
A Universal Innocent Game Model for the
Böhm Tree Lambda Theory

Andrew D. Ker, Hanno Nickau, and C.-H. Luke Ong

Computing Laboratory, Parks Road, Oxford OX1 3QD, UK,
{Andrew.Ker, Hanno.Nickau, Luke.Ong}@comlab.ox.ac.uk.

Abstract. We present a game model of the untyped λ-calculus, with
equational theory equal to the Böhm tree λ-theory B, which is universal
(i.e. every element of the model is definable by some term). This answers
a question of Di Gianantonio, Franco and Honsell. We build on our earlier
work, which uses the methods of innocent game semantics to develop a
universal model inducing the maximal consistent sensible theory H∗. To
our knowledge these are the first syntax-independent universal models
of the untyped λ-calculus.

1 Introduction

We aim to construct a universal model (i.e. every element of the model is the
denotation of some term) of the pure untyped λ-calculus which induces the Böhm
tree λ-theory B, by building on the game models presented in [4]. Although the
general approach is innocent in the sense of [3] and [7], the two-player games we
use are simpler and can be considered a special case where moves are neither
questions nor answers but simply “declarations”. A notable feature of game
semantics is that the λ-definable strategies are effective methods for copying
moves uniformly from one “component” of the game to another. For example,
the identity strategy on an arena A ⇒ A is everywhere copycat i.e. P always
plays back every O-move (but in the opposite component of A). The key idea
is that the innocent strategies definable by untyped λ-terms are, what we call,
effectively almost-everywhere copycat (EAC). Informally this means that at every
position, except in response to finitely many possible O-moves, the strategy is
constrained to behave, from that point onwards, uniformly in an everywhere-
copycat fashion, just like the identity strategy. Effectively here means that (not
only is the strategy itself recursive but also) at every position, the boundary
of that finite part of the game tree in which the strategy is not forced to play
copycat must be computable.

We find it convenient to introduce innocent strategies in a concrete setting
whereby (tree) arenas are defined as subsets of N∗ of a certain kind, and this
we do in Sect. 2. Section 3 introduces the EAC strategies which give rise to
a universal λ-model DEAC whose theory is the maximal consistent sensible λ-
theoryH∗. The definition of such strategies uses an efficient encoding of innocent
strategies, as partial functions from N

∗ to tuples of numbers, which we call

economical form. Sections 2 and 3 should be regarded as a survey of [4], and
this paper is a sequel to that work. The notion of EAC strategies has a natural
extension to explicitly and effectively almost-everywhere copycat. However finding
an ambient cartesian closed category for these strategies to inhabit proved to be
a painful process as we briefly show in Sect. 4 – the natural analogues fail to
work quite as intended. Once this has been overcome we use a reflexive object to
describe a λ-algebra which we callM. We formulate a new version of the powerful
Exact Correspondence Theorem of the earlier work, with which we can show that
M is a universal λ-model which induces the intended equational theory. To our
knowledge, DEAC and M are the first syntax-independent universal λ-models.

In [2], Di Gianantonio et al. have obtained game models of the untyped λ-
calculus using history-free strategies. They show that all their models induce
the same λ-theory H∗ and have asked for “new techniques for overcoming this
apparent rigidity of game λ-models”. This paper answers that question by con-
structing a universal game model for the Böhm tree lambda-theory.

2 Arenas and Innocent Strategies

This section and the next give a quick introduction to the basic ideas underpin-
ning the main result of the paper. We refer the reader to [4] for further details
and to [3] and [5] for proofs of all results quoted. We define an arena to be a
finite tuple of nonempty trees of moves. The root of each tree is called an initial
move. Our trees are considered “upside-down” with the root at the top, rather
like family trees. We can also refer to the child of a node, and say that one node
inherits from another, in the same vein. We say that moves at an even depth
of the trees (including the roots at depth 0) are O-moves, and moves at an odd
depth are P-moves. O-moves are often denoted by • and P-moves by ◦.

We will only be interested in countably branching, countably deep trees. Thus
we can encode each tree of the arena as a subset of N∗1 by inductively labelling
the root as ε and the nth child of the move s as s · n (we use the notation s, t
etc. to denote sequences). Hence each move of each tree is associated uniquely
with a sequence of natural numbers. Conversely, given any subset A ⊆ N∗ which
is prefix-closed and has the property that whenever s·n ∈ A we have s·m ∈ A for
each m ≤ n, we can form an arena of one tree where the moves are the elements
of A, ordered by prefix. Henceforth by arenas, we shall always mean arenas in
sequence-subset (of N∗) form. For example, the empty sequence 〈〉 is an arena,
which we call the empty arena; 〈{ ε }〉 is the minimal one-tree arena consisting
of a root node; the maximal one-tree arena, consisting of an infinitely deep,
infinitely branching tree, is 〈N∗〉. As the empty arena, the minimal and maximal
one-tree arenas are important, we shall name them E,M and U respectively.

There are two major constructions for forming arenas. Suppose A = 〈A1, . . . ,
Am〉 and B = 〈B1, . . . , Bn〉 are arenas.

– The product arena A×B is the “disjoint union” of the trees of A and B, the
concatenation of their tuples. Formally A×B = 〈A1, . . . , Am, B1, . . . , Bn〉.

