
Innocent Game Models of
Untyped Lambda Calculus

Andrew D. Ker

University College, Oxford

Submitted for the degree of Doctor of Philosophy,
Michaelmas Term 2000

Oxford University Computing Laboratory
Programming Research Group

Innocent Game Models of Untyped Lambda Calculus

Andrew D. Ker
University College, Oxford

Doctor of Philosophy, Michaelmas Term 2000

Abstract

This thesis is a detailed examination of the application of game semantics to con-
structing denotational models of the pure untyped λ-calculus. Game semantics is
a fairly recent technique, using a formal setting for interaction to model sequential
programming languages in an accurate way.

We use a modification of the “innocent” games first used to give a fully-abstract
syntax-independent model of PCF; the only difference is that in our setting the dis-
tinction between “question” and “answer” moves is removed. Many of the standard
results for PCF games carry through into this setting. Cartesian closed categories
of arenas and innocent strategies are constructed, leading to λη-algebras D and
DREC. By a method of approximation, these are shown to be sensible models (i.e.
all unsolvable terms are equated) but they contain many undefinable elements and
are not λ-models.

By introducing a new “economical” representation of innocent strategies we are able
to prove a precise syntactic connexion between a term and its denotation. This
leads to a new class of innocent strategies, the effectively almost-everywhere copycat
(EAC) strategies, which also inhabit a cartesian closed category and hence give
rise to a new λη-algebra DEAC. This is both sensible and universal: every element
is the denotation of some term. To our knowledge, other than term models, the
universality result is the first of its kind for the untyped λ-calculus. The equational
theory induced by the above game models is shown to be the same as that of Scott’s
D∞ models, the maximal consistent sensible theory H∗.

In contrast to D and DREC, DEAC is order-extensional. We give both a short
syntactic proof, and a longer semantic proof; the latter is of interest because it can
be extended to give a semantic proof and slight generalisation of Böhm’s Theorem.

Finally, we construct a game model which does not validate η-conversion. By intro-
ducing the effectively and explicitly almost-everywhere copycat (EXAC) strategies,
and (with some technical difficulties) constructing a cartesian closed category, we
define a sensible model DXA. Results analogous to those for the other game models
show that the local structure of DXA is the λ-theory B (which equates two terms if
and only if they have the same Böhm tree). DXA is universal, but not even weakly
extensional.

ii

Acknowledgements

I am greatly indebted to my supervisor, Luke Ong. He suggested the study of
game models for untyped λ-calculus in my first term as a graduate student, and
encouraged that project — initially a small one — to grow into this thesis. This
academic input has shaped the direction of my work. Additionally, I am very
grateful to him for support and advice away from academic matters; his help has
gone well beyond what one might expect of a supervisor.

Hanno Nickau has been my other co-author in the published parts of this work.
His input was of enormous help in clarifying the ideas presented here, and his hard
work and attention to detail has been of inestimable value. Dominic Hughes and
Guy McCusker gave me much of their time when I was beginning graduate study,
patiently explaining away some of my misconceptions.

The UK Engineering and Physical Sciences Research Council supported me fi-
nancially with a Research Studentship, and I am also grateful to Merton College,
Oxford, who augmented this support with a Senior Scholarship. The body of the
work presented here was completed while at Merton, although it was started and
finished at University College.

However this thesis also owes its existence to a large number of people who are
not computer scientists — my friends at Oxford. My fellow orchestral musicians,
musical administrators, choir members, and undergraduate contemporaries (who
put me to shame by being extremely faithful about keeping in touch) are far too
numerous to name. But their support was and is greatly valued, especially during
my difficult third year when full recovery from glandular fever seemed as if it would
never come. I owe you all a great deal.

iii

Vitäı Lampada

There’s a breathless hush in the close to-night —
Ten to make and the match to win —
A bumping pitch and a blinding light,
An hour to play and the last man in.
And it’s not for the sake of a ribboned coat.
Or the selfish hope of a season’s fame,
But his Captain’s hand on his shoulder smote
“Play up! play up! and play the game!”

The sand of the desert is sodden red —
Red with the wreck of the square that broke; —
The Gatling’s jammed and the colonel dead,
And the regiment blind with dust and smoke.
The river of death has brimmed his banks,
And England’s far, and Honor a name,
But the voice of a schoolboy rallies the ranks,
“Play up! play up! and play the game!”

This is the word that year by year
While in her place the School is set
Every one of her sons must hear,
And none that hears it dare forget.
This they all with joyful mind
Bear through life like a torch in flame,
And falling fling to the host behind —
“Play up! play up! and play the game!”

Sir Henry Newbolt

To the memory of my grandfather, Henry Dixon, who taught me the
above poem and a great deal more.

Contents

Abstract . i

Acknowledgements . ii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Prerequisites . 4

1.3 Overview . 4

1.4 Notation . 7

1.5 The Untyped λ-Calculus . 8

1.6 Model Theory of the Untyped λ-Calculus 16

2 Games, Innocence, and the Model D 21

2.1 Arenas, Views and Legal Positions 21

2.2 Strategies and Composition . 28

2.3 Innocent and Recursive Innocent Strategies 32

2.4 λ-Algebras in Categories of Innocent Strategies 36

2.5 Properties of D and DREC . 40

3 Effectively Almost-Everywhere Copycat Strategies and the Model
DEAC 43

3.1 Innocent Strategies in Economical Form 44

3.2 Nakajima Trees and Variable-Free Form 45

3.3 Exact Correspondence and Local Structure 50

3.4 Effectively Almost-Everywhere Copycat Strategies 54

3.5 The Model DEAC . 60

3.6 The Separation Lemma . 63

3.7 Consequences of the Separation Lemma 67

3.8 Böhm’s Theorem . 72

iv

CONTENTS v

4 Explicit EAC Strategies and the Model DXA 76

4.1 Specifying Copycat Thresholds . 76

4.2 Composition of EXAC Strategies 78

4.3 The Category AEXAC . 86

4.4 The Category XA . 88

4.5 The Model DXA . 94

4.6 Böhm Trees in Variable-Free Form and Exact Correspondence . . . 96

5 Conclusions 105

5.1 Connexions with Other Work . 105

5.2 Further Directions . 106

Index 113

Bibliography 116

Chapter 1

Introduction

This thesis is a detailed study of the use of game semantics for denotational models
of the pure untyped λ-calculus.

1.1 Background and Motivation

We begin with a brief look at the history of the untyped λ-calculus and game
semantics, concentrating on game models of languages closely related to the un-
typed λ-calculus. For details, and a survey, of other models of untyped λ-calculus,
see [Bar84].

The pure untyped λ-calculus arose in the work of Church [Chu32] and in an al-
ternative form as combinatory logic due to Schönfinkel [Sch24] and Curry [Cur30].
Originally from the borders of foundations of mathematics and philosophy, the λ-
calculus has become an important tool for theoretical computer science, embodying
some standard computational principles, especially that of substitution and reduc-
tion as computation. Several programming languages have been inspired by the
λ-calculus.

The need for denotational semantics of programming languages appeared in the
1960s, and was expressed in idealized form in the λ-calculus. This spurred Scott
to find a nontrivial solution to the domain equation D ∼= [D → D], one of the
most important steps forward in theoretical computer science. The discovery of
denotational models of the pure untyped λ-calculus enabled denotational mod-
els of “real” programming languages to be constructed. This is because Scott’s
method also gave a solution to the problem of denotational models for recursion
and datatypes.

Scott’s first models of the pure untyped λ-calculus, D∞, were announced in [Sco69],
rapidly followed by the simpler models Pω ([Plo72] and [Sco74]), and models which
induce alternative inequational theories such as Tω of [Plo78]. These early models

1

Introduction 2

are constructed from familiar mathematical objects such as complete partial or-
ders, and the clever part had been Scott’s use of traditional structures to form the
recursive objects needed for denotational semantics. As the field of denotational
semantics has progressed, however, it has become apparent that the traditional
mathematical structures are not necessarily sufficient for useful denotational mod-
els.

A classic example was the search for a fully-abstract denotational model of Scott’s
language PCF [Sco93]. Apart from term models, fully-abstract models remained
stubbornly elusive. Domain models based on Scott-continuous functions are not
fully-abstract because they contain parallel elements which are not reflected in the
sequential language [Plo77], and for many years the problem remained unsolved
(although it sparked off many other interesting theoretical concepts).

The field of game semantics arose to model linear logics, and also to attack the PCF
problem. Roughly simultaneously, syntax-free fully-abstract models of PCF were
described using game semantics by Abramsky, Jagadeesan and Malacaria [AJM94],
Hyland and Ong [HO00], and Nickau [Nic96]. A game is a formal setting for
interaction, and such work presents a way to describe interaction by a mathematical
structure suitable for denotational semantics. The idea of using “dialogue” to model
logic is surveyed in [Fel86].

The variety of game used by Abramsky, Jagadeesan and Malacaria grew from the
linear logic games of Blass [Bla92], and the Hyland/Ong and Nickau approach
— which are essentially equivalent — descend from the earlier work of Loren-
zen [LL78]. Subsequently variations of both of these games were used to give
denotational models to languages including recursive types [McC98], Algol-like
languages [AM95b], call-by-value reduction [HY97] and [AM99], System F poly-
morphism [Hug00], finite non-determinism [Har00], and languages with non-local
control [Lai98].

In [AM95a], Abramsky and McCusker gave a model of a version of the lazy λ-
calculus (introduced in [Abr90], for details of models see [Ong88] and [AO93]).
This was the first game model of untyped λ-calculus; apart from the fact that the
language is not the pure untyped λ-calculus, it also differs substantially from the
work presented here in that it uses the “history-free” approach of Abramsky et al.
A full-abstraction result is proved, but the model is not analysed in the same fine
detail as in this work — in particular there is no exact correspondence between a
term and its denotation. (McCusker subsequently informed the author that he had
always known of the first of the pure untyped λ-calculus models presented in this
thesis, but had not realised that they were at all interesting).

This thesis uses the style of game introduced by Hyland, Ong and Nickau, but with
an important modification. Rather than considering each move as a “question” or
“answer”, this distinction is removed; we might call all the moves “declarations”.
Game models of languages with state, non-determinism, non-local control, and so

Introduction 3

on, were constructed as modifications of the PCF game models with some relaxation
on the conditions on strategies or legal positions which make up the model. Indeed,
Abramsky has outlined an “intensional hierarchy” in which the connexion between
the relaxation of some such conditions and language features is made precise, and
shown to be independent (some of this work appears in[AM97]). Our removal of
the distinction between questions and answers is equivalent to removing the so-
called well-bracketing convention of [HO00], and this relaxation is also studied by
Laird in [Lai98] for functional languages with non-local control. However we do not
consider that the models of the pure untyped λ-calculus are fundamentally about
non-local control; instead it is just that the well-bracketing convention becomes
redundant for a pure untyped language, where there are no ground types and
hence no answers to questions.

One feature of game semantics, and which seems to be especially visible in the
Hyland/Ong/Nickau style, is that a strategy bears a close resemblance to the term
it denotes. A recurring theme is that the strategy which denotes a term in some
sense “is” the algorithm which performs the computation carried out by the term.
In this work we find a cartesian closed category with a reflexive object — all that
is needed for a model of the pure untyped λ-calculus — in a standard way, but the
main interest is from this connexion, which we are able to make precise, and which
allows a much finer analysis. Another recurring theme of innocent game models
is that of “copycat” strategies. In this work we show that strategies which are
(mostly) copycat are precisely those which denote terms.

We claim that the game models of untyped λ-calculus we present here are worth-
while for three reasons:

(i) They induce reasonable equational theories on the language.

(ii) The denotation of a term is a strategy. This strategy “is” the algorithm
which is näıvely described by the term. This connexion is made precise.

(iii) Because of the above correspondence, we can refine the models to obtain a
universal model — every element of the model is the denotation of some
term.

The correspondence result and universality property appear to be the first of their
kind for models of the λ-calculus.

Additionally, the universality property presents the possibility that some classical
results of the λ-calculus may be proved or strengthened using the model. We
present a semantic proof of Böhm’s Theorem, which is quite different from the
usual syntactic proof, and is slightly more general.

Recently, Di Gianantonio et al. described game models for the pure untyped λ-
calculus [DFH99], with some subsequent developments [DF98] and [DF00]. Their
work differs from that presented in this thesis in that it is founded on AJM games
rather than innocence, and the only analysis of the models is based on the tradi-
tional techniques of approximation from [Hyl76]. The analysis does not contain

Introduction 4

any analogue of our correspondence theorems and no extensionality or universality
result. However they do characterise precisely the λ-theories which can be induced
by game models of the untyped λ-calculus of their type. It would be interesting
to know whether the same limitations apply to our setting. This work is discussed
more in the conclusion of this thesis.

1.2 Prerequisites

The reader will need to be familiar with the untyped λ-calculus; a comprehensive
reference is [Bar84]. Particularly important topics are solvability, Böhm trees, stan-
dard theories and models. Basic category theory (up to cartesian closed categories)
is required, the classic reference is [Mac71], alternatively the first two chapters of
[Cro93] more than suffice. We hope that the reader is aware of the connexion be-
tween models of the untyped λ-calculus and CCCs, but we outline the main result
in the introductory material anyway. Some references are made to computability,
see for example [Cut80].

Familiarity with the games literature, particularly the innocent approach of [HO00],
[Nic96], and [McC98], will motivate many of the basic definitions, but is not re-
quired.

1.3 Overview

The remainder of Chapter 1 is an introduction the the untyped λ-calculus (for
notational purposes only; we assume that the reader is already familiar with the
definitions presented) and the way models of it arise in cartesian closed categories.
We also introduce some notation; in particular our use of the term “tree” must be
understood properly.

In Chapter 2 we make the basic definitions for the games, that of arena (which
details the moves of the game), and legal position (which sets out some rules for
the game). The game is played between two imaginary people who must alternate
moves, and each move is justified by some preceding move. A strategy for the two
participants in the game is defined initially as a set of possible traces of moves
which the player will engage in, and we say what it means for a strategy to be
innocent. Furthermore, strategies may be composed, and innocence is preserved
by composition. These ideas are analogues of the standard definitions from the
games literature, with the removal of the question and answer distinction, and the
constructions of functions and product arenas are standard.

Another familiar idea is that of an innocent function (which is the presentation
used in [Nic96]). Instead of considering a strategy to be the set of all possible
sequences of moves, we define a function telling a player how to react in every

Introduction 5

possible situation. This will become the more important presentation later in the
work.

Taking arenas as objects and strategies as morphisms gives rise to the categories A

and AREC. They are cartesian closed (Theorem 2.4.1), and both contain the same
reflexive object U (in fact U is the same object as U ⇒ U , although an isomorphism
suffices for the following properties). In a standard way this leads to λη-algebras
D and DREC (Theorem 2.4.2). The elements of D are the innocent strategies on
U (and the elements of DREC are just the effective innocent strategies on U), and
composition of the elements is defined in terms of composition of strategies.

By formulating a method of approximation — the approximants to a strategy are
those which only play within a specified finite part of the arena U — we show that
what Barendregt calls the “basic equations” for approximants hold (Lemma 2.5.4).
This leads in a standard way to the fact that the models are sensible, i.e. all
unsolvable terms have the same denotation (Theorem 2.5.5).

However the model has some undesirable properties too. There are many unde-
finable elements (in particular, all the nontrivial finite approximants to terms are
undefinable) and the model is not extensional (that is, there are distinct elements
of D which have the same applicative behaviour). The undefinable elements are
really to blame for the lack of extensionality (Theorem 2.5.7).

In order to improve the model we seek in Chapter 3 a way to characterise the defin-
able elements. Strategies are first written in an economical form, an encoding of the
innocent function which deletes all redundant information. Terms are considered
as Nakajima trees — this is the intuitive extension of a Böhm tree with an infinite
η-expansion. By encoding Nakajima trees in a variable-free form we prove the pow-
erful Exact Correspondence Theorem 3.3.1, which says that the variable-free form
of the Nakajima tree of a term coincides precisely with the economical form of the
innocent strategy which denotes it. This immediately tells us the equational theory
induced by the models D and DREC is the maximal consistent sensible theory H∗

(Corollary 3.3.3). The same is true for Scott’s D∞ models.

We proceed to make use of the Exact Correspondence Theorem, using classical
results which characterise those Böhm-like trees that are Böhm trees of terms,
transforming these into Nakajima trees and then into the language of economi-
cal forms of innocent strategies. The result is a new class of innocent strategies,
the effectively almost-everywhere copycat (EAC) strategies, which (almost by con-
struction) are precisely the elements of D which are definable. Since identity and
projection strategies are easily seen to be EAC, it remains to show that arenas
and EAC strategies, as a subcategory of A, still form a CCC which we call AEAC

(compositionality of EAC strategies is a highly technical proof which is actually
deferred until Chapter 4, where it properly belongs). This category still has the
reflexive object U so we can identify a new λ-algebra DEAC (Theorem 3.5.1), which
is both sensible and universal — every term is the denotation of some term (The-

Introduction 6

orem 3.5.3). To our knowledge, other than term models, the universality result is
the first of its kind.

In contrast to D and DREC, DEAC is order-extensional. This can be shown in
two ways. We first present the technical but powerful result called the Separa-
tion Lemma 3.6.1, which leads to order-extensionality via a semantic proof (The-
orem 3.7.6). Weak extensionality follows easily, so DEAC is a λη-model. Alterna-
tively, it is possible to give a syntactic proof of this result, using the techniques
developed by Barendregt to give the proof of Böhm’s Theorem found in [Bar84,
§10.3] and we include it at the end of Section 3.7.

The former method is of interest because it can be extended to give a seman-
tic proof of Böhm’s Theorem, either as a separation result for the λ-theory H∗

(Lemma 3.8.3) or as a genuine generalisation of Böhm’s classical result of [Böh68]
for λ (Theorem 3.8.4).

In Chapter 4 we pursue a remark which crops up in discussion of EAC strategies,
that copycat thresholds are not unique. Our aim is to modify the model DEAC to
find a game model which does not validate η-conversion. By drawing a connexion
between the parts of Nakajima trees which are generated by η-expansion, using
the Exact Correspondence Theorem, and copycat thresholds, it becomes clear that
additional information which specifies copycat thresholds at each P-view is the
information we need to add to EAC strategies to invalidate η-conversion.

We are thus lead to the definition of an EXAC strategy. Algorithm 4.2.1 gives
a method to compose EXAC strategies, and the highly technical Theorem 4.2.2
proves the correctness of this algorithm.

However it turns out to be difficult to describe a CCC of EXAC strategies. We
present the “obvious” attempt, which does not work (Theorem 4.3.2), and a solu-
tion XA (Theorems 4.4.2 and 4.4.3). The CCC XA still has the reflexive object U ,
but this time the retractions are not iso, so we arrive at a model DXA which does
not validate η-conversion. Because the category of EAC strategies AEAC embeds
into XA in a way which preserves the cartesian closed structure (Theorem 4.5.2),
DXA is also a sensible model.

