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1 Introduction

We carry forward the work described in our previous papers [3, 12, 10] on
the application of data independence to the model checking of cryptographic
protocols using CSP [11] and FDR [5], often via extensions to Casper [6]. Since
FDR can only check a finite instance of a problem it was originally only possible
to check small instances of security protocols (only involving a few agents and
runs). This was excellent for finding attacks, but unsatisfactory as a method of
proof of correctness. There has been work on getting round this limitation in a
variety of related approaches to protocol modelling, for example [7, 9, 13].

In our previous papers we showed how techniques based on data indepen-

dence [4, 11] (where programs treat certain types simply and can be viewed as
having these types as parameters) could be used to justify, by means of a single
finite FDR check, systems in which the number of agents was unbounded and in
which each could undertake an unbounded number of runs of the protocol. Most
of this work was devoted to showing how a finite type could give the illusion (in
a way guaranteed to preserve any attack) of being infinite by a careful process of
on-the-fly mapping of values of this type (which might be nonces or keys) once
they have been forgotten by trustworthy processes (i.e., become stale). Since
the necessary CSP codings of security protocols, having been rather complex
prior to this work, became far worse with these mappings implemented, their
creation was automated in Casper.

Aside from restrictions necessary to make our results work (see below), and
assumptions common across the whole field arising from the symbolic represen-
tation of cryptographic primitives, there was one significant incompleteness in
the results we obtained. This was that, while each individual identity could
perform an unlimited number of protocol runs, it usually had to do them in
sequence. (For small protocols it was possible to run two parallel instances of
an agent, but even that was of course far from unbounded!)

We now report significant progress towards the solution of this problem, by
means anticipated in [3], namely by “internalising” all or part of each agent
identity within the “intruder” process. The internalisation of agents (initially
only server roles) was introduced in [12] as a state-space reduction technique
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(for which it was usually spectacularly successful). It was quickly noticed that
this had the beneficial side-effect of making the internalised server arbitrarily
parallel, at least in cases where it did not generate any new values of data
independent type. But there were two problems which prevented us from im-
mediately internalising all agents so that the sequentiality problem disappeared.

• The first (which applies to servers as well) is that an internalised agent
which creates a value during a run can, if it has arbitrarily many protocol
runs “live” at the same time, require an unbounded number of fresh val-
ues. Our existing methods of mapping stale values could not handle this
situation, so there was no way of achieving the essential goal of keeping
types small and finite.

• An essential part of our CSP models is knowing what a given agent believes
about the progress of its protocol runs. To this end we have typically
either treated specific protocol messages they send or receive as evidence
for this or included specific signals (to the environment) in the definitions
of processes representing trustworthy agents. This is not an issue for server
processes, but it is much harder to “get into the minds” of internalised
agents, something necessary if their progress on protocol runs plays a part
in our specification.

In the rest of this extended abstract we summarise the techniques we have
evolved for internalising agents, as well as the solutions we have devised for the
two problems described above.

As in our previous papers, we restrict our attention to protocols where each
run involves a fixed number of participants (in our examples invariably two plus
perhaps a server). While agents can rely on equality between two values of
a given type (e.g. nonces) for progress, they never rely on inequality (except
perhaps with the members of a fixed finite set of constants). A similar condition,
termed positive deductive system applies to the inferences made by the intruder.
For more details see [12].

This paper is designed to give the reader an understanding of the most im-
portant ideas and definitions behind our work. However there is not space here
for many technical details or examples of sufficient complexity to demonstrate
the capture of interesting parallel attacks. These can all be found, together
with many examples, in (mainly Chapters 5 and 6 of) the first author’s D.Phil.
thesis [2].

2 Internalising agent roles

The natural view of an intruder is of an entity who is trying to break the
protocol by manipulating the messages that pass between well-behaved agents
and the server (if any). Therefore placing either a server (alternatively known
as “trusted third party”) or an agent we wish to trust within the intruder seems
bizarre. However that is not really what we are doing, which is to replace an
agent/server with a set of inferences of the style used within our coding of the
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intruder that reflect what the intruder would see if it communicated with the
trustworthy agent. The intruder is never given the secrets of a trustworthy
process, only a logical picture of what it looks like from the outside when using
the other party as an oracle.