1 We do not include 0 in the set N, and write N0 for N ∪ { 0 }.

– The function space arena A⇒ B is constructed as follows: the initial moves
of A ⇒ B are those of B; and to the tree below each such initial move, we
graft onto it a copy of A. More precisely A⇒ B = 〈C1, . . . , Cn〉 where

Ci = { ε } ∪ { a · s | 1 ≤ a ≤ m ∧ s ∈ Aa } ∪ { (a+m) · s | a · s ∈ Bi }.

The reader may wish to check that M ⇒ M = 〈{ ε, 1 }〉, and that U ⇒ U and
U are equal as arenas.

A justified sequence of an arena A is a sequence of moves of which each
element except the first, which must be an initial move, is equipped with a
pointer to some previous move. We call the pointer a justification pointer and if
the move m− is pointed to by m we say that m− justifies m. We say that a move
m− in a justified sequence hereditarily justifies m if one can reach m− from m
by repeatedly following justification pointers. A justified sequence s is said to
be well-formed if elements of s alternate between P-moves and O-moves and if
m ∈ s is justified by m− then the move m is directly beneath m− in the tree of
the arena2. Henceforth all justified sequences are assumed to be well-formed.

The P-view of a justified sequence s, written psq, is given recursively by:

pεq = ε for initial moves ε
ps ·mq = psq ·m for m a P-move

ps ·m− · t ·mq = psq ·m− ·m for m an O-move justified by m−

The definition of O-view, xsy, is given analagously.
A legal position of an arena A is a well-formed justified sequence s satisfying

the visibility condition: for each non-initial P-move m justified by m−, say s =
t1 ·m− · t2 ·m · t3, we have that m− ∈ pt1 ·m− · t2 ·mq. Similarly all O-moves
are justified by P-moves appearing in the O-view up to that point. Then if s is a
legal position then so are psq and xsy. By a P-view of an arena A, we shall mean
a justified sequence which is the P-view of some legal position of A.

Lemma 1 (View Characterisation). A justified sequence of an arena A is a
P-view if and only if it is well-formed and every non-initial O-move is justified
by the immediately preceding P-move.

Within arenas there are games played out between P and O. A P-strategy
σ for a single-tree arena A consists of a prefix-closed subset of legal positions
of A which is deterministic (if s ·m ∈ σ and s ·m′ ∈ σ for P-moves m and m′

then m = m′) and such that if s · m ∈ σ for a P-move m and s · m · m′ is a
legal position of A then s · m · m′ ∈ σ. An O-strategy is defined analogously.
However we are more often interested in P-strategies which we will usually just
refer to as strategies. For a general arena A = 〈A1, . . . , An〉 a P-strategy is an
n-tuple of P-strategies, one for each tree. In contrast, an O-strategy is just a
single O-strategy on one of the trees, together with information which selects
that tree.
2 The no-dangling-question-mark condition in [3, 7] (equivalently the well-bracketing

condition) is redundant for our arenas.

If we have strategies σ and τ on arenas A ⇒ B and B ⇒ C respectively
then we can form their composite strategy σ; τ on A ⇒ C. Informally we do
this by identifying O/P-moves of the B component of A ⇒ B with P/O-moves
of the B component of B ⇒ C, and then hiding all the moves in B. This is
reminiscent of CSP’s “parallel composition” and “hiding” operators; see [4] for a
formal definition. Similar ideas extend to arenas of multiple trees. An essentially
straightforward result, although tedious in proof, is that composition is well-
defined and associative. We will only be interested in strategies with a property
called innocence.

A P-strategy σ is innocent if for odd-length legal positions s and t and P-
moves m, s ·m ∈ σ ∧ t ∈ σ ∧ psq = ptq→ t ·m ∈ σ and the moves m are justified
by moves which are identical in the P-view psq = ptq. i.e. P’s next move, and
its justification, at each stage depends only on the P-view up to that point. An
important fact is that composition of innocent strategies is well-defined (for a
proof see [3, §5.3]): if σ is an innocent strategy on A ⇒ B and τ an innocent
strategy on B ⇒ C then σ; τ is an innocent strategy on A⇒ C.

The property of innocence means that such a strategy is determined by a par-
tial function from odd-length P-views to justified P-moves i.e. P-moves equipped
with a justification pointer back into the P-view. In fact, given an innocent strat-
egy σ, we can define a canonical such function, which we write fσ, that defines
it. A function constructed in this way is called innocent and we can formalise
such functions. We say that f is an innocent function if f is a partial function
from odd-length P-views in A to justified P-moves of A such that dom(f) is
closed under odd-length prefix, and if s ·m ·m′ ∈ dom(f) then f(s) = m. We
note that such a function can only encode an innocent strategy. The conditions
given are required to make the function “strategic”, i.e. the set of legal positions
it describes are prefix-closed, deterministic and made up of properly justified se-
quences of moves. These conditions are sufficient to allow us to define the reverse
construction of a unique strategy σf from an innocent function f such that the
construction is invertible (i.e. fσf = f and σfσ = σ) and it preserves and reflects
inclusion (i.e. f ⊆ f ′ ⇐⇒ σf ⊆ σf ′). Thus we can identify the representation
by innocent function and that by subset of legal positions.