We formulate an analogue of the Exact Correspondence Theorem, this time between
Böhm trees in a variable-free form and denotation in DXA (Theorem 4.6.5). This
means that the local structure of DXA is the λ-theory B (which equates two terms
if and only if they have the same Böhm tree). Similarly to DEAC, DXA is universal
(Theorem 4.6.8). Unlike DEAC, however, DXA is not extensional or even weakly
extensional (Corollary 4.6.10).

We conclude the thesis with a closer look at the parallel work of Di Gianantonio
et al., and some directions for further research.

The results of Chapter 2 and Sections 3.1 to 3.5 are reported in [KNO01]. An
extended abstract of Chapter 4 appears in [KNO99], and as a full-length pa-
per [KNO00].

Introduction 7

1.4 Notation

We first describe some conventions for sets and sequences:

• The set {1, 2, 3, . . .} is written N, and N0 is N ∪ {0}.

• The set of all finite sequences of elements from Σ is written Σ∗. Sequences
are written 〈s1, s2, . . . , sn〉.

• The empty sequence is denoted by ε.

• Sequences are usually written ~s to distinguish sequences from elements. Some-
times we do not follow this convention, especially when dealing with sequences
of sequences (when we will usually use the vector notation for the highest-level
sequence and not for the others).

• Concatenation of sequences is denoted ~s · ~t. This notation is also overloaded
so that, for example, m · ~s means 〈m〉 · ~s.

• The length of the sequence ~s is written |~s| .

• The usual order on sequences will be prefix, written ≤. The subsequence
pre-order is written �.

In the graph theoretic sense, a tree is just a directed, connected, graph whose
underlying undirected graph is acyclic. Usually, when we talk about a tree we mean
a countably-branching labelled tree, which can be presented in a more concrete
structure. Often, the labels will be sequences in N∗; the root is labelled ε and the
descendants of the node labelled ~s are labelled ~s · 1, . . . , ~s · n, if there are n such
descendants. Thus we can talk about the “mth descendant of the node ~s” — it is
the node labelled ~s · m. We can describe a tree by the set of labels of its nodes.

When we draw trees they are illustrated “upside-down” with the root at the top,
rather more like family trees than the botanical kind (following this analogy, we
can refer to a child or ancestor of a node, or say that one node inherits from
another, with the obvious meanings). Because of the labelling by sequences of
natural numbers, the children come with an order, also like a family tree. When
we draw a tree without labels, we intend that the numbering of children goes from
left to right.

This means that we do not consider the trees drawn

t

t t

t

A
A

�
�

and

t

t t

t

A
A

�
�

to be the same. The first is described by the set {ε, 〈1〉, 〈1, 1〉, 〈2〉} and the second
by {ε, 〈1〉, 〈2〉, 〈2, 1〉}. In the graph-theoretic sense, we would expect these to be
different pictures of the same tree, but for our purposes they are different trees.

Introduction 8

More generally, a Σ-labelled tree is a (possibly infinitary) tree with nodes labelled
with elements from Σ, and a partially Σ-labelled tree is a tree with nodes labelled
with elements from Σ ∪ {⊥}, such that any node labelled ⊥ has no descendants.
A node labelled ⊥ is considered to be part of the tree, but is without a label.

Regardless of how a tree is labelled, we can encode each node by an element of N∗

by enumerating the branches at each node (as long as the tree is only countably
branching, and there is a well order on the labels of the descendants of each node).
We then refer to the depth of an element of a tree, which is the length of the
sequence which encodes it. Thus the root of a tree is at depth zero.

Using the same encoding of nodes, we can define the labelling function of a Σ-
labelled tree, as a partial map from N∗ to Σ, mapping the encoding of a node
to its label, or undefined if the node in question does not exist in the tree. The
labelling function of a partially Σ-labelled tree is undefined on sequences encoding
nodes labelled ⊥. The domain of definition of such labelling functions is always
prefix-closed.

1.5 The Untyped λ-Calculus

We expect that the reader is familiar with the untyped λ-calculus, but for precision
we give a brief survey of some important definitions. For motivation and examples,
the reader is referred to the comprehensive survey [Bar84].

The language we study in this thesis consists of a set of terms and various equalities
between these terms. The theory of the untyped λ-calculus includes other aspects,
notably notions of reduction on terms, but we will not make use of these ideas in
this work.

We assume that a countable set of variables V = {v0, v1, . . .} has been identified.

Definition The terms of the untyped λ-calculus are finite strings of the symbols
λ, (,), ., v0, v1, The set of terms, Λ, is defined by the following BNF grammar,
where s is a meta-variable for terms and x a meta-variable for variables:

s ::= s | (λx.s) | (ss).

A term is named a variable, an abstraction, or an application, respectively, depend-
ing on which clause it matches.

We usually use letters such as x, y, z to range over variables, and s, t to range
over terms. As usual, we omit parentheses wherever possible using the convention
that a sequence of applications associates to the left, and that the scope of an
abstraction is as large as possible. We also write λx1x2 . . . xn.s as shorthand for
(λx1.(λxn.(. . . λxn.s))).

Introduction 9

The λ is a binding operator, and we define the free variables of a term in the usual
way. The set of free variables of the term s is written FV(s). Note that the variable
x in the term xλx.x occurs both free and bound. A term with no free variables
is called closed, and the set of such terms is denoted Λ0. We sometimes allow the
conventional use of uppercase letters to denote closed terms.

Definition The operation of substitution is defined as usual: given a term s, the
term s[x := t] is the result of substituting t for all free occurrences of x in s. Some
renaming of bound variables may occur to avoid capturing the free variables of t
in abstractions of s. Formally,

x[x := t] = t,
y[x := t] = y if x 6= y,

(su)[x := t] = (s[x := t])(u[x := t]),
(λx.s)[x := t] = λx.s,
(λy.s)[x := t] = λy.(s[x := t]) if y 6∈ FV(t),
(λy.s)[x := t] = (λz.s[y :=z])[x := t] if y ∈ FV(t),

where z is some variable not occurring in s or t.

In order to reason about substitution on a purely syntactic level, without regard
to variable capture, we also need the following concept.

Definition A context is a term with a “hole”, into which any other term can be
plugged. Formally, the set of contexts C[X] is the subset of the finite strings of the
symbols X, λ, (,), ., v0, v1, . . . ranged over by meta-variables like C and given by the
grammar

C = X | x | (λx.C) | (CC).

If C is a context we write C[t] for the term generated by replacing all occurrences of
X in C by t. This replacement is regardless of whether this captures free variables
of t in abstractions of C.

Contexts can also have more than one hole; the set of contexts with n holes is
denoted C[X1, . . . , Xn], with the obvious meaning, and the n-fold syntactic substi-
tution of terms for the holes of C by C[s1, . . . , sn].

We define a relation on terms which captures the idea that a variable bound by a
λ is a “dummy” variable and could be renamed to any other.

Introduction 10

Definition The relation between terms of α-conversion, or α-equivalence, is writ-
ten ≡α and axiomatised by the following system:

(α) λx.s ≡α λy.(s[x :=y]), as long as y does not occur in s,

(ER)

s ≡α s,
s ≡α t =⇒ t ≡α s,
s ≡α t ∧ t ≡α u =⇒ s ≡α u,

(CC)

s ≡α t =⇒ su ≡α tu,
s ≡α t =⇒ us ≡α ut,
s ≡α t =⇒ λx.s ≡α λx.t.

The clauses labelled (ER) ensure that ≡α is an equivalence relation, and those
labelled (CC) mean that ≡α is compatible with the constructions of application
and abstraction i.e. for any context C, s ≡α t implies C[s] ≡α C[t].

We consider two terms which are α-equivalent to be syntactically the same, for
example λx.x is the same term as λy.y. Precisely, the set of terms is the set Λ
given above quotiented by the relation ≡α, although by an abuse of notation we
still refer to it as Λ. We write ≡, the usual symbol for syntactic equality, for ≡α to
emphasise this.

We will write a term as some member of the equivalence class it belongs to, but
allow ourselves to change representatives, i.e. rename the bound variables, at will.
(The ability to rename bound variables explains why we never actually refer to
the basic variables V — in any closed term they can be substituted for any other
(unused) variables so they might as well be represented by meta-variables.)

In this work we adhere to the variable convention, which states that whenever we
use a set of terms in one place we rename all the bound variables of the terms to be
different from any free variables of the terms. In the presence of this convention,
the complicated last clause in the definition of substitution becomes redundant.

We study equational theories between the terms of the λ-calculus, the prototypical
theories being given by the following.

Definition The theory λ is an equational theory between terms, i.e. a set of

Introduction 11

sentences of the form s = t for s, t ∈ Λ. It is axiomatised by the following system:

(β) (λx.s)t = s[x := t],

(ER)

s ≡α s,
s ≡α t =⇒ t ≡α s,
s ≡α t ∧ t ≡α u =⇒ s ≡α u,

(CC)

s ≡α t =⇒ su ≡α tu,
s ≡α t =⇒ us ≡α ut,
s ≡α t =⇒ λx.s ≡α λx.t.

The theory λη is axiomatised by the above plus the following additional axiom:

(η) λx.sx = s, provided x /∈ FV(s).

If s = t is provable in the theory λ we write λ ` s = t, similarly for λη.

The theory λ captures the intuition that the λ operator in (λx.s)t binds the vari-
able x to the term t to which the abstraction is applied, and ensures that this
notion of equality is an equivalence relation and is closed under the constructions
of application and abstraction. Use of the rule β is called β-conversion. Use of the
rule η is generally called η-conversion, also replacing a term s with λx.sx is called
η-expansion, and vice versa is called η-reduction.

It is of interest to study extensions of the theory λ: equational theories which
include all the equations of λ plus possibly some others. We will only be interested
in theories which are closed under the axioms of λ (and which are consistent, i.e. do
not equate all terms).

It is traditional to concentrate on closed equations, that is sentences of the form
s = t for closed terms s and t. We identify an equational theory with the set of
closed equations provable in it, so that for example λ = {s = t | λ ` s = t, s, t ∈
Λ0}. Given a set of sentences T we write λ + T to mean the theory axiomatised
by the rules of λ, with each sentence of T included as an additional axiom.

Definition A λ-theory T is a consistent equational theory between closed terms
satisfying λ + T ` s = t ⇐⇒ T ` s = t (for closed terms s and t).

Remark 1.5.1 It is simple to check that for any λ-theory T , λ + T ` s = t ⇐⇒
λ + T ` λx.s = λx.t. Hence it is not necessary to restrict our attention to closed
equations. In view of this we write T ` s = t for λ+T ` s = t, for arbitrary terms
s and t. (This is a subtle point: for terms s and t which are not closed, it cannot
be the case that T ` s = t because T consists only of closed equations.)

Introduction 12

If a λ-theory T is closed under the rule η of the system λη (equivalently, if λη+T `
s = t ⇐⇒ T ` s = t) then we say that T is a λη-theory.

The following result characterises the λη-theories; a proof can be found in [Bar84,
§4.1].

Lemma 1.5.2 Define two standard terms I = λx.x and 1 = λxy.xy. Then a
λ-theory T is a λη-theory if and only if T ` I = 1.

We now turn our attention away from general theories and concentrate on the
standard theory λ. What follows is an introduction to the notions of Böhm tree
and Nakajima tree, two ways of presenting a term which will be of importance to
the game models in the body of this work.

Definition A term s is in head normal form if s ≡ λx1 . . . xn.ys1 . . . sm for some
variable y, terms s1, . . . , sm, and n, m ∈ N0 (so that there are possibly no abstrac-
tions or terms si). We say that y is the head variable of s.

A term s has a head normal form is λ ` s = t for some term t in head normal
form, in which case the head variable of s is the head variable of t.

We often abbreviate the phrase “head normal form” to hnf.

The property of having a hnf is equivalent to another notion. A closed term s is
solvable if there are terms t1, . . . tn such that st1 . . . tm = I (I is defined above). A
term s with free variables in the set {x1, . . . , xn} is solvable if λx1 . . . xn.s is solvable,
and this turns out to be independent of the set and the order of the abstractions.
It was proved in [Wad71] that a term is solvable if and only if it has a hnf, and so
we shall use the terms “solvable” and “has a hnf” (and “unsolvable” and “has no
hnf”) interchangeably. An example of an unsolvable term is Ω = (λx.xx)(λx.xx).

If a term s has a hnf λx1 . . . xn.ys1 . . . sm we can examine the hnf of the terms
s1, . . . , sm, if they exist. Those that do will themselves have sequences of terms
which we can examine, and we can continue this process repeatedly. In this way we
construct the Böhm tree of the term s, first introduced by Barendregt in [Bar77].
What follows is not a formal definition, and for a more thorough treatment the
reader is referred to [Bar84, Chapter 10].

Informal Definition Let Σ be {λx1 . . . xn.y | n ∈ N0, x1, . . . , xn, y variables}.

For a term s the Böhm tree of s, written BT(s), is the partially Σ-labelled tree
defined inductively as follows:

Introduction 13

BT(s) = ⊥ if s is unsolvable
BT(s) = λx1 . . . xn.y

BT(s1) · · · BT(sm)

if s has hnf λx1 . . . xn.ys1 . . . sm

In the first clause it is important to note that the tree consists of a single unlabelled
node, as opposed to being an “undefined” tree. The labelling function of the tree,
however, is everywhere undefined.

Remark 1.5.3 This definition does not actually define a computable procedure
for constructing the Böhm tree of a term, since the predicate of unsolvability is
undecidable. An alternative definition (called the effective Böhm tree) is presented
in [Bar84, 10.1.9], but since the effect of the definition is equivalent we prefer to
stick to the more comprehensible version given above.

We say that a a Böhm-like tree is a finitely-branching Σ-labelled tree. Not all
Böhm-like trees are the Böhm trees of a term, however. It is of importance to this
work to characterise those that are, and to do so we need the following.

Definition The set of free variables of a Böhm-like tree A, written FV(A), is
defined inductively as follows.

FV(⊥) = ∅
FV(A) = ({y} ∪

⋃m
i=1 FV(Ai)) \ {x1, . . . , xn} if A is of the form λx1 . . . xn.y

A1 · · · Am

Somewhat counterintuitively, although one has FV(BT(s)) ⊆ FV(s) the inclusion
may be proper (for an example and some explanation see [Bar84, 10.1.22]).

Definition A Böhm-like tree A is recursively enumerable, or just r.e., if after some
coding of the set Σ the labelling function is partial recursive.

We may now characterise the Böhm-like trees which are Böhm trees of some term.
A proof may be found in [Bar84, §10.1]

Theorem 1.5.4 Let A be a Böhm-like tree. Then

∃s ∈ Λ. BT(s) = A ⇐⇒ A is r.e. and FV(A) is finite.

Introduction 14

We introduce another presentation of terms as trees, first proposed by Nakajima
in [Nak75]. The principle that a term of the untyped λ-calculus may be applied to
any number of other terms suggests that, for example, the term I = λx.x might
be better expanded infinitely many times by the rule η, and represented by the
pseudo-syntax λxz0z1z2 . . . • xz0z1z2 The large dot • is used to make clear the
“end” of the infinite chain of abstractions and the start of the infinite chain of
applications in the term. Combining this idea into a presentation of terms in the
style of Böhm trees leads to the following definition, here given only informally.

Informal Definition Let Σ′ be the set {λx1x2 . . . • y | x1, x2, . . . , y variables}.

For a term s the Nakajima tree of s, written NT(s), is the countably branching,
countably deep partially Σ′-labelled tree defined inductively as follows.

NT(s) = ⊥ if s is unsolvable

NT(s) = λx1 . . . xnz0z1 . . . • y

NT(s1) · · · NT(sm) NT(z0) NT(z1) · · ·

if s has hnf

λx1 . . . xn.ys1 . . . sm

where z0, z1, . . . are countably many fresh variables.

A formalization of the process of finding fresh variables at each stage is given
in [Nak75].

Example 1.5.5 We illustrate the definitions of Böhm and Nakajima tree. Take
the term s = λx.xΩ(λy.yx) (where Ω is the unsolvable term described above). The
Böhm tree and part of the Nakajima tree of s are given by

BT(s) = λx.x

⊥ λy.y

x

NT(s) =

λxz0z1 . . . • x

⊥ λyu0u1 . . . • y

λ . . . • x λ . . . • u0 λ . . . • u1 · · ·

λ . . . • z0 λ . . . • z1 · · ·

Introduction 15

Example 1.5.6 This example illustrates that the process of infinite η-expansion
which motivates the definition of Nakajima tree causes terms which differ only by
η-conversion to be identified.

Recall the terms I and 1. The reader may wish to verify that the following repre-
sents the first two levels of the Nakajima trees of those terms:

NT(I) = λxz0z1 . . . • x

λ~u • z0 λ~v • z1 λ~w • z2 · · ·

!!!!!
�

�
HHHH

NT(1) = λxyz0z1 . . . • x

λ~u • y λ~v • z0 λ~w • z1 · · ·

!!!!!
�

�
HHHH

After renaming of bound variables, these are the same.

Note that different terms may have the same Böhm tree or Nakajima tree, even
when the terms are not equated in the theory λ or λη. (In particular all unsolvable
terms have the same Böhm tree and Nakajima tree ⊥, but not all unsolvable terms
are equated by λ or λη.) Thus we make the following definitions:

Definition

(i) B = {s = t | s, t ∈ Λ0, BT(s) = BT(t)},

(ii) H∗ = {s = t | for all contexts C. C[s] solvable ⇐⇒ C[t] solvable}.

Proofs of the following results, which are nontrivial, can be found in [Bar84].
and [Nak75].

Lemma 1.5.7

(i) B and H∗ are λ-theories,

(ii) H∗ ` s = t ⇐⇒ NT(s) = NT(t).

Any unsolvable term has the same Böhm and Nakajima tree, namely ⊥. This
means that B and H∗ are examples of sensible λ-theories.

Definition A λ-theory T is sensible if T ` s = t for all unsolvable terms s and t.

For a motivation of why such a property should be called sensible, the reader is
referred to the latter part of [Bar84, §2.2].

The λ-theory H = {s = t | s, t ∈ Λ0, s, t unsolvable} is the smallest sensible theory,
but it is not equal to either B or H∗. The following gives the relationships between
the theories (where the ordering is inclusion, i.e. T ⊆ T ′ if T ` s = t implies
T ′ ` s = t):

Introduction 16

Lemma 1.5.8 The following are proper inclusions between consistent λ-theories:

λ ⊂ H ⊂ B ⊂ H∗.

Furthermore, H∗ is maximal in the following sense: given any λ-theory T ⊇ H∗,
either T = H∗ or T is inconsistent.

Since H∗ ` I = 1 (as we showed in Example 1.5.6), H∗ is in fact a λη-theory. The
same does not hold for B.

