
1 SuD - SOAP under Dolev-Yao

We introduce a tool for automatic verification of Web Services Security protocols.
SuD is implemented in Java and uses JAXP1 for manipulating the SOAP messages.

1.1 Using SuD

SuD’s main frame (Figure 1) is divided into two. The left window, titled “SOAP Mes-
sage”, is the current message loaded into the tool. The right window, titled “Casper
Input”, is a Casper input script built dynamically by the user.

 

1. Load a SOAP 
Message 

2. Apply phi 3. Phi's outcome 4. When all the 
messages are 

loaded, analyze the 
protocol 

Figure 1: SuD’s main frame

To start an analysis of a WS-Security protocol one should select the File7→New
Protocol option. The New protocol dialog box allows the user to configure the protocol’s
attributes.

First, the user needs to instruct SuD how to treat the bit string values in the SOAP
messages. Two options are available:

1. Abstracted – In this case SuD assumes that all the bit strings in the SOAP mes-
sages are substituted with symbols that represent cryptographic keys, hashes, etc.
SuD will use these symbols to build the Casper input script. SuD will find incon-
sistencies between the abstracted values and XML data and provide appropriate

1Java API for XML processing.

1



alerts. Once this option is chosen, SuD’s input is similar to the one of TulaFale
though it is still more faithful to the original protocol. An example of the OASIS
protocol symbolic variables can be found in the site.

2. As binary values – In this case SuD will not try to interpret keys, hashes, etc.
Instead when a binary value is encountered, SuD will ask the user to supply a
symbolic surrogate. Similarly to the abstracted option when an inconsistent value
is provided, SuD will reject it. When this option is used, SuD’s input will be the
messages from the wire.

Second, the user ought to define the variables corresponding to the initiator’s and
the responder’s names and to set their types. We will see later how new types can be
defined. Once hitting the OK button, a skeleton of the input script is created. The
protocol description section will contain only message 0.

Next, SuD has to be informed of the first message of the protocol. This can be
done by loading the first SOAP message of the protocol using the Load button located
underneath the “SOAP Message” window (action 1 in Figure 1). Once the ApplyPhi
button is pressed (action 2 in Figure 1), the user is asked to set the message’s attributes:
the message’s sender, receiver and which message it follows. Once these are provided
SuD applies φ to the loaded SOAP message and makes the necessary changes to the
Casper script. At any point the Casper script can be modified manually by the user.

Actions 1 and 2 should be repeated for each SOAP message of the WS-Security
protocol the user analyses. After all the message are loaded, the Analyze button can
be used to invoke Casper and FDR to complete the analysis. Alternatively, the Casper
script can be saved and fed manually to Casper.

1.2 Special options

A common requirement, when evaluating XML documents in general and SOAP mes-
sages in particular, is to make sure the messages comply with the specification. For this
reason the SuD parser supports schema validation. Selecting the Configuration7→Parser
option in the main menu presents the parser configuration dialog (Figure 2) and lets the
user turn the schema validation on by ticking the appropriate box.

Once the schema validation is set to on, the user can choose which schemas the SOAP
message should be verified against. This can be done by ticking the desired boxes and
providing the file names containing the schemas. Pressing the Get URI button instructs
SuD to extract the schema’s URI from the file. It is good practice to provide the URIs
even if schema validation is not needed. This will help SuD to deal with Namespaces.
The schema validation is performed during the loading process. The more schemas SuD
needs to validate, the longer it will take to load a message.

1.3 Initialization

In its initialization process, SuD looks for the Init.cfg file which holds, in an XML
format, the initial configuration information. Figure 3 presents an example of parts of
an initialization file.

The root element of the initialization document is Init. It can currently contain
two subelements:

2



Figure 2: SuD’s parser configuration dialog

1. ParticipantTypes is used for defining the possible agents’ types.

2. The ParserAttributes sets the initial parser attributes which can later be changed
as described in Section 1.2. The Validating subelement only accepts true or false
values which set schema validation to on or off. The Schemas subelement is used
for specifying the schemas locations. For each schema the Validating attribute
declares if it is to be validated or not (ignored in case schema validation is set
to off.) Schemas is not obliged to include all the subelements and the in case of
omission, the relevant schema will not be loaded and cannot be validated. Finally,
SchemasURI sets the Namespaces.

Changes in the Init.cfg file take effect whenever SuD is restarted or by selecting the
File7→Reinitialize option.

3



<Init>

<ParticipantTypes>

<Type> Agent </Type>

<Type> Server </Type>

</ParticipantTypes>

<ParserAttributes>

<Validating> false </Validating>

<Schemas>

<soapSchema Validate="true">

C:\Documents and Settings\eldar\jbproject\SUD\soap-envelope.xsd

</soapSchema>

<utilitySchema Validate="true">

C:\Documents and Settings\eldar\jbproject\SUD\utility.xsd

</utilitySchema>

<wssSchema Validate="true">

C:\Documents and Settings\eldar\jbproject\SUD\secext.xsd

</wssSchema>

<xmlEnc Validate="false">

C:\Documents and Settings\eldar\jbproject\SUD\xmlEnc.xsd

</xmlEnc>

<xmlSig Validate="false">

C:\Documents and Settings\eldar\jbproject\SUD\xmlSig.xsd

</xmlSig>

</Schemas>

<SchemasURI>

<soapSchema>

http://www.w3.org/2001/12/soap-envelope

</soapSchema>

.

.

.

</SchemasURI>

</ParserAttributes>

</Init>

Figure 3: Initialization file example

4