An innocent strategy is said to be compact if the graph of its innocent function
is finite (i.e. is defined on finitely many P-views). It is said to be recursive
if the innocent function representing it is recursive. It is easy to see that the
composition of two recursive innocent strategies is itself recursive.

Definition 1. Objects of the Category of Arenas and Innocent Strategies, A, are
arenas (in sequence-subset form); morphisms f : A→ B are innocent strategies
on the function space arena A ⇒ B. Composition of morphisms is composition
as strategies. The Category of Arenas and Recursive Innocent Strategies, AREC,
has recursive arenas as objects and recursive innocent strategies as morphisms.

Theorem 1. A and AREC are both cartesian closed.

The terminal object 1 of both A and AREC is the empty arena E, and the
categorical constructions of product and function space are exactly the respective

arena constructs. The category A is enriched over dI-domains. One cannot say
the same of AREC, because the computable partial functions do not form a
cpo. For example, one can “approximate” the Halting Problem by computable
functions.

Scott has observed that every λ-algebra arises from a reflexive object R in
some cartesian closed category C; that is, there exist morphisms Fun : R →
[R ⇒ R] and Gr : [R ⇒ R] → R such that Gr ; Fun = id[R⇒R]. Thus we
may specify a λ-algebra by a 4-tuple 〈C, R,Fun,Gr〉 (it is in fact a λη-algebra if
Fun ; Gr = idR); the underlying set of the λ-algebra is the set C(1, R) of global
sections. If the reflexive object R has enough points (i.e. ∀ f, g : R → R.[∀ r :
1 → R.r ; f = r ; g] → f = g) then 〈C, R,Fun,Gr〉 is a λ-model (i.e. a weakly
extensional λ-algebra). We refer the reader to [1] for a comprehensive treatment
of the model theory of the untyped λ-calculus.

Recall that the arena U has the key property that U = U ⇒ U so that in this
case the morphisms Fun and Gr are both the identity on U . We can now define
the first two of our game λ-algebras (which are both λη-algebras): 〈A, U, idU , idU 〉
which we shall write simply as D, and 〈AREC, U, idU , idU 〉 which we shall write as
DREC. By abuse of notation, we shall use D and DREC to denote the respective
underlying sets. Clearly DREC ⊂ D. By a method of approximation we can show
that both the λη-algebras are sensible i.e. all unsolvable λ-terms have the same
denotation which in this case is given by the everywhere undefined innocent
function.

3 Effectively Almost-Everywhere Copycat Strategies

There are three properties that allow for a more compact representation of an
innocent strategy:
(i) Each non-initial O-move in any P-view must be a child of the previous move,

and the initial move must be ε.
(ii) Given only the O-moves of a P-view and the value of the innocent function

on strictly shorter P-views we can reconstruct the original P-view entirely.
(iii) The P-move to which this P-view is mapped must be a child of the move

justifying it.
In view of these redundancies, we encode innocent strategies σ, over any single-
tree arena, as (partial) maps from N

∗ to N× N0 (where N0 = {0, 1, 2, · · ·}). We
call this encoding the economical form of σ and sometimes write it eσ (quite
often we abuse notation and write it fσ too). It is defined as follows:

eσ : 〈v1, . . . , vn〉 7→ (i, p) if and only if

fσ :
•
ε
◦
s1

•
s1v1

◦
s2

•
s2v2

· · · ◦
sn−p

•
sn−pvn−p

· · · ◦
sn

•
snvn

7→ ◦
sn−p(vn−pi)

� �
Justification pointers in the P-view can be deduced from the behaviour of fσ on
shorter P-views, and so have been omitted. Note that each si is a sequence of
natural numbers.

Furthermore, we can expand any partial function f : N∗ ⇀ N×N0 which has
prefix-closed domain and satisfies f(v) = (i, p)→ 0 ≤ p ≤ |v| into an innocent
strategy on U . Depending on the function, we might not need the whole of U
to contain the strategy. We could extend this idea for multiple-tree arenas, but
since we will not use it except on the arena U there is no need to do so.

Example 1. The following is the innocent function of the “copycat” strategy idU :

•
ε

◦
1

7→
� �

•
ε
◦
1
•
1a

◦
(a+1)

7→
� �

•
ε
· · · •

(a+1)s
◦

1as
•

1asb
◦

(a+1)sb
7→

� �
•
ε
· · · •

1as
◦

(a+1)s
•

(a+1)sb
◦

1asb
7→

� �
Here s range over sequences of appropriate parity, a and b over positive natural
numbers. The reader is invited to check that the economical form of this strategy
is given by: ε 7→ (1, 0), i 7→ (i+ 1, 1) and for nonempty sequences v, vi 7→ (i, 1).

A principle of the λ-calculus is that a term can be applied successively to any
other term. So the term λx.x (say) is really more like “λxz0z1z2 . . .•xz0z1z2 . . .”
(we use a large dot • to make the “end” of the infinite chain of abstractions really
clear). Thus there is some notion of infinite η-expansion. If we think about the
denotation of λx.x in the game models, it is similarly expanded — it copies the
whole of the first subtree to the rest of the arena, as if copying not only the
x variable but also all of its arguments. This correspondence turns out to be
general, and can be made precise by relating innocent strategies in economical
form to a kind of (infinitely) η-expanded Böhm trees first studied by Nakajima
in [6]. We call a formal connexion of this form an Exact Correspondence Theorem.