In fact, this is not the only difference between H∗ and B. We can augment the λ-
theory B with the rule η by forming the λη-theory Bη = {s = t | s, t ∈ Λ0, λη+B `
s = t}, but it is shown in [Bar84, 16.4.4] that Bη is a proper subset of H∗. This
is because H∗, being equality of Nakajima trees, supports infinite η-conversion,
whereas Bη only allows finitely many η-conversions in a proof of Bη ` s = t.

1.6 Model Theory of the Untyped λ-Calculus

The first model of the untyped λ-calculus was given by Scott in 1969 and a variety
of other models followed in the 1970’s. It was not until rather later that the general
idea of what a model of the λ-calculus should be took shape. In this section we
give a very brief presentation of what we consider to be an abstract model of the
λ-calculus, and show how these arise in a categorical setting. It is in a categorical
framework that the game models will be presented in the body of this work.

The description we give here is very cursory, and purposefully avoids mention of
combinatory algebras except in passing. For a thorough treatment the reader is
referred to [Bar84, Chapter 5], or [Koy82].

Definition An applicative structure is a pair 〈A, •〉 consisting of a set A and a
binary operation • on A called application.

In an applicative structure the operation of application will associate to the left,
as in the λ-calculus.

Since the untyped λ-calculus is based on application, a model will be an applicative
structure 〈A, •〉, together with a map [[−]] describing how each term may be inter-
preted in A. We will provide an interpretation of an extension of the λ-calculus
which includes the constants CA = {ca | a ∈ A} (where each constant represents
a fixed member of A). The set of such terms is written Λ(A), ranged over by the
meta-variable s, and is given by the grammar

s = x | ca | (λx.s) | (ss).

Introduction 17

Closed terms of the λ-calculus will be interpreted as elements of A, and each
constant as the element of A it represents, but we can only interpret terms with
free variables relative to a valuation, namely a map ρ from the set of all variables
to A. Relative to a valuation ρ, a term s will be interpreted as an element of A by
a function [[−]]ρ : Λ(A) → A, with the intention that this is the interpretation of s
under the assumption that the free variables of s are instantiated to the elements
of A as specified by ρ. Given a valuation ρ we write ρ(x := a) for the valuation
which is the same except it replaces whatever the value of x was by a. That is,
ρ(x :=a)(x) = a, and ρ(x :=a)(y) = ρ(y) for y 6= x.

In order to be a faithful model, we place certain conditions on the applicative
structure and interpretation function:

Definition A λ-algebra is a tuple 〈A, •, [[−]]−〉, where 〈A, •〉 is an applicative
structure, and for each valuation ρ, [[−]]ρ : Λ(A) → A, such that the following
hold:

(i) [[x]]ρ = ρ(x),

(ii) (∀x ∈ FV(s). ρ(x) = ρ′(x)) =⇒ [[s]]ρ = [[s]]ρ′ ,

(iii) [[ca]] = a,

(iv) [[st]]ρ = [[s]]ρ • [[t]]ρ,

(v) [[λx.s]]ρ • a = [[s]]ρ(x:=a),

(vi) λ ` s = t =⇒ [[s]]ρ = [[t]]ρ.

Conditions (i) and (ii) specify that the valuations instantiate only the free variables
of the term, and do so directly. In view of (ii), we can just write [[s]] for [[s]]ρ
when s has no free variables. Condition (iii) forces constants to be interpreted
properly. Condition (iv) means that application in the λ-calculus corresponds to
application in the applicative structure 〈A, •〉. Condition (v) means that, after
interpretation, an abstraction has the intuitive meaning of binding the term it is
applied to. Condition (vi) ensures the interpretation reflects all the equalities of
the λ-calculus (many of which are automatic from the other conditions).

Remark 1.6.1 Any λ-algebra will be a combinatory algebra, which is an applica-
tive structure equipped with distinguished elements k and s satisfying k •x • y = x
and s • x • y • z = x • z • (y • z) for all elements x, y, z of the structure. In the case
of a λ-algebra 〈A, •, [[−]]−〉, the elements k and s can be specified by k = [[λxy.x]]
and s = [[λxyz.xz(yz)]].

Traditionally, one introduces the λ-algebras as combinatory algebras satisfying ad-
ditional properties, but we have purposefully avoided this in order to shorten the
exposition. In fact, the λ-algebras may be characterised as those combinatory
algebras which satisfy a certain finite set of equations.

Introduction 18

We consider any λ-algebra to be in principle a model of the untyped λ-calculus.
However, there are other desirable properties of models which we might aim for:

Definition Let M = 〈A, •, [[−]]−〉 be a λ-algebra.

(i) M is a λ-model if it is weakly extensional, that is for all s, t ∈ Λ(A),

(∀a ∈ A. [[s]]ρ(x:=a) = [[t]]ρ(x:=a)) =⇒ [[λx.s]]ρ = [[λx.t]]ρ.

(The principle is that, after interpretation, (∀x.s = t) =⇒ λx.s = λx.t.)

(ii) M is extensional if for all a and b in A,

(∀x ∈ A. a • x = b • x) =⇒ a = b.

(iii) M is universal if every element of A is the denotation of some term (not
involving constants), that is,

∀a ∈ A. ∃s ∈ Λ0. [[s]] = a.

Note that for any function on the elements of a λ-algebra, say f(x1, . . . , xn), there
is an element of the λ-algebra representing that function, in this case [[λx1 . . . xn.f]].
The principle of weak extensionality ensures that this element is unique. Further-
more we will see later that λ-models have a pleasing categorical structure.

An extensional model has the property that every element is determined by its
applicative behaviour — this is what one might expect in a “functional” setting.
However, the λ-calculus itself does not have this property, since Iab = ab = 1ab for
all terms a and b, but I 6= 1. However, if η-conversion is included the calculus will
have this property (for example I = 1 in the theory λη).

A universal model is a very powerful structure, as one can be sure of a 1-1 corre-
spondence between the elements of the model and the equivalence classes of the
terms of the λ-calculus modulo whatever theory the model imposes. In particular,
one might hope to accomplish existence proofs for the λ-calculus by working within
the model. A universal model could even be considered an alternative presentation
of the λ-calculus, with respect to some λ-theory.

The proofs of the following results can be found in [Bar84, §5.2], along with a full
exploration of the properties of extensionality and weak extensionality.

Lemma 1.6.2 Let M = 〈A, •, [[−]]−〉 be a λ-algebra.

(i) If M is extensional then it is weakly extensional, i.e. a λ-model.

(ii) M is extensional if and only if it is weakly extensional and [[I]] = [[1]].

Introduction 19

In any λ-algebra we know that for closed terms s and t, λ ` s = t =⇒ [[s]] = [[t]].
Thus the model will equate at least all those terms which are provably equal in
λ — it is of importance in studying the model to know about any other terms it
might equate.

Definition Given a λ-algebra 〈A, •, [[−]]−〉 the local structure, or equational theory,
is the set of sentences {s = t | s, t ∈ Λ0, [[s]] = [[t]]}.

By the conditions imposed on a λ-algebra, this will be a λ-theory as long as the
λ-algebra is nontrivial (i.e. does not interpret all terms as the same element). If
the equational theory of a λ-algebra M satisfies the rule of η-conversion (is a λη-
theory), then we say that M is a λη-algebra (and a weakly extensional λη-algebra
is called a λη-model). Lemmas 1.5.2 and 1.6.2 mean that a λ-algebra is extensional
if and only if it is λη-model. We say that a λ-algebra is sensible if its local structure
is a sensible λ-theory.

If the elements of the λ-algebra come with a partial ordering �, it may also be
of interest to study the partial order this induces on terms. We call this the local
order structure, and it is the set of sentences {s ⊆ t | s, t ∈ Λ0, [[s]] � [[t]]}.

We now show how λ-algebras arise in cartesian closed categories. We first outline
the standard notation we use for categories.

In a category we will write f ; g for composition of the morphisms f : A → B
and g : B → C and idA for the identity morphism on the object A. Where it
exists write 1 for the terminal object and !A for the unique morphism A → 1. In a
category with binary products we denote the first projection A×B → A as πA×B

A ,
the second projection as πA×B

B , and the pairing of f : A → B and g : A → C as
〈f, g〉 : A → (B×C). We write Bn for the n-fold product (· · · ((B×B)×B) · · ·)×B,
with the intention that B0 = 1. Given f1, . . . , fn : A → B we define the n-tuple
〈f1, . . . , fn〉 : A → Bn by 〈〉 = !A, 〈f1, . . . fr+1〉 = 〈〈f1, . . . , fr〉, fr+1〉. Then if
∆ = 〈x1, . . . , xn〉 write Π∆

xi
for the obvious projection onto the ith component. In

a CCC we write evalA,B for the evaluation map (A ⇒ B) × A → B, and for a
morphism f : C × A → B the curried morphism is denoted Λ(f) : C → (A ⇒ B).

Definition Let C be a cartesian closed category. An object R of C is reflexive
if there are morphisms Fun : R → (R ⇒ R) and Gr : (R ⇒ R) → R satisfying
Gr ; Fun = idR⇒R.

In this case we say that R ⇒ R is a retract of R, and that Fun and Gr are the
retraction morphisms.

A CCC C with reflexive object R, together with the retraction morphisms Fun and
Gr, define a λ-algebra 〈A, •, [[−]]−〉 as follows:

Introduction 20

(i) A is the homset Hom � (1, R).

(ii) For any object A with f, g : A → R define f • g = 〈f ; Fun, g〉 ; evalR,R. In
particular this defines a binary operation on A.

(iii) If {x1, . . . , xn} ⊇ FV(s) define inductively the morphism [[s]]∆ : Rn → R,
where ∆ = 〈x1, . . . xn〉, as follows:

[[x]]∆ = Π∆
x ,

[[st]]∆ = [[s]]∆ • [[t]]∆,
[[λx.s]]∆ = Λ([[s]]∆·x) ; Gr.

In the last clause we may assume that x does not appear in ∆ (by renaming
if necessary).

(iv) If ρ is a valuation mapping variables to elements of A, and ∆ is as above,
define the morphism ρ∆ : 1 → Rn by ρ∆ = 〈ρ(x1), . . . , ρ(xn)〉. Then set

[[s]]ρ = ρ∆ ; [[s]]∆.

The following result, along with a proof, can be found in [Bar84, §5.5].

Proposition 1.6.3 With the above construction 〈A, •, [[−]]−〉 is a λ-algebra. We
denote this model M(C, R,Fun,Gr).

If a λ-algebra arises in such a way, we can express extensionality properties cate-
gorically.

Proposition 1.6.4

(i) M(C, R,Fun,Gr) is a λ-model if and only if R has enough points. That is,
for all f, g ∈ Hom(R, R), (∀x : 1 → R. x ; f = x ; g) implies f = g.

(ii) Gr ; Fun = idR (in other words, the retraction morphisms form an iso-
morphism between R and R ⇒ R) if and only if [[1]] = [[I]] in the model
M(C, R,Fun,Gr).

As a consequence of these, M(C, R,Fun,Gr) is extensional if and only if R ∼= (R ⇒
R) via Fun and Gr and R has enough points.

In fact, every λ-algebra can be obtained from some CCC with a reflexive object,
and every λ-model from some CCC with a reflexive object having enough points.
This was first observed by Scott and is proved in [Koy82], and the construction
is duplicated in [Bar84]. However, this is not to say that every λ-algebra can be
obtained from a CCC which has a natural, syntax-free, presentation!

Chapter 2

Games, Innocence, and the Model
D

We build on the dialogue games of Hyland and Ong [HO00] and Hanno Nickau
[Nic96] (christened H2O games by Girard, for Hyland, Hanno and Ong) using a
variant in which there is no sense of question or answer. We also use very concrete
representations of arenas and strategies, more so than as is traditional, to aid the
fine analysis later in the work. We present the details from scratch, and, although
useful, no prior knowledge of the above references is required.

To begin with we describe what we mean by a “game”, defining the notion of
arena, which details the moves of the game, and legal position, which sets out some
rules for the game. We introduce the notion of a strategy for the two participants
of the game, and the property of strategies called innocence, and thus define the
categories A (and AREC) of arenas and (recursive) innocent strategies, and show
that they are cartesian closed. Both contain the same reflexive object (for which
the retraction morphisms are an isomorphism), leading to λη-algebras D and DREC.
Some analysis of the models shows that they are both sensible.

2.1 Arenas, Views and Legal Positions

The abstract idea of a “game” is based on an arbitrary set of moves. The game
is “played” between two players called Proponent and Opponent, and the mathe-
matical objects we study are the possible sequences of moves. The moves come in
a structure called an arena, which specifies that certain moves may not be played
until certain others have been (that is, may not appear in a sequence of moves
unless certain others appear earlier in the sequence). The arena also specifies that
each move may be made only by either Proponent or Opponent, and another rule
imposed on the sequences of moves is that the two players must alternate, with
Opponent playing first.

21

Games, Innocence, and the Model D 22

This idea is as standard in [HO00], [Nic96] and [McC98], except that in these
references each move is labelled as a question or an answer, and there are additional
rules controlling the interplay of questions and answers. We think of our moves
as “declarations”, or answerless questions, and indeed the definitions given here
do correspond with the standard ones, with all moves considered to be questions.
They are sometimes presented in a slightly different manner for clarity or because
simplifications can be made.

Definition An arena is a finite tuple of nonempty trees of moves. The root of
each tree is called an initial move.

We will only be interested in arenas made up of countably branching trees. We
emphasise that the moves are just an arbitrary set, which are given some extra
structure to become an arena. Regardless of what the moves are, we will label
them in the uniform way described in the introduction — the root is labelled ε
and the nth child of the node labelled ~s is labelled ~s · n. We will only ever refer
to moves by their label. Hence each move of each tree is associated uniquely with
a sequence of natural numbers. Conversely, given any subset A ⊆ N∗ which is
prefix-closed and has the property that whenever ~s · n ∈ A we have ~s · m ∈ A for
each m ≤ n, we can form an arena of one tree where the moves are the elements
of A, with tree structure given by prefix. If we represent trees by subsets of N∗,
we say that we are representing arenas in sequence-subset form. In this work,
we will interchangeably talk about arenas in either forest-of-trees or
sequence-subset form.

Remark 2.1.1 The standard definition of [HO00] is in terms of a forest (partial
order with each upper set a finite chain) and it is clear that our tree structure,
ordered by inheritance and with the forests put together, determines such an order.
However we wish to make sure that of the trees making up the forest come in a
specified order. Further we will only require finitely many trees in each forest
(which allows for a simple construction of products later on).

Each arena is of the form 〈A1, . . . , An〉, where each Ai ⊆ N∗. We say that an arena
is single-tree if n = 1. Most of our intuition is based on single-tree arenas, and
many definitions are given only for this type of arena with the generalisation to
multiple-tree arenas left to the reader.

Example 2.1.2 There are three important arenas which will be referred to often
in this work:

(i) E is the arena consisting of no trees at all; in sequence-subset form it is
represented by 〈〉.

Games, Innocence, and the Model D 23

(ii) M is the “minimal” single-tree arena, consisting of one tree of one node; in
sequence-subset form it is represented by 〈{ε}〉.

(iii) U is the “maximal” single-tree arena, consisting of one tree which is countably
branching with every path countably deep; in sequence-subset form it is
represented by 〈N∗〉.

We say that moves at an even depth of the trees (including the roots which are
at depth 0) are O-moves, the moves made by the Opponent, and moves at an odd
depth are P-moves, made by Proponent. O-moves are often denoted by • and P-
moves by ◦. The polarity of a move refers to whether it is a P- or O-move, and we
may talk about swapping the polarity of a set of moves.

We list some properties of, and a relation between, arenas for later use.

Definition

(i) A sub-arena of an arena A = 〈A1, . . . , An〉 is an arena B = 〈B1, . . . , Bn〉
(which therefore has the same number of trees as A) with each Bi ⊆ Ai.

(ii) An arena is finitely branching if every tree in it is finitely branching.

(iii) An arena is recursive if, as a subset of N∗, each tree in it is a recursive set
(i.e. membership is decidable).

(iv) An arena is recursively enumerable (or just r.e.) if, as a subset of N∗, each
tree in it is recursively enumerable (i.e. membership is semi-decidable).

Arenas can be formed from other arenas by two major constructions.

Definition Suppose that A = 〈A1, . . . , Am〉 and B = 〈B1, . . . , Bn〉 are arenas.

(i) The product arena A×B is the “disjoint union” of the trees of A and B, the
concatenation of their tuples. Formally A × B = 〈A1, . . . , Am, B1, . . . , Bn〉.

(ii) The function space arena A ⇒ B is constructed as follows: the initial moves
of A ⇒ B are those of B; to each tree below each such initial move, we graft
onto it a copy of A. More precisely, A ⇒ B = 〈C1, . . . , Cn〉 where

Ci = {ε} ∪ {a · ~s | 1 ≤ a ≤ m ∧ ~s ∈ Aa} ∪ {(a + m) · ~s | a · ~s ∈ Bi}.

We illustrate the construction of a function space arena, when the arenas in question
are not single-tree. Suppose that A = 〈A1, A2, A3〉 and B = 〈B1, B2〉. Then A ⇒ B
could be pictured as:

A1 A2 A3

B1

A1 A2 A3

B2

Games, Innocence, and the Model D 24

This picture shows how the arena A is duplicated in A ⇒ B, when B is not single-
tree. It also illustrates how we will draw arbitrary arenas — the triangle with a
single symbol ◦ or • at the top indicates some tree with the root a P- or O-move
respectively.

We note that any arena can be decomposed as the product of finitely many single-
tree arenas. Moves of product and function arenas may be referred to as, for
example, A-moves and B-moves, depending on which part of the composite arena
they lie in. Notice that the polarity of moves in A has been swapped in A ⇒ B.

We have already seen that the way the moves are arranged in the trees of the arena
determines whether each is played by Proponent or Opponent. The tree structure
of the arena also determines which moves are prerequisite for each move — the idea
is that a move may not be played until after its immediate ancestor in the arena has
been played, and we might call a move’s immediate ancestor its “enabling move”.
It is possible that there might be more than one instance of a move’s enabling
move, and for reasons which will be illustrated later it is important to identify one
of them as the enabling move which was “used”. For this we need the following
definition.

Definition A justified sequence of an arena A is a sequence of moves of which
each element except the first is equipped with a pointer to some previous move.
We call the pointer a justification pointer and if the move m− is pointed to by m
we say that m− justifies m.

We say that a move m− in a justified sequence hereditarily justifies m if one can
reach m− from m by repeatedly following justification pointers.

We may now impose restrictions on the possible sequences of moves made in the
game, as we indicated above.

Definition A well-formed sequence over A is a justified sequence ~s which has the
following properties:

Initial Move: The first element of ~s is an initial move of A, an O-move.

Alternation: Thereafter elements of ~s alternate between P-moves and O-moves.

Justification: If m is justified by m− then the move m is directly beneath m−

in the tree of the arena.