Deductions performed by the intruder are usually modelled by pairs of the
form (X, f), where X is a finite set of facts and f is a fact that it can construct
if it knows the whole of X. The functionality of internal agents that do not
introduce any fresh values is captured by this type of deduction within the
intruder: we get a deduction (X, f) if, after the agent is told the messages in X,
it can be expected to emit f (where f will be functionally dependent on X). The
server role in the TMN protocol [14] is such an example. Internal agents that
do introduce fresh values are captured by a special type of deduction, known
as a generation. A generation has the form (t, X, Y ), where t is a non-empty
sequence of the fresh objects being created, X is a finite set of input facts, and
Y is the set of facts generated containing the fresh values in t. The processes
(known as managers) responsible for supplying the necessary fresh values must
synchronise with the intruder upon these generations. Internal servers that
introduce fresh keys or agents introducing fresh nonces are captured by these
generations, where t contains the fresh keys and nonces respectively.

Example 1 Consider the following first two messages of a hypothetical protocol
description:

Message 1. A → S : {B, na}SKey(A)

Message 2. S → A : {na, kab}SKey(A)

where A is an agent introducing the fresh nonce na and S is a server intro-
ducing the fresh key kab. If S is modelled as internal, then its functionality is
captured by the following generation:

〈kab〉, {B, na}SKey(A) ` {na, kab}SKey(A) (1)

Each time such a generation takes place, the key manager synchronises with
the intruder and determines which fresh key is bound to kab.

When internalising roles (especially non-server ones) it is often necessary to
restrict the patterns of these deductions and generations within the intruder so
that they correspond better to the behaviour of real agents. This is done (see [2])
by means of a special class of constraint processes called Supervisors. These are
designed to ensure that the internal agent’s behaviour, after a given generation,
follows the protocol sequentially and most particularly does not miraculously
“branch” into several continuations of the same run. These processes are, like
the rest of the CSP model of a protocol, created automatically by Casper.
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3 Bounding the appetite of internal agents

Where an internal agent can perform a generation because it has the job within
the protocol of generating fresh values, there is no way we can run the resulting
system unrestricted since the intruder can gain knowledge of an unbounded
collection of messages, all containing different fresh members of the type.

Example 2 Consider the generation of S in Example 1. If the key manager
is given n fresh values to supply the network with and the intruder has inter-
cepted the message 1 {Bob, NA}SKey(Alice), then he could perform the following
sequence of generations:

〈K1〉, {Bob, NA}SKey(Alice) ` {NA, K1}SKey(Alice)

〈K2〉, {Bob, NA}SKey(Alice) ` {NA, K2}SKey(Alice)

...

〈Kn〉, {Bob, NA}SKey(Alice) ` {NA, Kn}SKey(Alice)

thereby always being able to cause the key manager to run out of values, irre-
spective of the value bound to n.

Hence, the only way to keep the number of fresh values manageable (or even
bounded) is to prevent the intruder from storing any number of fresh values for
later use. What we do in this section is to show how, in certain circumstances,
such restrictions can be justified formally.

A generation performed by an internal agent offers two distinct opportunities
to the intruder: to perform inferences on the information it gains and to deliver
messages containing the new fresh values to trustworthy agents. Of course
these might be combined to create a different message with the fresh values. In
seeking results about bounding the number of fresh values not yet delivered to
an external agent that the intruder can hold, we have had to analyse these two
functions carefully.

A key idea which allows us to derive rigorous bounds on number of fresh
values that need to be held by the intruder is the following definition.

Definition 1 (Just-in-time) Suppose we have a CSP protocol model with a
number of externally modelled agents, together with an internal agent S, where
S introduces fresh values of some type T .

We say that a fresh value t of type T , received by an external agent, is gener-
ated “just-in-time” precisely when t is freshly introduced (via the corresponding
generation of S) after all the protocol messages that precede the receipt of t (in
some message M) by the external agent.

We say that S satisfies the “just-in-time” property with respect to type T

precisely when, for every value t of type T received by an external agent, t can
be generated just-in-time.
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Intuitively, if the just-in-time property holds in a given protocol model, then
there is no advantage to be gained by the intruder to store fresh values, unknown
to any external agent processes, that will only be introduced into the network
later on in the trace. Notice that this property is concerned only with those
fresh values that are eventually passed on to external agent processes and the
point at which they are generated; the fact that the intruder can store fresh
values that he never passes on to external agent processes is an issue we discuss
later on.