For a λ-term s the Nakajima tree of s, written NT(s), is (informally) the
countably branching, countably deep tree labelled as follows. If s is unsolvable
then NT(s) =⊥, the empty tree. If s has HNF λx1 . . . xn • ys1 . . . sm then

NT(s) = λx1 . . . xnz0z1 . . . • y

NT(s1) · · · NT(sm) NT(z0) NT(z1) · · ·

((((((((((
�
���
A
A
PPPPP

where z0, z1, . . . are countably many fresh variables. The process of finding such
fresh variables given in [6] is quite complicated. In [4] we propose a variable-free
representation of Nakajima trees so that for a closed term s, NT(s) is represented
as VFF(s), a partial function from N

∗ to N×N0. Note that the “infinitely nested”
λ-abstractions of the form λz1z2 . . .•y, which label the nodes of a Nakajima tree
(of a closed term), can be coded as a pair (i, r) whereby the head variable y
is the ith in the infinite list of variables bound by the λ-abstraction situated r
levels up in the tree. The map VFF(s) is just a function that maps occurrences
(of nodes) to such labels encoded as pairs of numbers.

The theorem of key importance in [4] is the Exact Correspondence Thoerem,
which states that for every closed λ-term s, the innocent strategy denoting s (in
both D and DREC) given in economical form is exactly VFF(s), the Nakajima
tree of s in variable free form.

Example 2. We now introduce example terms and strategies which we will use
repeatedly to illustrate many of the concepts in the rest of the paper. Consider
the terms I = λx.x and 1 = λxy.xy. The reader may wish to verify that the
following represents the first two levels of the Nakajima trees of those terms:

NT(I) = λxz0z1 . . . • x

λu • z0 λv • z1 λw • z2· · ·

!!!!
�
�
HHHH

NT(1) = λxyz0z1 . . . • x

λu • y λv • z0 λw • z1· · ·

!!!!
�
�
HHHH

After renaming of bound variables, these are the same. Since I and 1 differ only
by η-conversion, this should be no surprise. Thus we can calculate their common
variable-free form, the first two levels of which is:

(1, 0)

(2, 1) (3, 1) (4, 1) · · ·

!!!!
�
�
HH
HH

For example, the node labelled (2, 1) means that the head variable of the corre-
sponding node in the Nakajima tree is found as the second in the list of variables
abstracted at the node one level above. The Exact Correspondence Theorem
tells us that [[I]] = [[1]] has the economical form which is given (in part) by
ε 7→ (1, 0), 〈1〉 7→ (2, 1), 〈2〉 7→ (3, 1) and so on.

We say that a λ-algebra is universal if every element is the denotation of some
λ-term. By the Exact Correspondence Theorem, it is easy to see that neither D
nor DREC is universal, since no non-trivial compact innocent strategy can be the
denotation of any λ-term (note that the only finite Nakajima tree is the single-
node tree ⊥). Our aim in the rest of this section is to characterise the definable
parts of DREC, and we shall do so by capturing the right ambient CCC.

Notation For tree-like A ⊆ N∗ (i.e. those subsets which are prefix-closed and
satisfy s · n ∈ A→ s ·m ∈ A for all m < n) and for any s ∈ A we define

A@ s = the subtree of A rooted at s
A>m = the tree obtained from A by deleting the first m branches.

For example, for the maximal single-tree arena U , we have U @ s = U = U>n

for all sequences s and numbers n. Next fix an innocent strategy in economical
form f and let v ∈ dom(f). We shall use the following shorthand:

mo
f (v) = the last move of the P-view encoded by v

mp
f (v) = the response of σf at the P-view.

Note that the former is by definition an O-move and the latter a P-move. We omit
the superscript f wherever it is clear which strategy is intended. For example,
for any innocent strategy f the O-move mo(ε) is the initial move ε and mp(ε)
is the first P-move made by σf in response. Now we can define a new property
of strategies:

Definition 2. Consider an innocent strategy in economical form f : N∗ → N×
N0, over some single-tree arena A. We say that f is everywhere copycat (EC)
at v ∈ N∗ if f is undefined at v or the following hold:

(i) The arenas A@ mo(v) and A@ mp(v) are order-isomorphic (with respect
to the prefix ordering).

(ii) Whenever w ≥ v we have that for all i ∈ N f(w · i) = (i, 1).
(iii) If f(v) = (i, p) then p > 0.
We say that f is almost-everywhere copycat (AC) at v if f is undefined at

v or there exist numbers tv ∈ N0 and ov ∈ Z with ov ≤ tv called the copycat
threshold and offset respectively, such that

(i) The arenas (A@ mo(v))>(tv−ov) and (A@ mp(v))>tv are isomorphic.
(ii) For all i > tv, f(v · i) = (i− ov, 1) and f is everywhere copycat at v · i.
(iii) For all w ≥ (v ·k) with k ≤ tv, if f(w) = (i, |w| − |v|) then i ≤ tv−ov.
(iv) If f(v) = (i, 0) then i ≤ tv − ov.
(Note that f is EC at v if and only if f is AC at v with tv = ov = 0.)
Finally, we say that f is effectively almost-everywhere copycat (EAC) if f is

computable, almost-everywhere copycat at every sequence on which it is defined
and the functions v 7→ tv and v 7→ ov are computable. A strategy σ over an arena
A is EAC if its innocent function is EAC, and we can generalise to multiple-tree
arenas in the usual way.