Note that the last of these forces each move (except the first) to be justified by
a move of the opposite polarity. The definitions for dialogue games involve an
additional condition called well-bracketing. This is redundant for declaration-only

Games, Innocence, and the Model D 25

arenas. Note that, as a consequence of the definition of justified sequence and
the condition of justification, the first move may not be repeated in a well-formed
sequence.

Well-formed sequences will be the permissable sequences of moves in the games
played on the arena. One could think of these conditions as imposing some basic
ground rules.

Remark 2.1.3 For the definition of justified sequences it suffices to say that the
justification pointers exist. In fact we are only interested in well-formed sequences,
and we could give these a proper mathematical meaning by encoding them as
sequences of pairs, the sequence of first components being the moves and the second
components being natural numbers, such that if m is justified by m− in a sequence
~s ·m− ·~t ·m · ~u then the number paired with the move m is |~t| /2. Note that since
(in a well-formed sequence) each move is justified by a move made by the opposite
player, and players alternate, the sequence ~t is forced to be of even length. By
convention the initial move is paired with the number zero. (Here the sequences
~s and ~t are sequences of moves, each move of which are, sometimes confusingly,
represented by sequences of natural numbers.) There are other possible encodings
of justification pointers, and indeed we would need a different encoding to deal
with general justified sequences which might not be well-formed, but this particular
encoding matches that used in the definition of economical form in Section 3.1.

To avoid tedious detail, in practice we ignore issues of encoding, and typeset jus-
tified sequences pictorially with lines linking each move to the one move which
justifies it. An example of how this looks can be found in the next section. When
we define functions on well-formed sequences which involve manipulation of point-
ers we will not bother to explain the details of how the encodings are manipulated
as a result, which in any case ought to be obvious.

Remark 2.1.4 Since Opponent can play any of the initial moves of A, and all
subsequent moves are justified (and hence cannot be roots of trees of A), Opponent
has chosen which of the trees of A the rest of the sequence is to be played in. An
idea presented in [Nic96] is to label the roots of the tree Ai in A as εi, and then for
any well-formed sequence we can see which tree it comes from by examining the
subscript of the first move. In practice we almost always examine single-tree arenas
(decomposing multiple-tree arenas in the product of single-tree arenas if necessary)
and so we shall not need to use this convention.

Since initial moves cannot be justified by any move, and only the first move of a
justified sequence is not justified, it is possible to repeat the initial moves of A in the
arena A ⇒ B but not in the arena A. This is a sort of “hidden !” of Linear Logic,
which is made explicit in McCusker’s presentation [McC98]. Our presentation is

Games, Innocence, and the Model D 26

simpler but this also means that we must be aware of the possibility of moves
becoming repeatable in function spaces.

In a well-formed sequence, some moves are considered “not relevant” to the player
making the next move. We suppose that each time a player makes a move m he is
really only interested in the next move (made by his opponent) which is justified
by m. Once such a move is made, he is supposed to ignore any intervening moves.
This will be made precise in the definition of innocence in the next section, but
what follows is the definition of the relevant moves of a sequence.

Definition The P-view of a justified sequence ~s, written p~sq, is given recursively
by:

pεq = ε for initial moves ε
p~s · mq = p~sq · m for m a P-move

p~s · m− · ~t · mq = p~sq · m− · m for m an O-move justified by m−

The O-view, x~sy, is given analagously by:

xεy = ε for initial moves ε

x~s · my = x~sy · m for m an O-move

x~s · m
− · ~t · my = x~sy · m− · m for m a P-move justified by m−

It may be the case that for a P-move m justified by an O-move m− in some justified
sequence ~s, the move m− is deleted in p~sq (similarly if m is an O-move then its
justifying move might be deleted in the O-view.) Thus the O/P-view of a justified
sequence may not itself be a justified sequence. This motivates the following:

Definition A legal position of an arena A is a justified sequence ~s satisfying the
following visibility condition:

For each non-initial O-move m justified by m−, say ~s = ~t1 · m− · ~t2 · m · ~t3, we
have that m− ∈ x~t1 · m

− · ~t2 · my. Similarly all P-moves are justified by O-moves
appearing in the P-view up to that point.

This gives the required property:

Lemma 2.1.5 If ~s is a legal position then so are p~sq and x~sy.

Proof Essentially a straightforward induction. See [HO00, 4.2.5] or [McC98]. �

Games, Innocence, and the Model D 27

By a P-view of an arena A we mean a justified sequence which is the P-view of
some legal position of A.

There are other important properties of views and legal positions and their inter-
action with arenas and function space arenas in particular. Only the statements
of the major results are given here, and proofs (in our setting when there is no
sense of question or answer) carry over from those of the similar results described
in [HO00, §4.4] or [McC98].

Lemma 2.1.6 (View Characterisation) A justified sequence of an arena A is
the P-view of some legal position if and only if it is well-formed and every non-initial
O-move is justified by the immediately preceding P-move. The same statement is
true with all polarities swapped.

Lemma 2.1.7 (View Idempotency) If ~s is a legal position then xx~syy = x~sy and
pp~sqq = p~sq.

Definition If ~s is a legal position of a function space arena A ⇒ B, with a an
initial move of A occurring in ~s, we define the following:

The B-component of ~s, written ~s � B, is the projection of ~s onto B, i.e. the
subsequence formed by taking only the moves in B, together with their justification
pointers.

The (A,a)-component of ~s, written ~s � (A, a), is the projection of ~s onto those moves
of A which are hereditarily justified by a, together with justification pointers.

In order to make the latter into a well-formed sequence we write ~s � (A, a)+ for
b · (~s � (A, a)), where b is the initial B-move justifying a.

Note that we have to identify A-components by their initial move, due to the
“hidden !”.

In order to distinguish between views taken in different sub-arenas we write, for ~s

a well-formed sequence in A, p~sq
A
, and similarly for O-views.

In the following lemmas ~s is a legal position of A ⇒ B, b is the initial B-move
which begins ~s, a is any initial move in A, and the last move of ~s is m.

Lemma 2.1.8 (O-view Projection)

(i) If m is in B then x~syA⇒B � B = x~s � ByB = x~syA⇒B

(ii) If m is in the component (A, a) then x~syA⇒B � (A, a)+ = b · p~s � (A, a)q
A

=

x~syA⇒B

Games, Innocence, and the Model D 28

Lemma 2.1.9 (Switching Convention) If m and m′ are consecutive moves of
~s and are in different components, then m′ is a P-move i.e. only Proponent may
change components.

Lemma 2.1.10 (P-view Projection)

(i) If m is in B then p~sq
A⇒B

� B � p~s � BqB

(ii) If m is in (A, a) then p~sq
A⇒B

� (A, a)+ � b · p~s � (A, a)q
A

(The order � is that of subsequence, which respects pointers in justified sequences.)

Lemma 2.1.11 (Projection Convention)

(i) ~s � B is a legal position in B.

(ii) ~s � (A, a) is a legal position in A.

2.2 Strategies and Composition

Informally, a strategy is information which tells one of the players which move
to make next, or not to make a next move, in any given situation. We define a
strategy as the set of all possible sequences of moves which the player is prepared
to see played.

Definition A P-strategy σ for a single-tree arena A consists of a nonempty prefix-
closed subset of legal positions of A subject to:

Determinacy: If ~s·m ∈ σ ∧ ~s·m′ ∈ σ for P-moves m and m′ then ~s·m = ~s·m′.
(Equality of justified sequences includes equality of justification pointers, hence
the moves m and m′, and their justification pointers, are the same.)

Contingent Completeness: If ~s · m ∈ σ for a P-move m and ~s · m · m′ is a
legal position of A then ~s · m · m′ ∈ σ.

An O-strategy is defined analogously. However we are more often interested in
P-strategies which we will usually just refer to as strategies.

For a general arena A = 〈A1, . . . , An〉 a P-strategy is an n-tuple of P-strategies,
one for each tree (and we refer to these n P-strategies as the component strategies).
However, an O-strategy is just a single O-strategy on one of the trees, together with
information which selects that tree. This difference is in view of Remark 2.1.4.

The property of determinacy means that, given any legal position after which
it is Proponent’s turn to play (i.e. the last move was made by Opponent), either
Proponent may not make a reply or their move is uniquely determined. Contingent
Completeness means that all of Opponent’s possible next moves are part of the
strategy (although this is not to say that Proponent need reply to them).

Games, Innocence, and the Model D 29

Remark 2.2.1 The standard definitions of strategy ([HO00], [Nic96], [McC98])
do not need to consider multiple-tree arenas as a special case, since usually the
initial moves of the trees can be referred to under distinct names. A P-strategy
is then just a prefix-closed set of legal positions, subject to the rules above, which
must also contain every initial move of the arena (and an O-strategy is the same
except that it contains at most one initial move of the arena).

However we prefer to keep to the terminology that an initial move is labelled ε,
and add some special cases to the definitions to cope with multiple-tree arenas.

Example 2.2.2 The simplest strategy is defined by the set {ε} i.e. the only legal
position in it is ε. This is a strategy on any single-tree arena, and is denoted ⊥.
We call this the undefined strategy or the empty strategy (even though it is not
actually an empty set).

Definition We can define the play of a P-strategy σ against an O-strategy τ
to be the sequence of moves generated by them both. By the rules of contingent
completeness and determinacy, σ ∩ τ contains one (finite or infinite) chain of legal
positions (ordered by prefix as always). The join of this chain is the play.

If we have strategies σ and τ on arenas A ⇒ B and B ⇒ C respectively then
we can form their composite strategy σ ; τ on A ⇒ C. Informally we do this by
identifying O/P-moves of the B component of A ⇒ B with P/O-moves of the B
component of B ⇒ C, and then hiding all the moves in B. This is reminiscent of
CSP’s “parallel composition” and “hiding” operators. We describe this in formal
detail only briefly, as details which carry directly to declaration games can be found
in [HO00]. We first illustrate the ideas with an example.

Example 2.2.3 Suppose that we have strategies σ on A ⇒ B and τ on B ⇒ C,
for single-tree arenas A, B and C. We picture a possible computation of the first
move of the composite strategy σ ; τ below.

A

B B

C

m0

m1m2

m7

m3

m4

m5

m6

;

Games, Innocence, and the Model D 30

This diagram illustrates the computation of the first P-move of the strategy σ ; τ .
Suppose that the first move of the strategy σ in response to the initial O-move
m0 is the P-move m1, in the arena B ⇒ C. The way composition is computed,
since the move m1 occurs in the arena B it is duplicated as the O-move m2 in
the arena A ⇒ B, where it is the initial O-move seen by the strategy τ . We
suppose that τ ’s response to this initial move is the P-move m3, which is the B-
component of the arena A ⇒ B. This move is duplicated as the O-move m4 in
the arena B ⇒ C. The strategy σ has now seen the sequence 〈m0, m1, m4〉 (each
non-initial move was justified by the immediately preceding move) and we suppose
that its response is the P-move m5, in the B-component of the arena B ⇒ C.
This is duplicated as an O-move in the arena A ⇒ B. The strategy τ has now
seen the sequence 〈m2, m3, m6〉 (again each non-initial move was justified by the
immediately preceding move) and this time we suppose that its response is the
P-move m7, which is in the A-component of the arena A ⇒ B. Since this move is
not in the hidden arena B, it is the first visible move of the composition after the
initial move m0. Thus we have calculated that the strategy σ ; τ , a strategy on the
arena A ⇒ C, makes the move m7, the root of the C-component, in response to
the initial move m0.

The formal definitions are as follows.

Definition Suppose we are given two arenas A ⇒ B and B ⇒ C. We say that ~s
is an interaction sequence of A, B and C and write ~s ∈ ias(A, B, C) if the following
conditions hold:

(i) ~s is made up of moves from the arenas A, B and C, and each move except
the first is equipped with a justification pointer to some previous move;

(ii) ~s � (B, C), the subsequence of moves in ~s in B or C with the polarity of
moves of B swapped to resemble B ⇒ C, is a legal position of B ⇒ C;

(iii) ~s � (A, B, b), the subsequence of moves in A or B hereditarily justified by b,
with the polarity of moves of A swapped, is a legal position of A ⇒ B, for
all initial B-moves b ∈ ~s.

(iv) ~s � (A, C), the subsequence of all moves in A and C, with the polarity of
moves in A swapped, and with pointers from A to C via a sequence of moves
in B renamed as pointers directly from A to C, is a legal position of A ⇒ C.

For strategies σ : A ⇒ B and τ : B ⇒ C define the composite strategy as follows:

σ ; τ = { ~s � (A, C) | ~s ∈ ias(A, B, C) ∧

~s � (A, B, b) ∈ σ for all initial B-moves b ∈ ~s ∧ ~s � (B, C) ∈ τ }

An essentially straightforward result, although very technical in proof, is that com-
position is well-defined and associative. For a proof see [HO00, 5.1.3].

Games, Innocence, and the Model D 31

Lemma 2.2.4

(i) If σ and τ are strategies on A ⇒ B and B ⇒ C respectively then σ ; τ is a
strategy on A ⇒ C.

(ii) If, in addition, ρ is a strategy on C ⇒ D, then (σ ; τ) ; ρ = σ ; (τ ; ρ)

Remark 2.2.5 For arenas with multiple trees, one must sometimes identify
copies of the same arena in the composite strategy. For example, if we have strate-
gies σ and τ on A ⇒ (B1 × B2) and (B1 × B2) ⇒ C respectively, for single-tree
arenas A, B1, B2, and C, then the composition σ ; τ will look like:

A
B1

A
B2 B1 B2

C;

and moves made in either copy of A will appear in the single copy of A in the
composite strategy on A ⇒ C.

When analysing a composition it is useful to be able to refer to the intermediate
moves which were hidden. The following definition allows us to see all the moves,
including the hidden ones, up to but not including the visible move about to occur
after a specified legal position of the composite arena.

Definition For strategies σ and τ on A ⇒ B and B ⇒ C respectively, and a
legal position ~s of A ⇒ C the uncovering of ~s with respect to σ and τ , written
u(~s, σ, τ), is the unique maximal sequence ~u satisfying the following conditions:

(i) ~u ∈ ias(A, B, C);

(ii) ~u � (A, C) ≤ ~s;

(iii) ~u � (A, B, b) ∈ σ for all initial B-moves b ∈ ~u;

(iv) ~u � (B, C) ∈ τ .

Example 2.2.6 If the strategies σ and τ and moves mi are as defined in Exam-
ple 2.2.3, the uncovering of the minimal legal position (the sequence consisting only
of the initial move) shows all the moves of the composition up to but not including
the second visible move. That is, u(〈m0〉, σ, τ) is the justified sequence:

•
m0

?
m1

?
m2

?
m3

?
m4

?
m5

?
m6

Games, Innocence, and the Model D 32

This illustrates how we typeset a justified sequence, with justification pointers
represented by lines. Note that in an interaction sequence, all the moves occurring
in the hidden arena are both O- and P-moves, depending on which strategy is
looking at them, and hence they are denoted ?.

2.3 Innocent and Recursive Innocent Strategies

As we commented in Section 2.1, we suppose that both players only notice the
“relevant” previous moves when playing their next move. Exactly which moves
were relevant to Proponent was made precise in the definition of P-view, and we
now enforce the property that Proponent’s strategies may only take this relevant
information into account.

Definition A P-strategy σ on a single-tree arena is innocent if for odd-length
legal positions ~s and ~t and P-moves m,

~s · m ∈ σ ∧ ~t ∈ σ ∧ p~sq = p~tq =⇒ ~t · m ∈ σ ∧ p~s · mq = p~t · mq

i.e. P’s next move, and its justification, at each stage depends only on the P-view
up to that point.

A P-strategy on a multiple-tree arena is innocent if each of its components is
innocent in the above sense.

For more motivation of why innocence is important see [HO00, §7.5]. Put briefly,
innocent strategies have a certain amount of extensionality enforced on them. A
key result, which is technically difficult to prove (for details see [HO00, §5.3]) is
that composition of innocent strategies is well-defined:

Lemma 2.3.1 If σ is an innocent strategy on A ⇒ B and τ an innocent strategy
on B ⇒ C then σ ; τ is an innocent strategy on A ⇒ C.

If we recall the definition of a strategy, the property of determinacy means that
strategies can be thought of as functions mapping legal positions ending in O-moves
to Proponent’s next move. The rule of contingent completeness then fills in the
rest of the detail, which is that positions ending in P-moves can be followed by any
legal O-move.

Furthermore, the property of innocence means that the move, and its justification,
made by Proponent depends only on the P-view of the legal position preceding it,
so if a strategy is considered as a function its value depends only on the P-view of
its argument. Recall that by a P-view of an arena A we mean a justified sequence

Games, Innocence, and the Model D 33

which is the P-view of some legal position of A; then an innocent strategy on A
could be represented by a function mapping P-views of A to justified P-moves,
that is P-moves equipped with a justification pointer back into the argument of the
function.

Definition For an innocent strategy on a single-tree arena σ we can define the
innocent function of σ, written fσ, which is a partial map from P-views which end
in O-moves to justified P-moves, by f(p~sq) = m, with a pointer from m to the move
m− in ~s, if ~s · m ∈ σ and m is justified by m−.

We can define the innocent function of an innocent strategy on a multiple-tree arena
by forming a tuple of the innocent functions of the components of the strategy.

The reader will find it easy to verify that the empty strategy ⊥ is trivially innocent,
and that its innocent function is the everywhere undefined function.

Remark 2.3.2 In order to make this a proper mathematical function we need
to encode the pointer of a justified P-move. We could follow the encoding in Re-
mark 2.1.3, then the justified P-move is a pair consisting of a P-move and a natural
number which says how many pairs of moves one has to go back from the end of
the argument of the innocent function. Indeed, the presentations given in [HO00]
and [Nic96] used encodings of justified P-moves from the start. However we pre-
fer to avoid encoding the pointers when typesetting innocent functions, leaving
encodings for Section 3.1.

A function constructed in this way is called innocent and we can formalise such
functions.

Definition We say that f is an innocent function on a single-tree arena A if f
maps P-views in A with P to move to justified P-moves, and the following conditions
hold:

(i) dom(f) is prefix-closed,

(ii) If ~s ·m− ·~t ·m ·m′ ∈ dom(f), with m justified by m−, then f(~s ·m− ·~t) = m,
and m points to the move m−,

(iii) If f(~s) = m then m is a child in the arena A of the move which it points to
in ~s.

Obviously, an innocent function on a multiple-tree arena consists of a tuple of
innocent functions, one for each tree in the arena.

We note that a function with such domain can only encode an innocent strategy.
The conditions listed are required to make the function “strategic”, i.e. the set of

Games, Innocence, and the Model D 34

legal positions it describes are prefix-closed, deterministic and made up of properly
justified sequences of moves. These conditions are sufficient to allow us to construct
a unique strategy from an innocent function as follows:

Definition Given an innocent function f on a single-tree arena A we can define
an innocent strategy σf inductively by:

(i) ε ∈ σf , where ε is the initial move of A.