When a protocol model satisfies this property, a version with an infinite
supply of fresh values has an equivalent reduced system with a finite source
of fresh values. By equivalent, we mean that no attacks are lost through the
mapping; thus, if no attack is found upon the reduced system, then we can
conclude that none exists upon the original infinite version of the system. This
is achieved by extending our CSP models as follows.

The fresh values requested by the intruder on behalf of internal agents can
(with the benefit of hindsight after a run is complete) be divided into two classes.
The first are those values that get passed on to external agents (though per-
haps not in the format in which they were generated); the second are those
that remain internal within the intruder. Note that the just-in-time definition
covers the first of these but not the second. Our extension is designed to deal
with the latter. The observation we make is that it does not actually matter
which internal fresh values are supplied; what is important is that they exist in
some form for the purposes of allowing the intruder to perform whatever ma-
nipulations he needs in order to construct the messages he does. It is not even
necessary for these values to be fresh, since they are never passed on to external
agents. The intruder could just as easily perform subsequent deductions and
generations with any values that were strictly for internal use only.

Based on this observation, we introduce a new class of values, referred to
as dummy values, that will be added to the data independent types being gen-
erated. These extra values have the special characteristic that they are not
accepted as genuine by any honest process (so the latter will never accept any
message involving one). The intruder can use these values itself like any others,
in particular doing deductions involving them. The trick is that we allow the
intruder to perform, at any time, a “generation” based on a valid input set X,
but unless the number of fresh values he is currently storing is less than the
given bound, the result will always be based on a dummy value; otherwise, the
result may be either a fresh or dummy value. By doing this, we ensure that any
bound we place on the intruder’s memory places no restriction on his ability to
use generated messages in his internal workings.

We can then show that if a protocol model satisfies the just-in-time property
and implements the dummy value strategy, then the appetite of the intruder
need never be larger than the maximum number of fresh values that an external
agent can learn in a single message.

However this property by no means applies to all agent roles, so we need to
understand when it does. One trick that is frequently useful in the manipulations
is to split a single run of the internal agent into several: one might be done
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early so as to allow the intruder to use the messages generated for an earlier
message (either a message not involving the generated value which nevertheless
appears after it might be sent, or messages might be used as the premises of
a deduction). The other run would be done just in time to deliver the fresh
values. Such splitting involves use of replays and dummy values. The best tool
we have developed to understand when this type of manipulation can be done is
that of the factorisability of an agent role within a protocol: this applies when
we can split any run into several, each one containing at most one non-dummy

value from the data independent type, together with other conditions.

Definition 2 (Factorisability) We say that an internal agent A is factorisable
with respect to some data independent type T precisely when, for each run R

of A that generates fresh values v1, . . . , vk of type T , the following conditions
are satisfied:

1. We can construct runs R1, . . . , Rk of A, where each run Ri contains the
fresh value vi and the dummy value only.

2. For each output message M in R, there exists at least one Ri that contains
M , where i ∈ {1, . . . , k}.

3. R never depends on receiving any of the fresh values v1, . . . , vk back from
any external agent processes. In other words, a send event in R is never
preceded by a receive event in R of some message M where M contains
any values in {v1, . . . , vk}.

The relationship between the just-in-time property and factorisability is cap-
tured by the following proposition:

Proposition 1 Suppose we have a CSP protocol model with a number of ex-
ternally modelled agents, together with an internal agent S, where S introduces
fresh values of type some T . If S is factorisable, then S satisfies the just-in-time
property.

A formal proof is presented in [2].

Our aim was to be able to identify classes of protocol models that satisfy
the just-in-time principle (with regards to the internal agent roles). This is not
an intuitive task. On the other hand, verifying whether a given protocol model
is factorisable is relatively straightforward. Thus the result above provides a
useful way of determining and using the just-in-time arguments (together with
the dummy value strategy) described earlier.

Using these results, we are able to capture attacks upon protocols that re-
quire a higher degree of parallelism than previously possible; for some classes
of protocols, we have shown that attacks requiring any degree of parallelism
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amongst internal agents will be found within the confines of a finite refinement
check. An example of such a class is defined as follows. Suppose SystemP is the
CSP model for some protocol P and A is a participating role modelled as inter-
nal that introduces fresh values of some type T . We show that if the following
conditions are satisfied:

1. A introduces at most 1 fresh value of type T per message.

2. For every message M of A, the generation of M never depends on A

receiving a fresh value previously introduced by A.