To illustrate the definition of everywhere copycat strategies, suppose f is de-
fined at v. Intuitively we say that f is everywhere copycat at v if, from mp(v)
onwards, f ’s behaviour is simply to play copycat for as long as the arena will
allow it. So if O’s move is mi, the ith child of the justifying move m, then P
responds with the ith child of the move immediately preceding m in the P-view.
Condition (i) in the definition guarantees that P’s copycat move will always be
available. As before we will primarily be interested in strategies on U . Since
U @ s = U = U>n for all sequences s and numbers n, Condition (i) will always
hold. Condition (ii) is best understood with reference to the Exact Correspon-
dence Theorem which relates innocent strategies to Nakajima trees. It specifies
that the subtree of the Nakajima tree corresponding to f , rooted at v, has the
following shape:

λx1x2 . . . • y

NT(x1) NT(x2) · · ·

�
���
B
B

Condition (iii) of the definition is a technicality, which ensures that the variable
y is not one of the xi.

Definition 3. The category of arenas and EAC strategies, AEAC, has recursive
arenas as objects and EAC strategies on A⇒ B as morphisms from A to B.

A main result in [4] is that the category AEAC is well-defined; the proof that
EAC strategies compose is highly technical. In fact,

Theorem 2. AEAC is cartesian closed.

The arena U is still an object of AEAC and still equal to its function space.
Thus we can define a λη-algebra 〈AEAC, U, idU , idU 〉 which we shall denote by
DEAC. Properties of DEAC will be presented later.

4 Effectively and Explicitly Almost-Everywhere Copycat
Strategies

We wish to find a new game model which invalidates the rule of η-conversion.
To do so, we would require the terms I and 1 to be denoted differently. They
have the same variable-free form of Nakajima tree, so it is not apparent how this
might be achieved. The key is to make use of the fact that the copycat thresholds
are not unique — any number greater than a given valid copycat threshold is
also a valid copycat threshold. Different thresholds (at some P-view) may be
used to distinguish I and 1.

This idea is prompted by the observation that when one compares a term
with its denotation, the part of the EAC strategy which is specified by the rules
of copycat corresponds precisely to the part of the Nakajima tree which has been
generated by η-expansion (i.e. the part of the tree with the fresh variables as the
head variables). Recall the Nakajima trees of I and 1 — the former has fresh
variables appearing at every node except the root, whereas the latter is similar
except that there is not a fresh variable at the first child of the root. Therefore
we aim to find a model where I and 1 are represented by the strategy with the
same moves, but the copycat threshold of [[I]] at the first P-view is 0, whereas
that of [[1]] is 1.

However, the definition of an EAC strategy is stated in terms of the existence
of some computable function which associates a pair of numbers to each P-view
of the strategy and this function is not specified along with the strategy. (A
consequence of this is that there is no computable procedure for finding valid
thresholds for an EAC strategy.) It is really the thresholds (rather than the
offsets) that are important because, for a certain P-view v of an EAC strategy
σ, the copycat threshold t gives enough information to compute the offset o
directly. This motivates the following definition:

Definition 4. An effectively and explicitly almost-everywhere copycat strategy
(EXAC strategy) is given by a pair 〈σ, tσ〉, where σ is an EAC strategy and tσ
is an effective function mapping the P-views where σ is defined to valid copycat
thresholds. We sometimes write the EXAC strategy 〈σ, tσ〉 just as σ.

We will usually refer to the first and second part of an EXAC strategy as
the “(underlying) EAC strategy (part)” and the “threshold function (part)”,
respectively. In view of our comments above, however, we will sometimes speak
of the offsets as if they too are specified by the threshold function.

This definition allows us to make the intended finer distinction between
strategies: two strategies with the same moves must be equal as EAC strate-
gies, but may have different copycat thresholds and so can be distinguished as
EXAC strategies. There is an obvious forgetful map from EXAC strategies to

EAC strategies, which takes only the strategy part (i.e. erasing the threshold
information).

In a similar vein to the economical form of innocent strategies, using the
same encoding of a P-view as a sequence of natural numbers, we can give an
economical form of EXAC strategies over single-tree arenas. We can also take
advantage of the fact that parts of the strategy are completely dictated by its
copycat nature. Let us say that a P-view is entirely explicit if none of the O-
moves in it exceed the copycat threshold of the P-view at which they are made.
Thus if a P-view is not entirely explicit the ensuing move can be deduced from
the threshold and offset of the P-view preceding the first O-move in it which did
exceed the copycat threshold.

Definition 5. The economical form of an EXAC strategy is a map from N
∗ to

N×N0 ×N0 × Z. The domain is the encoding of P-views in the usual way. The
map is defined at a sequence v only if the P-view encoded by v is entirely explicit,
in which case

v 7→ (i, r, t, o)

where the resulting P-move is encoded as before — it is the ith child of the move
2r from last of the P-view — and the copycat threshold and offset at this P-view
are t and o respectively.