(ii) If ~s ∈ σf , |~s| is even, and ~s · m a legal position of A then ~s · m ∈ σf

(iii) If ~s ∈ σf , |~s| is odd, and f(p~sq) is defined then the sequence “~s · f(p~sq)” is in
σf , where the extra justification pointer has to be relativised to the move in
~s which projects to the move specified by f in p~sq.

Further, the construction of innocent strategy from innocent function and vice
versa are mutually inverse:

Lemma 2.3.3

(i) f(σf) = f

(ii) σ(fσ) = σ

(iii) f ⊆ f ′ ⇐⇒ σf ⊆ σf ′

(iv) σ ⊆ σ′ ⇐⇒ fσ ⊆ fσ′

In view of this very strong correspondence between innocent functions on A and
innocent strategies on A, we use the representations of strategies as innocent func-
tions and subsets of legal positions interchangeably. We draw attention to the
difference between “the innocent function” of an innocent strategy, and “an inno-
cent function” on an arena. Each of the former must be one of the latter.

The representation as an innocent function allows us to define the following prop-
erties of strategies cleanly.

Definition

(i) An innocent strategy is said to be compact if the domain of definition of its
innocent function is finite.

(ii) We say that an innocent strategy is recursive if the innocent function repre-
senting it is recursive, after some encoding of P-views and justified P-moves.

It does not make much sense to talk about a recursive function on a domain which
is not at least r.e., and so we only consider recursive strategies on r.e. arenas. This
also guarantees that as a set of legal positions a recursive innocent strategy is an
r.e. set. Note that the innocent function representation of an innocent strategy can
be found effectively, and vice versa. Also it is clear that composition of strategies
is given effectively. Hence,

Games, Innocence, and the Model D 35

Lemma 2.3.4 The composition of two recursive innocent strategies is itself re-
cursive.

The technology of innocent functions, and the representation of justification point-
ers as numbers, allows us to define strategies in an intuitive and typographically
sensible way. (Note: This is not the only reason for their introduction!) We give
an example of some innocent strategies to illustrate some of the recurring themes,
to introduce our notation for innocent functions, and for use in the next section.

For any single-tree arena A we can define the identity strategy on A ⇒ A, which
can be pictured as below.

A1
A2

Both A1 and A2 are copies of the arena A. We write idA for the strategy which
plays the P-move 〈1〉 in response to the initial move ε, and then in response to any
O-move in the component A1 (respectively A2) it plays the identical move (which
will be a P-move) in the component A2 (respectively A1). Formally, the innocent
function of idA is:

•

ε
7→

◦

1

•

ε

◦

1

•

1a
7→

◦

(a + 1)

•

ε
· · ·

•

(a + 1)~s

◦

1a~s

•

1a~sb
7→

◦

(a + 1)~sb

•

ε
· · ·

•

1a~s

◦

(a + 1)~s

•

(a + 1)~sb
7→

◦

1a~sb

for any sequence ~s which is of appropriate parity of length (odd in the third clause,
even in the fourth) and such that the moves 1a~s, 1a~sb, etc. do actually exist in the
arena A ⇒ A.

We have omitted some justification pointers in the innocent function, but they
can be reconstructed from the action of the function on shorter P-views, so this is
unambiguous.

This is an example of a copycat strategy, in which P’s response to any non-initial
O’s move is just to copy it into another tree (copycat strategies were so named
in [AJ92]). To generalise to multiple-tree arenas we first look at another example

Games, Innocence, and the Model D 36

of a copycat strategy, which we will need in order to construct the categories we
use.

For an arena A = 〈A1, . . . , An〉 and for i = 1, . . . , n we can define the projection
strategy on the single-tree arena A ⇒ Ai (shown below), written πA

Ai
, as a copycat

strategy with innocent function given by:

· · · · · ·A1 Ai An
Ai

•

ε
7→

◦

i

•

ε

◦

i

•

ia
7→

◦

(a + n)

•

ε
· · ·

•

(a + n)~s

◦

ia~s

•

ia~sb
7→

◦

(a + n)~sb

•

ε
· · ·

•

ia~s

◦

(a + n)~s

•

(a + n)~sb
7→

◦

ia~sb

Here ~s ranges over sequences of numbers of appropriate parity of length, and a and
b over positive natural numbers.

Then the identity strategy on any arena A is

idA = 〈πA
A1

, . . . , πA
An

〉

The reader is invited to verify that identities and projections work as expected.

2.4 λ-Algebras in Categories of Innocent Strate-

gies

In this section we show that arenas and innocent strategies form a category, which
is cartesian closed and has a reflexive object, hence leading to the first game model
of the untyped λ-calculus, which we call D. There is also a recursive analogue
DREC.

Definition The Category of Arenas and Innocent Strategies, A, is defined as
follows:

(i) Objects are arenas;

(ii) Morphisms f : A → B are innocent strategies on the function space arena
A ⇒ B;

Games, Innocence, and the Model D 37

(iii) Composition of morphisms is composition as strategies;

(iv) The identity morphism on A is the copycat strategy idA.

Lemmas 2.2.4, 2.3.1 and the properties of identities show that A is indeed a cate-
gory.

Theorem 2.4.1 A is cartesian closed.

Proof We define products and exponentials as follows:

(i) The terminal object 1 is the arena E (defined in Example 2.1.2, the arena
consisting of no trees);

(ii) The product of A and B is the product arena A × B;

(iii) Projections are copycat strategies. If A = 〈A1, . . . , Am〉 and B = 〈B1, . . . , Bn〉
then define

πA×B
A : (A × B) → A = 〈π

〈A1,...,Am,B1,...,Bn〉
Ai

| i ∈ {1, . . . , m}〉

πA×B
B : (A × B) → B = 〈π

〈A1,...,Am,B1,...,Bn〉
Bi

| i ∈ {1, . . . , n}〉

(iv) The exponential object (A ⇒ B) is the function space arena A ⇒ B;

(v) Note that the arenas (A ⇒ B) × A ⇒ B and (A ⇒ B) ⇒ (A ⇒ B) are
identical. Take the evaluation morphism evalA,B : (A ⇒ B) × A → B to be
the same strategy as idA⇒B : (A ⇒ B) → (A ⇒ B).

We draw attention to the distinction between idA⇒B and evalA,B as morphisms.
They are given by the same strategy, but have different domains and codomains
and hence are different morphisms.

It is clear that for any arena A the arena A ⇒ 1 is the empty arena E and hence
that there is a unique morphism !A : A ⇒ 1, the empty strategy ⊥ defined in
Example 2.2.2. Note that 1 ⇒ A = A.

To show that A is cartesian we need that for arenas A, B, C and morphisms σ : A ⇒
B and τ : A ⇒ C we have a unique morphism 〈σ, τ〉 such that 〈σ, τ〉 ;πB×C

B = σ and
〈σ, τ〉 ; πB×C

C = τ . Given the above conditions and the properties of the strategies
π we can easily show that the morphism

〈σ, τ〉 : A → (B × C) = σ · τ

works as required (recall that σ and τ will be tuples of strategies on single-tree
arenas — the operation · is simply concatenation).

To show cartesian closure we need that for each f : A × B → C there is a unique
Λ(f) : A → (B ⇒ C) such that f = (Λ(f) × idB) ; evalB,C . Note that the arenas
(A × B) ⇒ C and A ⇒ (B ⇒ C) are identical. Since evalB,C = idB⇒C , as
strategies, it is easy to check that taking Λ(f) as the same strategy as f is such a
unique morphism. �

Games, Innocence, and the Model D 38

Definition The Category of Arenas and Recursive Innocent Strategies, AREC, is
the subcategory of A with objects restricted to r.e. arenas and morphisms restricted
to recursive innocent strategies.

Lemma 2.3.4, and the observation that identity and projection strategies are re-
cursive, show that AREC is also a cartesian closed category with the same cartesian
closed structure as A.

Recall that the arena U , the “maximal” single-tree arena defined in Example 2.1.2,
is given in sequence-subset form by 〈N∗〉. Observe that U = U ⇒ U , so that the
strategy idU defines both the morphisms Fun : U → (U ⇒ U) and Gr : (U ⇒
U) → U , and these morphisms satisfy Gr ; Fun = idU⇒U and Fun ; Gr = idU . Also
U is r.e., and Fun and Gr are recursive strategies, so U is a reflexive object of both
A and AREC, for which the retraction maps form an isomorphism.

Thus we can use the terminology of Proposition 1.6.3 to make the following defi-
nition.

Definition We write D for the λ-algebra M(A, U,Fun,Gr), and DREC for the
λ-algebra M(AREC, U,Fun,Gr).

Propositions 1.6.3, 1.6.4 and 1.5.2 then show the following.

Theorem 2.4.2 D and DREC form λη-algebras.

The only difference between D and DREC is the ambient categories from which they
arose, and there is no difference in the strategies used for identities, projections and
retractions in those categories. Thus the interpretation function [[−]]ρ is the same in
both D and DREC (except that the valuation ρ may map variables to non-recursive
elements in D) and we write [[s]] for the strategy which denotes the closed term s
in either model.

Remark 2.4.3 All arenas (or r.e. arenas in the case of AREC) are not necessary
to form a CCC leading to the λ-algebras D and DREC. It is sufficient to consider
the category which we call U, where the objects are only the arenas made up of
trees which look like the arena U . That is, the objects are E and finite products
Un. This is easily seen to be a full sub-CCC of A, and still possesses the same
reflexive object, hence D could equally be presented as M(U, U,Fun,Gr). The
recursive analogue is called UREC, the full sub-CCC of AREC consisting of the same
objects and recursive strategies.

We prefer to present the full categories A and AREC, but there are some definitions
in what follows which are really aimed at the models D and DREC, and which gain a
certain amount of complexity when defined in full generality. We will still make the
more general definitions, but comment when simpler definitions would be sufficient
for U and UREC.

Games, Innocence, and the Model D 39

For future use we lift the notion of application in D and DREC directly to strategies
on U :

Definition For innocent strategies σ and τ on Un ⇒ U (for any n ∈ N0) we write
σ • τ for 〈σ ; Fun, τ〉 ; evalU,U .

Thus for terms s and t, not necessarily closed, [[st]]∆ = [[s]]∆ • [[t]]∆.

Since some later results will require a fairly delicate analysis of application as
strategies, we investigate what happens. Firstly note that since the morphism Fun
is given by the strategy idU it does not affect the moves of the strategy σ. The
arenas of the outer composition are shown below, with each subtree being a copy
of the arena U :

· · ·
U1

U2{

σ played

{

A

· · · U3{
τ played

{

A {
eval played on this tree

U1

U2 U3

U4;

The composition identifies moves made in the U arenas marked U1, U2 and U3 and
all are hidden, with the moves being made in U4 visible. All the little trees labelled
A — which represent the free variables in σ and τ , so we could call them context
subtrees — are merged into one set of visible trees (as in Remark 2.2.5).

The strategy eval plays in response to the initial move, the root of U4, the first
move the root of the tree U2. Thereafter moves played in the tree U2 are copied
across into U4 and vice-versa. Similarly moves are copied between U1 and U3. That
is, the composition first plays across into the root node of the tree U1 ⇒ U2, on
which σ is played. Moves made by this strategy σ in the tree U2 are visible, and
moves made in the tree U1 are copied across and played against by τ .

Thus the net effect is that σ • τ is the strategy whose visible moves are those of
σ in all except the leftmost non-context subtree, in which moves are played and
hidden with τ playing as the opponent.

Note that when there are no free variables, and hence no context subtrees, this is
exactly the same as the strategy τ ; σ.

Games, Innocence, and the Model D 40

2.5 Properties of D and DREC

We now examine the properties of the λ-algebras we have defined. We are able to
show that they are sensible (i.e. the equational theory induced by the models is a
sensible λ-theory), but in other respects they are rather unsatisfactory.

A standard method to show that a model is sensible is to use an approximation
on the elements of the model. The approximation we will use is based on the
approximation of arenas which then induces an approximation on strategies.

Definition If σ is an innocent strategy on an arena A and B is a sub-arena of A
we define σ‖B : ~v → m, with m justified by a move m− in ~v, if σ : ~v → m with
m justified by the same move m− in ~v, and all of the moves in ~v and m are in the
sub-arena B. We call σ‖B “the restriction of σ to B”.

Here we are considering σ as an innocent function (and the justification pointers
of the P-view ~v and the move m do not make any difference as to whether σ‖B :
~v → m).

Note that σ‖B is still a strategy on the arena A, but is undefined at some
P-views. An alternative definition is to consider the strategies as subsets of legal
positions, then σ‖B = (σ ∩ {~s | ~s is a legal position of B})+, if S+ means the
closure of the set S of legal positions under the rule of contingent completeness.

The intuition behind this is that parts of the arena A other than B are “out of
bounds” and σ‖B will neither play there nor respond to moves played there, but
will otherwise behave as σ.

Lemma 2.5.1 If σ : A ⇒ B, A′ is a sub-arena of A and B ′ is a sub-arena of B
then

σ‖A⇒B′ = σ ; ιB′

σ‖A′⇒B = ιA′ ; σ

where ιA′ : A → A and ιB′ : B → B are the identity strategies on A and B
restricted to A′ ⇒ A′ and B′ ⇒ B′ respectively.

Proof A straightforward modification of the proof that idA ; σ = σ = σ ; idB �

Corollary 2.5.2 If σ : A ⇒ B, τ : B ⇒ C, B ′ is a sub-arena of B and C ′ a
sub-arena of C then

(σ‖A⇒B′) ; τ = σ ; (τ‖B′⇒C)
σ ; (τ‖B⇒C′) = (σ ; τ)‖A⇒C′

With this definition of restriction we introduce arenas which approximate the arena
U , and an induced approximation on innocent strategies over U .

Games, Innocence, and the Model D 41

Definition

(i) U0 = M, the “minimal” single-tree arena defined in Example 2.1.2,

(ii) Un+1 = Un ⇒ Un,

(iii) If σ is an innocent strategy on U then σn = σ‖Un.

Note that U =
⋃

n∈ω Un. This particular definition of Un also has the following key
property:

Lemma 2.5.3 evalU,U‖(Un+1×U)⇒U = evalU,U‖(U×Un)⇒Un

Proof As strategies we know that evalU,U and idU⇒U are identical. Further,
from Lemma 2.5.1 it is clear that for any sub-arena A′ of A we have idA‖A′⇒A =
idA‖A⇒A′. Hence taking A′ = Un ⇒ Un and A = (U ⇒ U) = U we have that, as
strategies:

evalU,U‖(Un+1×U)⇒U = idU⇒U‖(Un⇒Un)⇒(U⇒U)

= idU⇒U‖(U⇒U)⇒(Un⇒Un)

= idU⇒U‖((U⇒U)×Un)⇒Un

= evalU,U‖(U×Un)⇒Un

�

Thus σn satisfies these properties, which we need for an approximation:

Lemma 2.5.4 For σ, τ : 1 → U in A (i.e. elements of the models D or DREC),

(i) σ =
⋃

n∈ω σn,
(ii) σ0 = ⊥,
(iii) (σm)n = σmin(m,n),
(iv) σn+1 • τ = (σ • τn)n.

Proof (i)–(iii) follow immediately from the definition. For (iv) use Lemma 2.5.3.
�

Theorem 2.5.5 The λ-algebras D and DREC are sensible. Any term s is unsolv-
able if and only if [[s]] = ⊥.

Proof This now follows a standard argument, which we do not reproduce in
entirety. The full details of this fact for the model D∞ can be found in [Bar84,
§19.2], and uses only properties of D∞ which we have proved for D and DREC.

The argument uses the technique of labelled β-reduction introduced by Hyland
in [Hyl76] and Wadsworth in [Wad76]. The properties of the approximation are
used to show that labelled reduction is monotone in the model, and hence that

Games, Innocence, and the Model D 42

labelled β-normal forms are maximal. This gives rise to an approximation theorem
— in the model any term is the union of its approximate normal forms (introduced
by Wadsworth in [Wad71]). Finally, it is simple to show that the only approximate
normal forms of unsolvable terms have denotation ⊥. �

Remark 2.5.6 It would now be possible to use a fairly simple and standard
argument to show that the local structure of the models D and DREC is the theory
H∗. (The argument parallels that for Scott’s model D∞ given in [Bar84, §19.2].)
Rather than prove this result using approximation, however, we prefer to wait
until the following chapter, when the local structure of the models will be a simple
corollary to the Exact Correspondence Theorem 3.3.1.

We now describe some of the less satisfying properties of the models.

Theorem 2.5.7 D and DREC are not universal, not extensional and not even
weakly extensional, thus they are not λ-models.

Proof Recall that ⊥ is the “empty” innocent strategy with everywhere undefined
innocent function. Define the strategy ⊥′ on the arena U by the following innocent
function:

•

ε
7→

◦

1

That is, ⊥′ is the set {ε, ε · 1} ∪ {ε · 1 · n | n ∈ N}

We may consider ⊥ and ⊥′ as defining morphisms 1 → U , and so as elements
of the models D and DREC. Certainly we have ⊥ 6= ⊥′. However, the fact that
neither ⊥ nor ⊥′ ever moves outside the first subtree means that they cannot make
moves that are visible in the composition which arises in application. Hence for all
strategies σ : 1 → U ,

⊥ • σ = ⊥′ • σ = ⊥.

Hence D and DREC are not extensional. We know that [[I]] = [[1]] in D and DREC,
since they are λη-algebras, and so by Lemma 1.6.2 they cannot be weakly exten-
sional either (so they are not λ-models).

We show that ⊥′ is not the denotation of any term as follows: Suppose there is
a term s such that [[s]] = ⊥′. We have shown that [[s]] • σ = ⊥ for all strategies
σ : 1 → U , so [[st]] = ⊥ for all terms t. Hence st is unsolvable for all t, so s is
unsolvable and hence [[s]] = ⊥. �

Thus D and DREC contain undefinable elements — large numbers of them in fact.
For any term s, all of the nontrivial compact approximants ([[s]])n are undefinable.
Finding an improved version of these models is the subject of the next chapter.

Chapter 3

Effectively Almost-Everywhere
Copycat Strategies and the Model
DEAC

The reason that D and DREC failed to be universal, or even weakly extensional,
is the existence of strategies like ⊥′ defined in the proof of Theorem 2.5.7. This
strategy has the same applicative behaviour as ⊥, and is not the denotation of any
term. If we could throw out strategies which offend in this manner we would hope
to improve the model; this is the aim of this chapter.

To do so we first present an economical way to encode strategies, together with a
representation of Nakajima trees which is variable-free (i.e. all bound variables are
replaced by syntax-free encoded “pointers”, which could be seen as two-dimensional
de Bruijn indices). The powerful result linking strategies and Nakajima trees, which
we call an Exact Correspondence Theorem is that the denotation of a term, in the
new economical representation, is precisely the same as the labelling function of
the variable-free Nakajima tree of that term. This allows us to examine the local
structure of the models D and DREC in more detail than we were able to in the
previous chapter, and show that they induce the equational theory H∗.

