-
niques, wherever possible on all the identities present in a
given protocol.

Blanchet [1] uses a similar idea to ours, especially with
regards to the internalisation strategy of agents (referring
to the early stages of this development in [3]). The author
presents a prolog based framework with the following two
abstractions: (i) fresh values are represented as functions
over the possible pairs of participants and (ii) a protocol
step can be executed several times, instead of only once
per session. With these abstractions, the author is able to
capture unbounded agent runs and degrees of parallelism
within their identities. Similar to ours, his analysis is fail-
safe in the sense that no attacks are lost, but the potential
for false attacks does arise. However, by modelling val-
ues that are expected to be fresh for every run as functions
over the participants, it is no longer possible to distinguish
between old values used in previous ones and new. This
means that one cannot verify properties that depend upon
freshness. Blanchet currently only considers secrecy speci-
fications.

Acknowledgements

This work has benefited enormously from discussions
with Gavin Lowe. It was supported by funding from US
ONR, DERA and EPSRC. We also thank the anonymous
referees for their useful comments and suggestions.

References

[1] B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. In 14th IEEE Computer Security
Foundations Workshop, pages 82–96. IEEE Computer So-
ciety Press, 2001.

[2] P. J. Broadfoot. Data independence in the model checking of
security protocols. D.Phil, Oxford University, 2001.

[3] P. J. Broadfoot, G. Lowe, and A. W. Roscoe. Automating
data independence. In Computer Security - ESORICS 2000,
volume 1895 of LNCS, pages 175–190. Springer, 2000.

[4] P. J. Broadfoot and A. W. Roscoe. Internalising agents in
CSP protocol models (extended abstract). Workshop on Is-
sues in the Theory of Security (WITS ’02), 2002.

[5] Formal Systems (Europe) Ltd. Failures-Divergence
Refinement—FDR2 User Manual, 2000.

[6] J. A. Heather and S. A. Schneider. Equal to the task? Sub-
mitted for publication, 2002.

[7] R. Lazić. Theorems for mechanical verification of data-
independent CSP. D.Phil, Oxford University, 1999.

[8] G. Lowe. Casper: A compiler for the analysis of security
protocols. Journal of Computer Security, 6:53–84, 1998.

[9] C. Meadows. The NRL Protocol Analyzer: An overview.
Journal of Logic Programming, 26(2):113–131, 1996.

[10] J. Millen. A necessarily parallel attack. In Proceedings of
the Workshop on Formal Methods and Security Protocols,
1999.

[11] L. Paulson. The inductive approach to verifying crypto-
graphic protocols. Journal of Computer Security, 6, 1998.

[12] A. W. Roscoe. Proving security protocols with model check-
ers by data independence techniques. In 11th IEEE Com-
puter Security Foundations Workshop, pages 84–95, 1998.

[13] A. W. Roscoe. The Theory and Practice of Concurrency.
Computer Science. Prentice Hall, 1998.

[14] A. W. Roscoe and P. J. Broadfoot. Proving security proto-
cols with model checkers by data independence techniques.
Journal of Computer Security, 7(2, 3):147–190, 1999.

[15] D. X. Song, S. Berezin, and A. Perrig. Athena: A novel
approach to efficient automatic security protocol analysis.
Journal of Computer Security, 9(1,2):47–74, 2001.

[16] M. Tatebayashi, N. Matsuzaki, and D. B. Newman. Key
distribution protocol for digital mobile communication sys-
tems. In Advances in Cryptology: Proceedings of Crypto
’89, volume 435 of LNCS, pages 324–333. Springer-Verlag,
1990.

13