Example 3. We take the EXAC strategies η0 and η1 to be 〈[[I]], t0〉 and 〈[[1]], t1〉,
where t0 maps every P-view to the threshold 0 and t1 does likewise except that
the minimal P-view is mapped to the threshold 1. Since [[I]] = [[1]], they have
the same EAC strategy part, but different threshold functions. These are the
suggestions we made for the denotations of I and 1 in a model not support-
ing η-conversion. Nearly every P-view of either is not entirely explicit, and the
respective economical forms are given by:

ε 7→ (1, 0, 0,−1) and ε 7→ (1, 0, 1,−1)
〈1〉 7→ (2, 1, 0, 0)

We now need a method to compose EXAC strategies. Of course the EAC
strategy part will just be the standard composition of innocent strategies, and
we give below an algorithm for computing the composition of the threshold
functions.

Algorithm (The Composition Algorithm). Let 〈σ, tσ〉 be an EXAC strat-
egy over A⇒ B, and 〈τ, tτ 〉 be an EXAC strategy over B ⇒ C. Take a P-view v
on which the strategy σ; τ (which is given by the usual composition of innocent
strategies) is defined and suppose that the last move of the P-view is m and the
resulting move is m.

We write u = u(v, σ, τ) for the uncovering of the composition up to the move
m. A formal definition can be found in [3] or [4], but we may describe it as the
sequence of moves of the composition which result after the P-view v, including
any relevant B-moves which would be hidden by the composition. It will be of
the form 〈ε, . . . ,m,m1,m2, . . . ,mp−1,mp,m〉.

The moves mi are the intermediate interactions which might have taken place
between σ and τ before the move m became the visible outcome, and are all in
the arena B. Possibly there are no such intermediate moves, in which case p = 0.
We do not care about justification pointers, and for tidiness set m0 = m and
mp+1 = m.

For 1 ≤ i ≤ p + 1 we consider the P-view ui that the strategies σ or τ are
faced with when the move mi was made. (For details on how one may define such
a P-view precisely see [4] or [5]). Define ti and oi to be the copycat threshold
and offset of σ, or τ as appropriate, at the P-view ui. These are specified by tσ
or tτ . Then set:

t′i = ti + |A| , if mi is a root of the arena B
ti, otherwise

o′i = oi + |A| , if mi is a root of the arena B
oi, otherwise

T1 = t′1
O1 = o′1

Ti+1 = max(Ti + o′i+1, t
′
i+1)

Oi+1 = Oi + o′i+1

t = Tp+1

o = Op+1 − |A| + |B| , if m is a root of the arena C
Op+1, otherwise

(By |A| we mean the number of trees in the arena A). Then t and o are the
copycat threshold and offset of the composition 〈σ, tσ〉; 〈τ, tτ 〉 at the P-view v.

Now we must show that this method does indeed produce an EXAC strategy,
i.e. that the composite threshold function specifies valid thresholds and offsets
for the composite strategy. In fact it does so only under some restrictions, for
which we need an additional definition.

Definition 6. Let σ be an EAC strategy over a single-tree arena. If σ has a
first move, then it has a copycat threshold and offset, say t and o, at the P-view
consisting only of the root O-move (we call this P-view the minimal P-view).
The l-number of σ is the value t− o, and we write it l (σ).

If σ = 〈σ1, . . . , σn〉 is an EAC strategy over an arena with n trees, and defined
on at least one of the minimal P-views, then we say l (σ) = minni=1,σi 6=⊥{l (σi)}.

This is termed the l-number of σ because, as will eventually be shown, it
corresponds to the number of λ-abstractions at the root of the Böhm tree of
the term whose denotation is σ. For example l (η0) = 1 and l (η1) = 2, and we
will be able to show that η0 is the denotation of λx.x and η1 the denotation of
λxy.xy.

Theorem 3. If σ : A ⇒ B and τ : B ⇒ C are EAC strategies satisfying
l (σ) ≥ |A| (or σ is everywhere undefined) and l (τ) ≥ |B| (or τ is everywhere
undefined) then Algorithm 4 produces valid copycat thresholds and offsets for
σ; τ .

There is an “obvious” category, which derives directly from the conditions
required for the composition algorithm to work correctly.

Definition 7. The category of arenas and EXAC strategies, written AEXAC,
has recursive arenas as objects, and the morphisms from A to B are the EXAC
strategies on the arena A⇒ B which have l-number greater than or equal to |A| ,
or are everywhere undefined. The identity morphism on A is the EXAC strategy
〈idA, 0〉, i.e. the copycat threshold is zero everywhere.

One can show that this does indeed specify a category. Also, AEXAC has the
obvious terminal object — the empty arena E — and products given in the
usual way. However, AEXAC does not form a CCC with the usual constructions,
as the following example shows:

Example 4. Suppose that σ : A×B → C. Then we know that l (σ) ≥ |A| + |B| .
We need a morphism Λ(σ) : A → B ⇒ C, which must have l-number at least
|A| , so we could take Λ(σ) to be the same EXAC strategy as σ. However this
choice may not be unique. For example, consider η0 and η1 as defined earlier in
this section. One can verify that both η0 and η1 can be considered as morphisms
U → U ⇒ U and that in this case η0× idU ; evalU,U = η1× idU ; evalU,U : U×U →
U , and that this is the same as the morphism U×U → U described by η1. Hence
there are two candidates for Λ(η1).