Using the characterisation of Böhm-like trees which are the Böhm trees of some
term, given in Section 1.5, we can restrict our attention to the effectively almost-
everywhere copycat strategies, and show that they live in a cartesian closed category
which gives rise to a λ-algebra DEAC. This does turn out to be universal. To
examine the extensionality properties of the model we prove a powerful result which
we call the Separation Lemma. This enables us to show that DEAC is extensional
(in fact order-extensional), and also to give a semantic proof of a separation result
for the theory H∗. The latter extends to a generalisation of Böhm’s Theorem on
separability in the theory λ.

43

EAC Strategies and the Model DEAC 44

3.1 Innocent Strategies in Economical Form

Recall the representation of innocent strategies as innocent functions, mapping P-
views to justified P-moves. We may encode any arena as a subset of N

∗, so that a
P-view is a (justified) sequence of elements of N∗, and also encode the justification
pointer as a member of N0 by counting the number of pairs of moves it points
backwards over, as in Remarks 2.1.3 and 2.3.2.

There are three properties which allow for a more compact representation of an
innocent strategy:

(i) We know that the domain of an innocent function is made up of P-views.
Lemma 2.1.6 shows that each non-initial O-move in any P-view must be a
child of the previous move, and the initial move must be ε.

(ii) The conditions on an innocent function mean that, for a P-view which is in
the domain of the function, given only the O-moves in this P-view and the
value of the innocent function on strictly shorter P-views we can reconstruct
the P-view entirely.

(iii) The condition of Justification on well-formed sequences means that the P-
move to which this P-view is mapped must be a child of the move which it
is justified by.

In view of these redundancies, we encode innocent strategies over any single-tree
arena as (partial) maps from N∗ to N × N0. We call this encoding the economical
form of σ and sometimes write it eσ (but usually we abuse notation and write it
fσ too). It is defined as follows:

eσ : 〈v1, . . . , vn〉 7→ (i, p) iff

fσ :
•

ε

◦

~s1

•

~s1v1

◦

~s2

•

~s2v2

· · ·
◦

~sn−p

•

~sn−pvn−p

· · ·
◦

~sn

•

~snvn

7→
◦

~sn−pvn−pi

(We set p = n when the resulting move in the clause of fσ is a child of the initial
move, intending “~s0v0” to mean the sequence 〈ε〉.)

Justification pointers in the P-view can be deduced from the behaviour of fσ on
shorter P-views, and so have been omitted. The sequences ~si are sequences of
natural numbers encoding moves in the way we use for sequence-subset form of
arenas. By the move “~sivi” we mean the move which is encoded by the sequence
~si · vi, which by definition is the vth

i child of the move encoded by ~si.

Furthermore, we can expand any partial function f : N
∗ ⇀ N × N0 which has

prefix-closed domain and satisfies f(~v) = (i, p) =⇒ 0 ≤ p ≤ |~v| into an innocent
strategy on U . Depending on the function, we might not need the whole of U to
contain the strategy.

EAC Strategies and the Model DEAC 45

A strategy on a multiple-tree arena will be encoded as a tuple of such functions, one
for each component. In practice we will only be interested in using this encoding
for the arena U .

Example 3.1.1 Recall that the following is the innocent function of the copycat
strategy idU :

•
ε

◦
1

7→
� �

•
ε

◦
1

•
1a

◦
(a+1)

7→
� �

•
ε

· · · •
(a+1)~s

◦
1a~s

•
1a~sb

◦
(a+1)~sb

7→
� �

•
ε

· · · •
1a~s

◦
(a+1)~s

•
(a+1)~sb

◦
1a~sb

7→
� �

Here ~s ranges over sequences of appropriate parity, a and b over positive natural
numbers. The reader is invited to check that the economical form of this strategy
is given by: ε 7→ (1, 0), i 7→ (i + 1, 1) and for nonempty sequences ~v, ~vi 7→ (i, 1).

3.2 Nakajima Trees and Variable-Free Form

Recall that definition of Nakajima tree from Section 1.5: for a λ-term s the
Nakajima tree of s, written NT(s), is the tree, partially labelled with elements
of {λx1x2 . . . • y | x1, x2, . . . , y variables}, defined inductively as follows.

NT(s) = ⊥ if s is unsolvable

NT(s) = λx1 . . . xnz0z1 . . . • y

NT(s1) · · · NT(sm) NT(z0) NT(z1) · · ·

if s has hnf

λx1 . . . xn.ys1 . . . sm

where z0, z1, . . . are countably many fresh variables.

In order to work modulo α-conversion, we would like to follow de Bruijn (as
in [dB72]) and construct a variable-free representation of Nakajima trees. We
know that each node which has a label has one of the form λx1x2 . . .•y and always
has countably many children, so all we need to encode are the head variables at
each node. Assuming that the term whose Nakajima tree we are encoding is closed,
each head variable is abstracted over either at the node where the head variable
occurs, or one of its ancestors in the tree. We thus encode each labelled node’s
head variable as a pair, the second component of which counts how many levels up
the tree we go to find the abstraction which introduced this head variable, and the
first component counts how far along the infinite chain of abstractions this variable
appears.

EAC Strategies and the Model DEAC 46

Example 3.2.1 We illustrate this with an example. Recall from Example 1.5.5
that the term λx.xΩ(λy.yx) has Nakajima tree of which the following is a part
(some subtrees are missing):

λxz0z1 . . . • x

⊥ λyu0u1 . . . • y

λ . . . • x λ . . . • u0 λ . . . • u1 · · ·

λ . . . • z0 λ . . . • z1 · · ·

The node labelled λ . . . • z0 should be encoded as the pair (2, 1) corresponding to
the fact that we go up one level of the tree and take the second abstracted variable
to get z0. Similarly the node in the lowest pictured level labelled λ . . . • x should
be encoded (1, 2).

A precise definition of this encoding is tricky, because we have to deal with free
variables, and were we to try to build the variable-free form by breaking down
the Nakajima Tree we would uncover countably many free variables under each
abstraction. The following definition is quite technical, and we have to do a bit
of work to show that this definition matches up with the informal notion just
described, but this form is useful for the characterisation proof which follows.

Definition For a partially (N×N0)-labelled tree p the tree {p}∗ is the same tree
labelled identically, except that nodes at depth d labelled (i, d + 1) are relabelled
(i, d + 2).

Similarly the tree {p}n, for n ∈ N0, is labelled identically except for nodes of depth
d as follows:

(i) those labelled (i, d) are relabelled (i + n, d);

(ii) those labelled (i, d + 1) for i ≤ n are relabelled (n − i + 1, d);

(iii) those labelled (i, d + 1) for i > n are relabelled (i − n, d + 1).

For a term s with free variables within ∆ the variable-free form of the Nakajima
tree of s, VFF∆(s), is the following partially (N × N0)-labelled tree:

EAC Strategies and the Model DEAC 47

VFF∆(s) = ⊥ , for unsolvable s.
VFF∆(λx1 . . . xn • s) = {VFF∆·〈x1,...,xn〉(s)}

n, if s is of the form ys1 . . . sm,
for some variable y

VFF∆(vjs1 . . . sm) =

(j, 1)

{VFF∆(s1)}
∗ · · · {VFF∆(sm)}∗ CC(1) CC(2) · · ·

where ∆ = 〈vk, . . . , v1〉 (note the reverse order).

Here CC(i) is the infinite tree defined by

CC(i) = (i, 1)

CC(1) CC(2) CC(3) · · ·

One should think of ∆ as a context for the tree — when the pointer for a variable
goes up one beyond the root of the tree, it references the context. The operation
{−}n corresponds to looking up to see which variables lie in the last n of the context
and adjoining them to the left of the tree (in reverse order, for technical reasons).
The operation {−}∗ passes references to the context further up the tree.

We note here that for any tree p, {p}0 = p and {{p}m}n = {p}m+n.

Lemma 3.2.2 This definition coincides with the informal notion of variable-free
form described earlier. Formally, suppose that s is a term with free variables all
occurring in the sequence ∆ = 〈vk, . . . , v1〉. Construct the Nakajima tree of s, and
rename all the bound variables so that if ~a ∈ N∗ is the sequence identifying a node
of the Nakajima tree then the abstracted variables at that node are renamed to
x~a

1, x
~a
2, . . . (in that order). Let this renamed Nakajima tree have labelling function

A, and consider VFF∆(s) also as a labelling function.

Then for any sequence ~a = 〈a1, . . . , ap〉 there are three possibilities for A(~a):

(i) If ~a /∈ dom(A) then VFF∆(s) is unlabelled or undefined at ~a,

(ii) If A(~a) = λx~a
1x

~a
2 . . . • vj then VFF∆(s)(~a) = (j, p + 1),

(iii) If A(~a) = λx~a
1x

~a
2 . . . • x

〈a1 ,...,ap−r〉
j then VFF∆(s)(~a) = (j, r).

Proof By induction on p (the length of ~a), for all terms s and sequences ∆ (which

EAC Strategies and the Model DEAC 48

contain all the free variables of s) simultaneously. Throughout this proof we use Γ
as a syntactic abbreviation for ∆ · 〈x1, . . . , xn〉.

Base Case: There are three cases:

(i) If s is unsolvable then ε /∈ dom(A) and VFF∆(s) is unlabelled at the root.

(ii) If s has hnf λx1 . . . xn.vjs1 . . . sm then A(ε) = λxε
1x

ε
2 . . . • vj and

VFFΓ(vjs1 . . . sm)(ε) = (j + n, 1)
hence VFF∆(s)(ε) = {VFFΓ(vjs1 . . . sm)}n(ε) = (j, 1).

(iii) If s has hnf λx1 . . . xn.xjs1 . . . sm then A(ε) = λxε
1x

ε
2 . . . • xε

j and

VFFΓ(xjs1 . . . sm)(ε) = (n − j + 1, 1)
hence VFF∆(s)(ε) = {VFFΓ(vjs1 . . . sm)}n(ε) = (j, 0).

In each case the result holds.

Inductive Step: We assume that the result holds for all terms s, sequences ∆
which contain all the free variables of s, and sequences ~a of length up to and
including l.

Take a particular term s and sequence ∆ = 〈vk, . . . , v1〉 containing all the free
variables of s. If s is unsolvable then the result is trivial as in (i) above. Otherwise,
suppose that s has hnf λx1 . . . xn.ys1 . . . sm for some variable y (which as above
will be either xj or vj, it will make no difference which). Take any sequence
~a = 〈a1, . . . , ap〉 for p ≤ l, and any i ∈ N0. We show that the result holds for the
sequence i ·~a (and we already know it holds for the sequence ε) which will establish
the inductive step as required.

Suppose that we take the Nakajima tree of the term si, and rename bound variables
so that the ith abstracted variable at the node encoded by ~v is renamed to y~v

i . Let
the labelling function of this tree be B. We know that the free variables of this
tree are contained within Γ, and we will be applying the induction hypothesis to
B. The definition of Nakajima tree describes how the labels of B are related to
those of A.

There are six cases:

(i) i ≤ m and i ·~a /∈ dom(A). Then ~a /∈ dom(B), so by the induction hypothesis
VFFΓ(si) is unlabelled or undefined at ~a, and hence VFF∆(s) is unlabelled
or undefined at i · ~a.

(ii) i ≤ m and A(i · ~a) = λxi·~a
1 . . . • vj. Then B(~a) = λy~a

1 . . . • vj so

by the induction hypothesis VFFΓ(si)(~a) = (j + n, p + 1)
hence {VFFΓ(si)}

∗(~a) = (j + n, p + 2)
hence VFFΓ(ys1 . . . sm)(i · ~a) = (j + n, p + 2)
hence VFF∆(s)(i · ~a) = (j, p + 2).

EAC Strategies and the Model DEAC 49

(iii) i ≤ m and A(i · ~a) = λxi·~a
1 . . . • xε

j. Then B(~a) = λy~a
1 . . . • xj so

by the induction hypothesis VFFΓ(si)(~a) = (n − j + 1, p + 1)
hence {VFFΓ(si)}

∗(~a) = (n − j + 1, p + 2)
hence VFFΓ(ys1 . . . sm)(i · ~a) = (n − j + 1, p + 2)
hence VFF∆(s)(i · ~a) = (j, p + 1).

(iv) i ≤ m and A(i ·~a) = λxi·~a
1 . . .•x

〈i,a1,...,an−r〉
j . Then B(~a) = λy~a

1 . . .• y
〈a1,...,an−r〉
j

so
by the induction hypothesis VFFΓ(si)(~a) = (j, r)

hence {VFFΓ(si)}
∗(~a) = (j, r)

hence VFFΓ(ys1 . . . sm)(i · ~a) = (j, r)
hence VFF∆(s)(i · ~a) = (j, r).

(v) i > m and ~a = ε. Then by the definition of Nakajima tree, A(i) = λxi
1 . . . •

xε
i−m+n. On the other hand,

VFFΓ(ys1 . . . sm)(i) = (i − m, 1)
so that VFF∆(s)(i) = {VFFΓ(ys1 . . . sm)}n(i) = (i − m + n, 1).

(vi) i > m and ~a = ~b · j for some j ∈ N0. Then by the definition of Nakajima

tree, A(i · ~a) = λxi·~a
1 . . . • xi·~b

j . On the other hand,

VFFΓ(ys1 . . . sm)(i · ~a) = (j, 1)
so that VFF∆(s)(i · ~a) = (j, 1).

We see that the result holds in each case.

�

Remark 3.2.3 The construction of VFF(s) from s is not a computable procedure,
because the predicate of solvability is not decidable. The same applies to the
definition we have given for Böhm tree and Nakajima tree (see Remark 1.5.3).
However Lemma 3.2.2 does give a recursive translation of Nakajima trees into
variable-free form.

The connexion between NT(s) and VFF(s), described formally in Lemma 3.2.2, is
now illustrated. Take the term s = λx.xΩ(λy.yx), the Nakajima tree of which is
given above in Example 3.2.1. Applying the rules for constructing the variable-free
form gives a tree of which part is:

VFFε(s) = (1, 0)

⊥ (1, 0)

(1, 2) (2, 1) (3, 1) · · ·

(2, 1) (3, 1) · · ·

EAC Strategies and the Model DEAC 50

The reader is invited to compare this with the Nakajima tree, and check what
Lemma 3.2.2 means at each pictured node.

3.3 Exact Correspondence and Local Structure

The representation of an innocent strategy described in Section 3.1, and that of
Nakajima tree in Section 3.2 are now pulled together. In the models D and DREC

the denotation of a term, in economical form, coincides with the labelling function
of the variable-free form of its Nakajima tree.

Theorem 3.3.1 (Exact Correspondence Theorem) If s ∈ Λ with free vari-
ables in ∆ = 〈vk, . . . , v1〉 then [[s]]∆ = {VFF∆(s)}k when the former is considered
in economical form and the latter as a labelling function.

In particular for closed terms s, [[s]]ε = VFFε(s).

Proof The two sides are partial functions from N∗ to N0 ×N so we need to show
that for all ~α ∈ N

∗,
[[s]]∆(~α) = {VFF∆(s)}k(~α).

We prove this by induction on the length of ~α for all terms s and contexts ∆
simultaneously. Notice that the variables of ∆ are labelled in reverse order again,
this is for convenience in the proof and irrelevant to the statement of the theorem.

Base Case: If s is unsolvable then both sides are the empty function.

If s is solvable, then either the head variable is free or not. Let us first suppose
that s = λx1 . . . xn.xjs1 . . . sm, and ∆ = 〈vk, . . . , v1〉. Then

[[s]]∆ = Λ(· · ·Λ(Λ
︸ ︷︷ ︸

n Λ’s

([[xjs1 . . . sm]]∆·〈x1,...,xn〉) ; Gr) ; Gr · · ·) ; Gr

but since as strategies Gr = idU and Λ(f) = f we can ignore these for the purposes
of calculating the denotation (as long as we keep track of the domain and codomain
of each strategy so we know which bits to hide when composing). Now,

[[xjs1 . . . sm]]∆·〈x1,...,xn〉 = (Π∆·〈x1,...,xn〉
xj

• [[s1]]∆·〈x1,...,xn〉) · · · • [[sm]]∆·〈x1,...,xn〉

where each term is a map from Un+k to U .

We will examine the nature of these sorts of compositions in a moment, but at
this stage all we need to note is that the first P-move in the calculation of such
a composition is the first P-move of the first term, which is Π

∆·〈x1,...,xn〉
xj . This has

first P-move k + j, justified by the initial O-move, and so [[s]]∆(ε) = (k + j, 0). This
move is visible in the composition.

EAC Strategies and the Model DEAC 51

On the other hand,

VFF∆(s) = {VFF∆·〈x1,...,xn〉(xjs1 . . . sm)}n.

Now VFF∆·〈x1,...,xn〉(xjs1 . . . sm) has root node (n− j + 1, 1), from the definition of
VFF, and so the same tree operated on by {−}n will have root node (j, 0). Thus
{VFF∆(s)}k(ε) = (k + j, 0).

The remaining case is when s = λx1 . . . xn.vjs1 . . . sm and ∆ = 〈vk, . . . , v1〉 and this
is entirely similar with both sides mapping ε to (k − j + 1, 0).

Inductive Case: Suppose that the result holds for all terms s, all contexts ∆
containing the free variables of s, for all sequences ~α up to length l.

Again either s is unsolvable, in which case the result is trivial, or s has hnf

λx1 . . . xn.xjs1 . . . sm or λx1 . . . xn.vjs1 . . . sm for vj ∈ ∆. Again, the last two cases
are similar and we will be able to prove them together.

To do so we will prove the result that [[vjs1 . . . sm]]∆(~α) = {VFF∆(vjs1 . . . sm)(~α)}k

for sequences ~α up to length l + 1 and then note that if s = λx1 . . . xn.t (where t
has variable at the head) then for ~α up to length l + 1,

[[s]]∆(~α) = [[t]]∆·~x(~α)
= {VFF∆·~x(t)}

k+n(~α)
= {{VFF∆·~x(t)}

n}k(~α) since {{p}m}n = {p}m+n

= {VFF∆(λx1 . . . xn.t)}k(~α)

which implies the required result.

So suppose t = vjs1 . . . sm. Then the induction hypothesis gives that [[si]]∆(~α) =
{VFF∆(~α)}k for sequences ~α up to length l. Now,

[[t]]∆ = (Π∆
vj
• [[s1]]∆) · · · • [[sm]]∆

and we have to take a detailed look at the nature of the above application. Recall
that for s, t : A → U , σ • τ = 〈σ ; Fun, τ〉 ; evalU,U and that as a strategy Fun does
nothing.

Let us restrict our attention to the case m = 1 so that t = vjs
′. The trees we

compose look like this:

•
· · · · · · · · ·

1 k − j + 1 k 1 k

X
Y

X

EAC Strategies and the Model DEAC 52

The application consists of composing the above pair with the eval strategy, which
has the effect of copying moves made in one X component to the other and hiding
both, and allows moves played in the context subtrees 1, . . . , k to be identified and
made visible.