3. The intruder can store N fresh values of type T , unknown to any external
agents, where N is the maximum number of values of type T in any single
protocol message.

then no attack found upon SystemP implies that no attack exists upon P for
any degree of parallelism within A. A formal proof is presented in [2], together
with other results of the same type.

Our ultimate goal, of course, is to be able to prove as wide a range of security
properties as possible for protocols in which not just one but all the roles are
arbitrarily parallel. The following result represents some progress towards this.

Suppose we model a protocol P consisting of two roles A and B, and wish to
verify the secrecy specification Secret(A, s, [B]); this means that A is a trustwor-
thy agent who believes that the value bound to variable s is a secret shared only
with agent B. We require signal events bound to appropriate events performed
by A only (as formally defined in [6]). We can capture secrecy attacks for any
degree of parallelism for all agents roles (in this case A and B) within the con-
fines of a finite refinement check, by constructing the CSP model as follows: (i)
The roles A and B are modelled as internal, (ii) one instance of A is modelled as
an external agent process and (iii) the necessary signal events are constructed
for the external instance of A only.

We justify this claim as follows. The functionalities of all the agents in AS are
internalised within the intruder and therefore, given that we have calculated an
appropriate bound upon him, this represents an unbounded degree of parallelism
amongst them (for the same reasons described in the earlier propositions). By
definition, a secrecy specification of the form S(A, s, [B1, . . . , Bn]) is broken
precisely when there exists an instance of A who believes that the value v bound
to s is shared only with B1, . . . , Bn, while in fact the intruder has been able to
deduce v. It does not matter which instance of A this is; the only requirement
is that there exists one of them. Our model has one external instance AE of A

with the appropriate signal event linked to it, and so any attack the intruder
can perform upon an internalised instance of A, he can also perform upon AE .
Therefore, it suffices to have signal events for the secrecy specifications linked
only to AE , and none associated to the internal instances of A.

We expect that similar arguments to those used earlier for a single internal
agent will allow the restriction of the intruder’s appetite for fresh values to
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manageable proportions in many cases, but this, together with widening the
range of specifications, remains work in progress.

4 Basing specifications on internal agents

When an agent A is modelled as a standard external process, signal events
(capturing the state of mind of A for specification purposes) are constructed
through the appropriate renaming of messages sent and received by A. An
internal agent no longer performs send and receive events, since its functionality
is solely captured within the intruder’s deductive system.

Capturing the sending of a message M by A is relatively straightforward, as
this corresponds to the deduction or generation of A resulting in M . On the
other hand, constructing signal events for an internal agent A that are bound to
the receiving of some message M by A is more complicated, since the intruder’s
deductive system does not directly capture this information. A solution to this
is to ensure (artificially if necessary) that such receipts are immediately followed
by the same agent performing some send.

It is thus possible to verify authentication specifications where those roles
satisfying the just-in-time principle are arbitrarily parallel. Such proofs do not
at present exclude one-to-many attacks in which A and B can think they are
having different non-zero numbers of runs with each other.

5 Conclusions

As well as proving to be a highly effective state space reduction strategy, we
have shown that the internal agent model frequently permits protocols to be
analysed with some agents having an arbitrary degree of parallelism. An ex-
ample protocol we used for testing purposes was an extended version of the
hypothetical ffgg protocol by Millen [8], where the secrecy attack requires three
instances of an initiator agent, together with a single instance of a responder.
Using old modelling techniques, this model is infeasible to run; using our new
techniques and internalising the initiator role, this attack was found very easily.

Further work planned includes broadening classes of conditions and specifi-
cations where we can use these techniques, wherever possible on all the identities
present in a given protocol.

Blanchet [1] uses a similar idea to ours, especially with regards to the inter-
nalisation strategy of agents (referring to the early stages of this development
in [3]). The author presents a prolog based framework with the following two
abstractions: (i) fresh values are represented as functions over the possible pairs
of participants and (ii) a protocol step can be executed several times, instead
of only once per session. With these abstractions, the author is able to capture
unbounded agent runs and degrees of parallelism within their identities. Similar
to ours, his analysis is fail-safe in the sense that no attacks are lost; however,
the potential for false attacks does arise. However, by modelling values that
are expected to be fresh for every run as functions over the participants, it is
no longer possible to distinguish between old values used in previous ones and
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new. This means that one cannot verify properties that depend upon freshness.
Blanchet currently only considers secrecy specifications.
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