It is not clear that AEXAC forms a CCC with any unusual function space
constructions either.

If we try to fix the definition of AEXAC, by cutting down the homsets some
more, it becomes clear that one must also specify minimum copycat thresholds
at the minimal P-views, along with minimum l-numbers. The obvious solution
still does not work, and we can repeat the fixing-up process to obtain a sequence
of failures — each is either not a category at all because identities fail to work
properly, or has a non-uniqueness of curried morphisms as above.

We now present a new category based on EXAC strategies, which does form
a CCC. Although it does appear to be much more complicated than the “almost-
CCC” AEXAC, it seems to be the natural limit of the fixing-up process.

Firstly let us write br(A) for the number of branches of a tree at the root
(assuming that this is finite). Then we can write br(A@m), for any move m of
a finitely-branching forest A, to mean the number of direct children of m in A.
Then we make the following definition:

Definition 8. Let A be an arena and X a finitely-branching subarena3 of A.
We say that an EXAC strategy σ over A is X-explicit if the following holds:

Let σ : v 7→ (i, r, t, o) be the economical form of any clause of the innocent
function. Suppose that the sequence v codes a P-view ending in the O-move m,
and that the consequent P-move encoded by this clause is m. Then:

(i) if m is in the subarena X then t− o ≥ br(X @m),
(ii) if m is in the subarena X then t ≥ br(X @m).

3 We say that the arena A = 〈A1, · · · , Am〉 is a subarena of B = 〈B1, · · · , Bn〉 if m = n,
and for each i, Ai is a subset of Bi. We say that an arena is finitely-branching if
every tree in it is finitely-branching

An intuitive description of this definition is the following: The subarena X
determines a part of the arena A where the strategy is known to be explicitly
defined, i.e. moves in X are neither in the “domain” nor the “range” of auto-
matic copycat forced by the threshold information of σ. This means that given
a strategy σ over A which is X-explicit, any P-view of σ with moves only in X
is entirely explicit.

Definition 9. The category XAEXAC, or simply XA, is given by the following:
objects are pairs (A,X) consisting of a recursive arena A and a finitely-branching
recursive subarena X; a morphism σ : (A,X) → (B, Y) is an EXAC strategy
on A ⇒ B which is (X ⇒ Y)-explicit. Composition of morphisms is compo-
sition of EXAC strategies, and the identity strategy on (A,X), id(A,X), is the
EXAC strategy 〈idA, t〉, where idA is the EAC identity strategy on A, and t is the
function that takes the least value on every P-view which still leaves the EXAC
strategy 〈idA, t〉 as (X ⇒ X)-explicit.

The fact that the composition algorithm gives valid thresholds and offsets
for EXAC strategies satisfying these conditions comes from Theorem 3 — a
morphism σ : (A,X) → (B, Y) is (X ⇒ Y)-explicit, and X has the same
number of trees as A, so in particular l (σ) ≥ |A| .

Theorem 4. XA forms a CCC with the following constructions: the terminal
object 1 is (E,E), where E is the empty arena; the product (A,X)×(B, Y) is (A×
B,X×Y), with the threshold functions for projections specified in the same style
as identities; the exponential object (A,X) ⇒ (B, Y) is (A ⇒ B,X ⇒ Y), and
the evaluation map eval(B,Y),(C,Z) is the same EXAC strategy as id(B,Y)⇒(C,Z).

Now that we have found an ambient CCC for the EXAC strategies, we can
construct another λ-algebra based on it. In this category, however, the reflexive
object is not isomorphic to its function space — exactly as we would hope for a
model invalidating η-conversion.

Let us write U0 for the object 〈U,M〉 of XA, and U1 for the object U0 ⇒ U0.
Here U and M are the maximal and minimal single-tree arenas described in
Sect. 2. We define morphisms F : U0 → U1 and G : U1 → U0 to both be given
by the EXAC strategy η1 (the definition of which can be found in Sect. 4). It
is straightforward to check that this does give proper morphisms, and that they
satisfy G;F = idU1 and F ;G 6= idU0 .

Hence we can identify a new λ-algebra 〈XA, U0, F,G〉 which invalidates the
rule of η-conversion; we denote this λ-algebra M. By erasing all threshold in-
formation, we can reduce M to (a subset of) D and deduce that M is also
sensible.

In the same way that the denotation of a term in the modelDEAC had a strong
connection with its Nakajima tree, the denotation in M corresponds closely to
(a variable-free version of) the Böhm tree. The variable-free form of the Böhm
tree of a term is similar to the construction VFF mentioned earlier and defined
in [4], but it includes extra information describing how many abstractions there
are at each node, and how many children.

Definition 10. For a (N× N0 × N0 × Z)-labelled tree p the tree p∗ is the same
tree labelled identically, except that nodes at depth d labelled (i, d + 1, t, o) are
relabelled (i, d+ 2, t, o).