Further, we know that on the left-hand tree we are playing the strategy Π∆
vj

which
has initial move k− j +1 and thereafter copies moves from the X ⇒ Y component
into the k − j + 1 context component.

Now a strategy σ = [[s′]]∆ is played on the right-hand tree. The diagram above
shows the first few moves of the composition. The composite strategy makes an
initial move of k − j + 1 and then in response to the move (k − j + 1)1 copies
across to the X component on the left, thence to the X component on the right.
Thereafter any moves played in the X component of the right-hand side are copied
over to the left-hand side, and then to the k − j + 1 component. These moves are
visible on the left-hand side.

In summary, moves played by σ in X appear in the k − j + 1 component. Other
moves made by σ, i.e. those in the first k subtrees, appear visible in the same
subtree on the left-hand side.

Now the induction hypothesis is that down to depth l of the economical form,
the strategy σ is {VFF∆(s′)}k. By the definition of Π∆

vj
the initial move of the

composition is k − j + 1 so the root of the economical form tree is (k − j + 1, 0).

Let us consider what the first subtree of the economical form of this composition
will be, down to depth l of that subtree (depth l + 1 of the whole tree):

There are two cases to consider. In the tree VFF∆(s′) any node at depth d labelled
(i, d) will be relabelled by the first clause of the definition of {−}k to (i + k, d).
These will appear as moves justified by the root of the tree and appearing in the
X part of the tree on the right. Nodes with second component strictly less than
their depth are unaffected. Then the copycat strategy Π∆

vj
reproduces these in the

k − j + 1 subtree. Hence the nodes of the economical form will be precisely those
of VFF∆(s′), at least to depth l.

However there might be also nodes at depth d labelled (i, d + 1) in VFF∆(s′), but
since all the free variables of s′ are in ∆ we can be sure that i ≤ k. Hence these
nodes are mapped by {−}k to (k − i + 1, d). As a strategy these are moves in
the context subtrees, and in the composition they will appear as children of the
very first move, hence justified by a move two before the root of X. Hence the
economical form will have corresponding label (k − i + 1, d + 1).

That completes the description of the first subtree of the economical form of the
composition.

EAC Strategies and the Model DEAC 53

i

i − 1

•
· · · · · · · · ·

1 k − j + 1 k 1 k

X
Y

X

If Opponent’s response to Proponent’s first move is (k − j + 1)i for i > 1 then this
move is copied into the Y component on the left-hand side and moves in response
are copied back-and-forth between the subtree i of Y and the k − j + 1 context
subtree. σ is not activated, and because the left-hand side has the X component
hidden, these copied moves appear in the composition to be from the k − j + 1
subtree to the k + i − 1 subtree.

Thus the economical form of the composition has the following ith subtree, for
i > 1: The root node is labelled (k + i − 1, 1) corresponding to the move shown
in the diagram above, and since we play copycat thereafter all other moves are
justified by the one three beforehand in the P-view, hence the j th child of any node
is labelled (j, 1). That is, this subtree is the same as CC(k + i − 1).

Recall that
VFF∆(t) = (j, 1)

{VFF∆(s′)}∗ CC(1) CC(2) · · ·

Thus
{VFF∆(t)}k = (k − j + 1, 0)

{VFF∆(s′)}× CC(k + 1) CC(k + 2) · · ·

where {VFF∆(s′)}× is the same as VFF∆(s′) except that

(i) nodes at depth d labelled (i, d + 1) for i ≤ k are relabelled (k − i + 1, d + 1);

(ii) nodes at depth d labelled (i, d + 1) for i > k are relabelled (i − k, d + 1).

However since all the free variables of s′ are in ∆, we can be sure that the second
case never happens. And that leaves what we have described for the economical
form of the composition, down to depth l for each subtree, i.e. depth l + 1 for the
whole tree.

Finally, we claim that the generalisation for any m clearly works in the same way.
�

EAC Strategies and the Model DEAC 54

Example 3.3.2 Referring back to the example of the last section, this means
that the economical form of the strategy [[λx.xΩ(λy.yx)]] is partially given by:

ε 7→ (1, 0)
undefined on 〈1〉
〈2〉 7→ (1, 0)
〈3〉 7→ (2, 1)

〈4〉 7→ (3, 1)
〈21〉 7→ (1, 2)
〈22〉 7→ (2, 1)
〈23〉 7→ (3, 1).

We noted in Remark 2.5.6 that the local structure of the models D and DREC can
be examined using the properties of the approximation for strategies proved in
Lemma 2.5.4. However we did not do so, because the local order structure of the
models follows immediately from the Exact Correspondence Theorem.

Corollary 3.3.3 In the models D and DREC, for closed terms s and t:

[[s]] ⊆ [[t]]
1

⇐⇒ NT(s) ⊆ NT(t)
2

⇐⇒ D∞ |= s ≤ t
3

⇐⇒ s � t.

The order ⊆ on the model is inclusion of strategies. That on Nakajima trees is
inclusion of labelling function, modulo renaming of bound variables, which amounts
to inclusion of variable-free form. The order ≤ on D∞ is the standard order on the
cpo, and the order � on Λ0 is given by:

s � t ⇐⇒ for all contexts C, C[s] solvable implies C[t] solvable.

Thus the local structure of the models D and DREC is the λη-theory H∗.

Proof Equivalence 1 is a consequence of the Exact Correspondence Theorem,
which states that [[s]] and NT(s) are essentially the same thing, modulo renaming
of bound variables.

Equivalence 2 was proved by Nakajima in [Nak75, 3.5].

Equivalence 3 is Hyland’s local structure theorem for D∞ and a proof can be found
in, for example, [Bar84, §19.2].

The fact that the local structure is the λη-theory H∗ follows immediately from
Lemma 1.5.7. �

3.4 Effectively Almost-Everywhere Copycat

Strategies

Now that we have another way to see what the denotations of terms are, we can
translate what we know about definable Böhm-like trees into information about
the definable strategies. These will be the effectively almost-everywhere copycat

EAC Strategies and the Model DEAC 55

strategies, and in this section we define them and construct a cartesian closed
category AREC using them.

We first have to introduce some notation to refer to subtrees of an arena.

Definition For tree-like A ⊆ N∗, i.e. those subsets which are prefix-closed and
~s · n ∈ A then ~s · m ∈ A for all m < n, we make the following definitions:

(i) If ~s ∈ A then A @~s = {~t | ~s · ~t ∈ A}.

(ii) If m ∈ N0 then A>m = {(i − m) · ~s | i · ~s ∈ A ∧ i > m}.

Thus A @~s is the subtree of A rooted at ~s (as defined it will still be a tree-like
subset of N∗), and A>m has had the first m branches of A deleted.

We also need a way to decode the economical form of innocent functions, at least
to see where in the arena a decoded strategy is playing.

Definition If f is the economical form of an innocent strategy on a single-tree
arena A and ~v = 〈v1, . . . , vn〉 ∈ dom(f) then we define a sequence of moves
〈m1, . . . , m2n+2〉 as follows:

m1 = ε
m2k = m2(k−p)−1 · i if f : 〈v1, . . . , vk−1〉 7→ (i, p)

m2k+1 = m2k · vk (for k > 0)

By m2(k−p)−1 · i we mean the move corresponding to that sequence in the sequence-
subset representation of A, i.e. the ith child of the move m2(k−p)−1.

We say that the mapping f : ~v 7→ (i, p) codes the P-move m2n+2, because by
following the P-strategy dictated by the function this is the move that will be the
one specified by that mapping. We denote the move m2n+2 constructed from ~v and
f in this manner by mp

f(~v). We omit the superscript wherever it is clear which
strategy is intended.

Similarly the fact that ~v ∈ dom(f) means that the O-move m2n+1 is in the strategy.
It is the O-move just before P is about to play as directed by the innocent function
described economically by f , and for this move we write mo

f(~v).

Note that for any innocent strategy the O-move mo(ε) is the initial move ε and
mp(ε) is the first P-move made by the strategy in response.

Now we can make the key definitions:

Definition Consider an innocent strategy in economical form f : N
∗ → N × N0,

over some single-tree arena A.

We say that f is everywhere copycat (EC) at ~v ∈ N∗ if f is undefined at ~v or the
following hold:

EAC Strategies and the Model DEAC 56

(i) The arenas A @mo(~v) and A @mp(~v) are order-isomorphic (with respect to
the prefix ordering, considered as subsets of N∗);

(ii) Whenever ~w ≥ ~v we have that for all i ∈ N such that the move mo(~w · i)
exists, f(~w · i) = (i, 1);

(iii) If f(~v) = (i, p) then p > 0.

We take the opportunity to illustrate an everywhere copycat strategy. Let us
assume that f is an innocent strategy in economical form on an arena A, and
suppose f is defined at ~v.

i

i
j

j

mo(~v)

mp(~v)

Intuitively we say that f is everywhere copycat at ~v if, from mp(~v) onwards, f ’s
behaviour is simply to play copycat for as long as the arena will allow it. In the
figure, the big triangle represents the arena A; the smaller triangle on the left
represents the subarena A @mo(~v) and that on the right represents A @mp(~v) —
note that by condition (i) the two are assumed to be isomorphic. Suppose O’s
response at mp(~v) is to play its ith child, then P responds with the ith child of
mo(~v). If O at that point plays the jth child of P’s last move, then P moves over
to the other subarena and responds with the jth child of O’s last move in that
subarena, and so on. In the figure, the strategy f ’s action is indicated by the
arrows i.e. P’s response is always to flip to the other subarena and copy O’s last
move there. Condition (i) in the definition guarantees that P’s copycat move will
always be available.

We may also view the definition in light of the correspondence between innocent
strategies and Nakajima trees, thanks to the Exact Correspondence Theorem, and
here we see that condition (ii) specifies that the subtree of the Nakajima tree
corresponding to f , rooted at ~v, has the following shape:

λx1x2 . . . • y

NT(x1) NT(x2) · · ·

Condition (iii) of the definition is a technicality, which ensures that the variable y
is not one of the xi.

EAC Strategies and the Model DEAC 57

Definition We say that f is almost-everywhere copycat (AC) at ~v if f is undefined
at ~v or there exist numbers t~v ∈ N0 and o~v ∈ Z with o~v ≤ t~v called the copycat
threshold and offset respectively, such that

(i) The arenas (A @mo(~v))>(t~v−o~v) and (A @mp(~v))>t~v are order-isomorphic;

(ii) For all i > t~v such that the move mo(~v · i) exists, f(~v · i) = (i − o~v, 1) and f
is everywhere copycat at ~v · i;

(iii) For all ~w ≥ (~v · k) with k ≤ t~v, if f(~w) = (i, |~w| − |~v|) then i ≤ t~v − o~v;

(iv) If f(~v) = (i, 0) then i ≤ t~v − o~v.

(Note that f is EC at ~v if and only if f is AC at ~v with t~v = o~v = 0.)

Finally, we say that f is effectively almost-everywhere copycat (EAC) if f is recur-
sive, almost-everywhere copycat at every sequence on which it is defined, and the
functions ~v 7→ t~v and ~v 7→ o~v are recursive. A strategy σ over a single-tree arena A
is EAC if its innocent function is EAC, and a strategy over a multiple-tree arena
is EAC if all of its components are EAC.

Suppose P plays a strategy which is almost-everywhere copycat at ~v. The two
arenas A @mo(~v) and A @mp(~v) are shown below.

.{

t~v − o~v

mo(~v)

.{

t~v

mp(~v)

The idea is that, except for finitely many subtrees of the moves in question, P’s
behaviour is “everywhere copycat” at mo(~v). Condition (i) says that the two
shaded areas are isomorphic, and (ii) forces P to simply copy O’s moves between
them. Condition (iii) means that subsequent O-moves not in the shaded areas
cannot lead to P-moves in the shaded areas, and (iv) is just that mp(~v) is not part
of the shaded area on the left. (Note that there is nothing to say that shaded areas
pictured cannot overlap.)

Since the notion of EAC is only defined for innocent strategies, we will sometimes
just say “EAC strategy” instead of “EAC innocent strategy”.

For a specific P-view ~v of such a function f , we will say that tv and ov are valid
copycat threshold and offset if f satisfies the conditions (i)-(iv) of AC at that
P-view with those particular values.

EAC Strategies and the Model DEAC 58

Remark 3.4.1 In practice we are only interested in EAC strategies over the
arena U , in which case the definitions can be slightly simplified. For example, the
conditions for a strategy to be AC at a P-view ~v become:

(i) For all i > tv, f(~v ·i) = (i−ov, 1) and for all ~w ∈ N
∗ and j ∈ N, f(~v ·i · ~w ·j) =

(j, 1);

(ii) For all ~w ≥ (~v · k) with k ≤ tv, if f(~w) = (i, |~w| − |~v|) then i ≤ tv − ov;

(iii) If f(~v) = (i, 0) then i ≤ tv − ov.

In fact, the definition is irrelevant for finitely branching arenas, as the following
lemma shows.

Lemma 3.4.2 Every strategy is AC at any P-view ~v such that both mo(~v) and
mp(~v) have finitely many children. Thus on a finitely branching arena every strat-
egy is EAC.

Proof Suppose that mo(~v) and mp(~v) have p and q children respectively in the
arena. Then tv = q and ov = q− p are a valid threshold and offset for any innocent
strategy to be AC at ~v, because both the arenas in (i) are empty, none of the moves
in question for condition (ii) exist, and the conditions i ≤ tv − ov in (iii) and (iv)
hold automatically. �

Lemma 3.4.3 If f : N
∗ → N × N0 is an innocent strategy in economical form,

and f is defined and AC at some P-view ~v with copycat threshold and offset tv and
ov respectively, then for any t′ ≥ tv, f is also AC at the P-view ~v with threshold
and offset t′ and ov respectively. That is, any value larger than a valid copycat
threshold is still a valid threshold for a specific P-view (with the same offset).

Proof It is easy to check that increasing the threshold only relaxes the conditions
(i), (ii) and (iv) on f in the definition of AC. To check that condition (iii) still holds,
suppose that ~w ≥ ~v · k. When k ≤ tv, (iii) is just a weaker condition on f than
before. When tv < k ≤ t′ there are two cases:

1. If ~w = ~v · k then by condition (ii) of the fact that tv is a valid threshold for f
at ~v, f(~w) = (k−ov, 1). Hence f(~w) = (i, |~w| − |~v|) with i = k−ov ≤ t′−ov

as required.

2. If ~w = ~v · k · ~v′ · i then f is EC at ~v · k · ~v′, so f(~w) = (i, 1). Hence
f(~w) 6= (i, |~w| − |~v|).

In either case (iii) holds. �

This means that the copycat thresholds of an EAC strategy are not unique, and
indeed we will return to this in much greater detail in the next chapter.

EAC Strategies and the Model DEAC 59

Remark 3.4.4 At each P-view of an EAC strategy there will be a least copy-
cat threshold , the least value for tv which is still a valid threshold. However the
existence of a computable function giving valid thresholds does not imply the com-
putability of the function giving least thresholds.

The following proof is important for what follows, and also serves as an illustration
of the definition of EAC strategies.

Lemma 3.4.5 For any arena A = 〈A1, . . . , An〉 the strategies πA
Ai

are EAC. Hence
for any arena A the strategy idA is EAC.

Proof The innocent function of πA
Ai

is shown in Section 2.3. The economical form
is therefore some subset (depending on the arenas) of the function f defined by:

f(ε) = (i, 0)
f(a) = (a + n, 1)

f(~s · a) = (a, 1) for nonempty ~s

A typical P-view of a legal position of this strategy might be

•

ε

◦

i

•

ia

◦

(a + n)

•

(a + n)b

◦

iab

•

iabc

◦

(a + n)bc
· · ·

Hence mo(ε) = ε,mp(ε) = i; for even-length ~s, mo(a · ~s) = (a + n) · ~s and
mp(a · ~s) = i · a · ~s; for odd-length ~s, mo(a · ~s) = i · a · ~s and mp(a · ~s) = (a + n) · ~s.

Now if B = A ⇒ Ai then B @ 〈i〉 = Ai = B>n. Thus this strategy is AC at ε
with tε = 0 and oε = −n, and in fact is EC everywhere else. Everything in sight is
computable and so the strategy is EAC.

The result that identity strategies are EAC follows from their definition as tupled
projection strategies. �

The following requires a highly technical proof. We direct the reader to a result
from Chapter 4, namely Theorem 4.2.2. That result certainly belongs to the later
chapter and it would be pointless to repeat its proof here, but we apologise for the
nonlinearity.

Lemma 3.4.6 If σ is an EAC strategy on A ⇒ B and τ is an EAC strategy on
B ⇒ C then the composite strategy σ ; τ is an EAC strategy on A ⇒ C.

Proof The relevant part of Theorem 4.2.2 is the following:

EAC Strategies and the Model DEAC 60

Let σ and τ be as above, and suppose the copycat threshold and offset of σ at the
minimal P-view are tσ and oσ, and those of τ are tτ and oτ . As long as tσ−oσ ≥ |A|
and tτ − oτ ≥ |B| then there is a recursive way to calculate valid thresholds and
offsets for each P-view of σ ; τ from those of σ and τ . (Here |A| means the number
of trees in the arena A).

Now it may be that the above inequalities are not satisfied, but we can define new
thresholds for σ and τ at the minimal P-view as follows: t′σ = min(tσ, oσ + |A|) and
t′τ = min(tτ , oτ + |B|). Lemma 3.4.3 shows that these are still valid thresholds, and
we can apply Theorem 4.2.2 — since the procedure for computing the composite
threshold and offset is recursive this also ensures that the composition’s threshold
and offset functions are recursive. Finally, Lemma 2.3.4 tells us that the composite
innocent strategy is recursive. �

Definition The category of arenas and EAC strategies, AEAC, has r.e. arenas as
objects and EAC strategies on A ⇒ B as morphisms from A to B.

Theorem 3.4.7 AEAC is a cartesian closed category, in fact a lluf subcategory1

of AREC with the same cartesian closed structure.

Proof Certainly AEAC has the same objects as AREC, and Lemma 3.4.5 shows
that the same identity strategies are morphisms of AEAC. Lemma 3.4.6 completes
the proof that it is a category.

Lemma 3.4.5 also gives that the projections for AREC are also in AEAC, and recall
that the evaluation morphism is just given by the identity strategy, so cartesian
closure of AEAC follows from that of AREC. �

Remark 3.4.8 In the same way that we can define the full subcategories U and
UREC of A and AREC (see Remark 2.4.3), we can consider the full subcategory UEAC

of AEAC which has as objects only arenas Un for n ∈ N0. Working in this category
we could use the marginally simpler definition of EAC given in Remark 3.4.1.

3.5 The Model DEAC

The arena U is an object of AEAC, as are the morphisms Fun and Gr (since they
are specified by the identity strategy on U). Thus AEAC has the same reflexive
object as A. This allows us to define a new λ-algebra as follows:

1by a lluf subcategory of a category C we mean a subcategory of C which has the same class
of objects as C. See e.g. [Cro93, §2.3].