Similarly the tree { p }n, for n ∈ N0, is labelled identically except that firstly
the node at the root (i, r, t, o) is first relabelled to (i, r, t, o − n), and then nodes
of depth d are relabelled as follows:

(i) those labelled (i, d, t, o) are relabelled (i+ n, d, t, o);
(ii) those labelled (i, d+ 1, t, o) for i ≤ n are relabelled (n− i+ 1, d, t, o);
(iii) those labelled (i, d+ 1, t, o) for i > n are relabelled (i− n, d+ 1, t, o).
For a term s with free variables within ∆ the variable-free form of the Böhm

tree of s, VFBT∆(s), is the following (N× N0 × N0 × Z)-labelled tree:

VFBT∆(s) = ⊥, the empty tree, for unsolvable s.

VFBT∆(λx1 . . . xn • s) = {VFBT∆·〈x1,...,xn〉(s) }n,
if s is of the form vjs1 . . . sm.

VFBT∆(vjs1 . . . sm) = (j, 1,m,m)

VFBT∆(s1)∗ VFBT∆(sm)∗
���
HHH

where ∆ = 〈vk, . . . , v1〉 (note the reverse order).

Exactly as before we can show that, at each node of the Böhm tree of s, the
first two elements of the tuple at the corresponding node of VFBT(s) encode
the head variable by counting how many levels one goes up the tree, and how
many abstractions along, to find where the variable is abstracted. The third
component just counts the number of children at the node, and the fourth is
the number of children minus the number of abstractions. We choose to encode
the number of abstractions in this rather elliptic fashion in order to make the
following theorem easier to state:

Theorem 5 (Exact Correspondence for M). If s ∈ Λ with free variables in
∆ = 〈vk, . . . , v1〉 then [[s]]M∆ = {VFBT∆(s) }k when the former is considered as
an EXAC strategy in economical form and the latter as a labelling function.

In particular for closed terms s, [[s]]ε = VFBTε(s)

Example 5. Although it is hard to see directly, the given definition of VFBT
does work as intended. One may check that VFBT(I) and VFBT(1) are:

(1, 0, 0,−1) and (1, 0, 1,−1)

(2, 1, 0, 0)

The node λxy.x, in the Böhm tree of 1, corresponds to the node of VFBT(1)
labelled (1, 0, 1,−1), which is so labelled because the head variable is the first
abstracted variable zero levels up the tree (namely x), the node has one child,
and the number of abstractions at this level is 1− (−1) = 2. The Exact Corre-
spondence Theorem gives us the economical forms of [[I]] and [[1]] which, as we
hoped, are the EXAC strategies η0 and η1 described earlier in this section.

The Exact Correspondence results are of key importance in examining the
local structure of the game models. In [4] we use them, and a powerful result
which we call the Separation Lemma, to obtain proofs that DEAC is a universal
and order-extensional λ-model, with equational theory given byH∗ (the maximal
consistent sensible theory). The models D and DREC are neither universal nor
extensional, but do generate the same equational theory on terms.

In a similar way, we can use the Exact Correspondence Theorem for M to
prove the following:

Theorem 6. (i)M is universal i.e. every element is definable as the denotation
of some term of the λ-calculus. (ii) M is weakly extensional, so it is a λ-model
(for a discussion of weak extensionality see [1, §5]. (iii) M equates two terms
of the λ-calculus precisely when they have the same Böhm tree. Thus the local
structure of the model is the Böhm tree theory B.

5 Further Work

Although we succeeded in our aim to find a universal game model of B, there
are other questions which the work prompts. Firstly, one might ask if there is
a less syntactic way to arrive at DEAC from DREC, perhaps by some sort of
extensional collapse. In fact extensional collapse appears to be insufficient, and
further investigation would be of interest. In another direction, we can use D,
DREC, DEAC and M as very natural combinatory algebras which are in some
sense sequential. Therefore one might wish to study realizability models over
them. Finally, and more practically, we could examine the Böhm tree compo-
sition algorithm given by the game model: it is quite different from the usual
method in that it is “demand-driven” – for every node of the answer only the
relevant nodes of the composed trees are examined.

References

[1] Barendregt, H.: The Lambda Calculus, Its Syntax and Semantics. North-Holland,
revised edition, 1984.

[2] Di Gianantonio, P., Franco, G., Honsell, F.: Games Semantics for Untyped λ-
Calculus, Preprint, announced on the Types Mailing List. April 1998.

[3] Hyland, J. M. E, Ong, C.-H. L.: On Full Abstraction for PCF: I, II and III. To
appear in Information and Computation, 133 pages, ftp-able. 1994.

[4] Ker, A., Nickau, H., Ong, C.-H. L.: Game Models of Untyped λ-Calculus. Submit-
ted for publication, 49 pages, ftp-able. 1998.

[5] McCusker, G.: Games and Full Abstraction for a Functional Metalanguage with
Recursive Types. Cambridge University Press, 1998.

[6] Nakajima, R.: Infinite Normal Forms for the λ-Calculus. In Goos, G. and Hartma-
nis, J., editors, Symposium on λ-Calculus and Computer Science, LNCS 37, pages
62–82. Springer-Verlag, 1975.

[7] Nickau, H.: Hereditarily Sequential Functionals: A Game-Theoretic Approach to
Sequentiality. Dissertation, Universität GH Siegen. Shaker-Verlag, 1996.