EAC Strategies and the Model DEAC 61

Definition We write DEAC for the λ-algebra M(AEAC, U,Fun,Gr).

As for D and DREC, DEAC could equivalently be defined as M(UEAC, U,Fun,Gr).

Since the structure of AEAC is the same as that of AREC, we know that the elements
of the model are a subset of those of DREC, and the function [[−]]ρ of DEAC is the
same as that of DREC (except that in DEAC the valuation ρ may only map variables
to EAC strategies). Hence,

Theorem 3.5.1 DEAC is a λη-algebra with local structure equal to the λ-theory
H∗ (and local order structure as described for D in Corollary 3.3.3).

The aim was that the EAC strategies should be those that correspond to terms of
the λ-calculus. We know that every element of the model D which is the denotation
of some term must be EAC, by the above comments. We now show that the
converse holds.

Lemma 3.5.2 Given an EAC innocent strategy on the arena U with economical
form f there is some closed term s of the λ-calculus such that (as a labelling
function N∗ ⇀ N × N0) VFFε(s) = f .

Proof Suppose that the copycat threshold and offset of f at the P-view coded
by ~v are tv and ov respectively.

Let the set X ⊆ N∗ be defined inductively by:

ε ∈ X
if ~v ∈ X and ~v ∈ dom(f) then 1 ≤ i ≤ tv =⇒ ~v · i ∈ X.

Then X has the following properties:

(i) If ~v = ~u · i with ~u ∈ X and ~v /∈ X then i > tu, so f(~v) = (i−ou, 1) (by clause
(ii) of the definition of AC).

(ii) If ~v = ~u · i with ~u /∈ X then f(~v) = (i, 1) (since f must be EC at ~u, so by
clause (ii) of the definition of EC).

The intuition is that X is a subset of N∗, coding a subset of the possible P-views
of U , and at every such P-view f ’s behaviour is not determined by the conditions
of EAC. We say that f is given explicitly at every P-view in X, as opposed to the
P-views not in X, when its value is forced by the copycat thresholds and offsets of
f . We will return to this idea in Chapter 4.

We define the labelling function of Böhm-like tree A (by what we call copycat
collapse) as follows. The shape of the tree A (i.e. the set of nodes at which either
its labelling function is defined or the node is ⊥) is the set X.

For any sequence ~v = 〈v1, . . . , vp〉 ∈ X we define A(~v) by:

EAC Strategies and the Model DEAC 62

(i) If ~v /∈ dom(f) then A(~v) is undefined (the partially-labelled tree has label ⊥
at this node). Note that if ~v /∈ dom(f) then ~v codes a terminal node of A.

(ii) If f(~v) = (i, r) then A(~v) = λx~v
1 . . . x~v

n.x
〈v1,...,vp−r〉
i , where n = tv − ov.

Now there are no free variables in the Böhm-like tree A (since in the second clause
above, if f(〈v1, . . . , vp〉) = (i, r) then r ≤ p). Since the functions ~v 7→ tv and ~v 7→ ov

are recursive, and f is recursive, and our procedure for computing A(~v) from these
is clearly recursive, A itself must be a recursive labelling function, i.e. the Böhm-
like tree A is r.e. Thus we can appeal to Theorem 1.5.4 to show that there is some
term s with BT(s) = A.

Now we prove that VFFε(s) = f , and to examine the former we consider NT(s) and
use Lemma 3.2.2. Now the relationship between the Böhm and Nakajima trees of a
term can be deduced fairly easily from the definition. Suppose that NT(s) has had
bound variables renamed so that the ith abstracted variable at the node coded by
~v is x~v

i and that this renamed tree has labelling function B (so that the abstracted
variables at each label of A match the first few at the same label of B).

Then at any node where A is unlabelled ⊥, so is NT(s). At a node of the tree
labelled by A of the form

λx~v
1 . . . x~v

n.y

A1 · · · Am

we can deduce that the tree labelled by B has the corresponding subtree of the
form

λx~v
1 . . . • y

B1 · · · Bm NT(x~v
n+1) NT(x~v

n+2) · · ·

for some trees B1, . . . , Bm.

Now we show by case analysis on ~v that f(~v) = VFFε(s)(~v). There are four cases:

(i) ~v ∈ X but ~v /∈ dom(f). In this case A is unlabelled at the node coded by ~v,
so ~v /∈ dom(B), and so by Lemma 3.2.2 ~v /∈ dom(VFFε(s)).

(ii) ~v ∈ X and f(~v) = (i, r). Then we know that A(~v) = λx~v
1 . . . x~v

n.x
〈v1 ,...,vp−r〉
i ,

so B(~v) = λx~v
1 . . . • x

〈v1 ,...,vp−r〉
i . Hence, by Lemma 3.2.2, VFFε(s)(~v) = (i, r).

(iii) ~v /∈ X but ~v = ~u · i with ~u ∈ X. Then we know that f(~v) = (i − ou, 1).
Also we know that A(~u) = λx~u

1 . . . x~u
n.y, and has m descendents, for some

variable y and where m = tu and n = tu − ou. Therefore by examining the
diagrams comparing nodes of Böhm and Nakajima trees above, we see that
B(~v) = λx~v

1 . . . • x~u
i−m+n. Hence, by Lemma 3.2.2, VFFε(s)(~v) = (i − m +

n, 1) = (i − ou, 1).

EAC Strategies and the Model DEAC 63

(iv) ~v /∈ X and ~v = ~u · i with ~u /∈ X. Then we know that f(~v) = (i, 1). Also we
know that the node coding ~v is in one of the trees NT(y) for some variable
y, so B(~v) = λx~v

1 . . . • x~u
i . Hence, by Lemma 3.2.2, VFFε(s)(~v) = (i, 1).

Hence in every case VFFε(s)(~v) = f(~v).

�

Combining Lemma 3.5.2 with the Exact Correspondence Theorem gives that every
member of the homset Hom �

EAC
(1, U) is the denotation of some term. Hence,

Theorem 3.5.3 DEAC forms a universal λη-algebra.

Remark 3.5.4 In order to construct a term which is denoted by a specified el-
ement of the model, i.e. an EAC strategy on U , we need to know a valid copycat
threshold and offset for each P-view. If only given the moves of the strategy finding
thresholds cannot be done effectively. We will return to this question in Chapter 4.

3.6 The Separation Lemma

This section is devoted to the proof and illustration of the Separation Lemma, which
will be of key importance in our semantic proof of extensionality properties of the
model DEAC. An intuitive description of the force of the lemma is as follows: for
any clause of the innocent function of an innocent strategy, we can find a compact
innocent O-strategy which activates this clause when played against it.

Lemma 3.6.1 (The Separation Lemma) Given an EAC innocent P-strategy
σ on U and any odd legal position ~s such that ~s ∈ σ, there exists a compact
innocent O-strategy τ such that the play of σ against τ , σ ∩ τ , contains a finite
legal position ~t with ~s � ~t (the subsequence order respects justification pointers)
and p~sq = p~tq.

(An example follows this proof; the reader may wish to follow this to illustrate the
details of the construction.)

Proof Let ~s = 〈m0 = ε, 〈m1, p1〉, . . . , 〈m2n, p2n〉〉 where the pi are the
standard encodings of justification pointers. For 0 ≤ k ≤ 2n write ~sk =
〈ε, 〈m1, p1〉, . . . , 〈mk, pk〉〉.

Then for 0 ≤ k < n we can take the P-view of ~s2k+1 and extract a sequence ~qk,
which codes both the P-move m2k+1 and the O-move m2k+2 with respect to σ.

So we can define Tk = t ~qk
, Ok = o ~qk

, the copycat threshold and offset of σ at the
move m2k+1. Also set F = max {i | fσ(~qk) = (i, r), 0 ≤ k < n} + max {Ok | 0 ≤
k < n}. We then set

T ∗
k = max ({Ti | m2i+1 = m2k+1, 0 ≤ i < n} ∪ {F})

EAC Strategies and the Model DEAC 64

and write Rk = T ∗
k + 1 − Ok for tidiness.

We have guaranteed that T ∗
k ≥ Tk so the EAC property of σ means that any O-

move m2k+1(T
∗
k + 1) will be responded to by the Rth

k child of the O-move before
m2k+1, say ~uRk. Further, any subsequent O-move ~uRkl will be responded to by
the lth child of the move before ~u.

Define a sequence of innocent functions of compact O-strategies 〈fτ0 , . . . , fτn〉 and
a sequence of legal positions 〈~t0, . . . ,~tn〉 inductively by

fτ0 = ∅, ~t0 = 〈ε〉,

fτk+1
= fτk

∪

{
• · · · ◦

x
~tk · m2k+1y

7→
•

(m2k+1(T
∗
k + 1))

• · · · •

x~tky

·
◦

(m2kRk)
7→

•

(m2kRk(k + 1))

•· · · ◦

x
~tk · m2k+1y

·
•

(m2k+1(T
∗
k + 1))

·
◦

(m2k+1(T
∗
k + 1)(k + 1))

7→
•

m2k+2

}

~tk+1 =

•· · ·•

~tk

◦

m2k+1

•

(m2k+1(T ∗

k +1))

◦

(m2kRk)

•

(m2kRk(k+1))

◦

(m2k+1(T ∗

k +1)(k+1))

•

m2k+2

Where the moves m2k+1 and m2k+2 are justified by the moves as specified in the
original sequence ~s. Finally we set fτ = fτ2n

and ~t = ~t2n.

We show by induction on k that

(i) The extra clauses for the innocent function of τk+1 are consistent with those
of τk.

(ii) ~s2k � ~tk and p~s2kq = p~tkq.

(iii) ~tk ∈ σ ∩ τk.

For (i) we look at the 3 extra clauses. We can simplify the problem by counting
the lengths of the sequences involved. Certainly |~tk| = 1 + 6k. Also, in ~tk+1 the
move m2k+1 must be justified by the move m2j for some j ≤ k. Hence taking the
O-view of ~tk+1 cuts out all the moves m2jRj and m2jRj(j + 1) for j ≤ k and some

EAC Strategies and the Model DEAC 65

number of complete sets of the six moves added at each stage of the process. So
|x~tky| = 1 + 4p for some p.

Similarly considering justification pointers we can see that x
~tk ·m2k+1y = x

~tjy ·m2k+1

for some j ≤ k. Thus |x~tk · m2k+1y| = 2 + 4q for some q. Hence the sequences
mapped in the first two clauses have length 2 (mod 4), and in the last clause have
length 0 (mod 4). So we can never be adding inconsistent clauses by conflicting
between the first and third or second and third clause.

There are a number of remaining possibilities to cover:

1. It might be the case that x
~tk · m2k+1y = x

~tl · m2l+1y for some l < k but since
in that case we must have m2k+1 = m2l+1 so T ∗

l = T ∗
k and so the extra clause

is still consistent.

2. If the first clause conflicts with a second clause from some τl then we have

x
~tk · m2k+1y = x~tly · m2lRl. So we must have l < k.

But then m2k+1 = m2lRl and m2k = m2l, hence fσ(~qk) = (Rl, p) for some p.
But Rl ≥ F + 1 − Ol > Rl by the definition of F , hence a contradiction.

3. If the second clause conflicts with a second clause from a different τl we
have x~tky · (m2kRk) = x~tly · (m2lRl). But these O-views end in an O-move
so we can see the penultimate moves, which are m2k+1(T

∗
k + 1)(k + 1) and

m2l+1(T
∗
l + 1)(l + 1). Hence k = l.

4. If the third clause conflicts with a third clause from a different τl we have,
similarly to above, m2k+1(T

∗
k + 1)(k + 1) = m2l+1(T

∗
l + 1)(l + 1) and hence

k = l.

(ii) is trivial when we examine the sequence ~tk+1.

(iii) is also easy to see. The O-moves all come directly from the new clauses in τk+1.
The first P-move is from the strategy σ (it is guaranteed to occur since psq ∈ σ).
The other two P-moves are responses to moves beyond the copycat threshold and
so are automatic. �

We remark that the number F is required to avoid inconsistencies between the first
clause of fτk

and the second of fτl
for some l < k, but that this problem can only

occur in special circumstances. This method of finding a suitable F is rather like
using a sledgehammer to crack a nut; a more economical value could be found, at
the expense of a more complicated proof.

Since the proof of the Separation Lemma looks a bit of a mess at first sight, we
give an example.

EAC Strategies and the Model DEAC 66

Example 3.6.2 Suppose we are given an EAC strategy σ, of which one clause of
the innocent function is something like:

•
ε

◦
1

•
11

◦
1

•
12

7→ · · ·

and that tε = 1, t1 = 2, oε = o1 = 0.

We are trying to construct an innocent O-strategy τ such that the play of σ ∩ τ
contains as a P-view the left-hand side of the above clause. This looks tricky,
because the moves 11 and 12 seem to have been played after identical O-view,
which would be impossible for an innocent O-strategy. The solution is that large
amounts of the play might be hidden by taking the P-view.

Applying the above technique gives that F = 1 and T ∗
0 = T ∗

1 = 2 hence,

fτ0 = { }

~t0 = 〈ε〉

fτ1 = fτ0 ∪ {
•

ε
·
◦

1
7→

•

13

•

ε
·
◦

2
7→

•

21

•

ε
·
◦

1
·
•

13
·

◦

131
7→

•

11
}

~t1 =
•

ε

◦

1

•

13

◦

2

•

21

◦

131

•

11

fτ2 = fτ1 ∪ {
•

ε
·
◦

1
7→

•

13

•

ε
·
◦

1
·
•

13
·

◦

131
·
•

11
·

◦

112
7→

•

1122

•

ε
·
◦

1
·
•

13
·

◦

132
7→

•

12
}

EAC Strategies and the Model DEAC 67

~t2 =
•

ε

◦

1

•

13

◦

2

•

21

◦

131

•

11

◦

1

•

13

◦

112

•

1122

◦

132

•

12

And it is clear that the P-view of ~t2 is as required.

That example showed why we must use T ∗ and not just T , else the first clause of
fτ1 would have been inconsistent with that of fτ2 . To show why the F variable is
necessary, the reader is invited to apply the same method to the sequence

•
ε

◦
1

•
12

◦
2

•
21

7→ · · ·

and any strategy containing that sequence, with tε = 1, t2 = 0, oε = o2 = 0.

To end this section we remark that the condition in the lemma that the sequence
~s must be odd may be relaxed — in order to construct an even-length P-view we
proceed as if constructing (any) sequence of longer length and just stop after the
adding the first move of the last sequence ~tn.

3.7 Consequences of the Separation Lemma

Using the Separation Lemma we will be able to prove a variety of results about the
extensionality properties of DEAC. We first need a few lemmas.

Lemma 3.7.1 If σ and τ are innocent strategies on U , considered as subsets of
legal positions of U , then the application σ • τ is the strategy

{~s � U2 | ~s ∈ σ ∧ ~s � (U1, u)+ ∈ τ ∗ for any initial U1-move u in ~s}

where the arena U is decomposed as U1 ⇒ U2, and τ ∗ is the innocent O-strategy
{ε}∪{1·~s | ~s ∈ τ}. (Recall the definitions of ~s � B and ~s � (A, a)+ from Section 2.1.)

The proof of this involves a fairly detailed examination of the interaction sequences
of 〈σ ; Fun, τ〉 ; evalU,U but it is straightforward and we omit it.

Corollary 3.7.2 Application is monotonic in both arguments. That is, σ1 ⊆ σ2

implies σ1 • τ ⊆ σ2 • τ and τ • σ1 ⊆ τ • σ2.

EAC Strategies and the Model DEAC 68

Lemma 3.7.3 Decompose the arena U as A ⇒ B where A = Un and B = U .

Then given a compact innocent O-strategy τ on U , of which the non-initial O-
moves are contained in the A-component of U , there exists a sequence of compact
innocent P-strategies 〈ρ1, . . . , ρn〉 such that for any P-strategy σ on U ,

{~s � B | ~s ∈ σ ∧ ~s � (A, a)+ ∈ τ for any initial A-move a in ~s} = (σ • ρ1) · · · • ρn.

Proof The proof is by induction on n, for all strategies τ simultaneously.

For the base case we take n = 0. Although not part of the lemma, we extend to
the case n = 0, which means the following: decompose the arena U as A ⇒ B with
A = 1 and B = U . Then for any compact innocent O-strategy τ , of which the
non-initial O-moves are contained in A, we have {~s � B | ~s ∈ σ ∧ ~s � (A, a)+ ∈
τ for any initial A-move a in ~s} = σ. But there are no initial A-moves, since it is
the arena E with no trees at all, so the equations just says that {~s � U | ~s ∈ σ} = σ,
which is clearly true.

For the inductive step decompose the arena U into (A × C) ⇒ B, with A = Un,
B = C = U . Suppose that τ is a compact innocent O-strategy on U , of which the
non-initial O-moves are contained in the (A × C)-component of U .

Set τ ′ = {ε} ∪ {i · ~s | i ≤ n, i · ~s ∈ τ} and τ ′′ = {ε} ∪ {i · ~s | i = n + 1, i · ~s ∈ τ}.
Clearly τ ′ and τ ′′ are compact innocent O-strategies, and by hypothesis we know
that τ = τ ′ ∪ τ ′′.

Applying the inductive hypothesis to τ ′, with the arena U decomposed as A ⇒
(C ⇒ B), we have that there exists a sequence of innocent P-strategies 〈ρ1, . . . , ρn〉
such that for any P-strategy σ on U ,

S = {~s � (C ⇒ B) | ~s ∈ σ ∧ ~s � (A, a)+ ∈ τ ′ for any initial A-move a in ~s}
= (σ • ρ1) · · · • ρn.

Set ρn+1 = {~s | (n + 1)~s ∈ τ ′′}, it is easy to see that ρn+1 is a compact innocent
P-strategy. Then by Lemma 3.7.1 (decomposing U as C ⇒ B) and the above
equation we know that

((σ • ρ1) · · · • ρn) • ρn+1

= { ~t � B | ~t ∈ S ∧ ~t � (C, c)+ ∈ ρ∗
n+1 for any initial C-move c in ~t }

= { (~s � (C ⇒ B)) � B | ~s ∈ σ
∧ ~s � (A, a)+ ∈ τ ′ for any initial A-move a in ~s
∧ (~s � (C ⇒ B)) � (C, c)+ ∈ ρ∗

n+1 for any initial C-move c in ~s � (C ⇒ B) }

But (~s � (C ⇒ B)) � (C, c)+ ∈ ρ∗
n+1 is equivalent to ~s � (C, c)+ ∈ τ ′′, by the

definition of ρn+1. Also clearly (~s � (C ⇒ B)) � B = ~s � B so if we write
D = A × C then

((σ • ρ1) · · · • ρn) • ρn+1 =
{~s � B | ~s ∈ σ ∧ ~s � (D, d)+ ∈ τ for any initial D-move d in ~s}

EAC Strategies and the Model DEAC 69

which establishes the inductive step. �

Note that in the above induction we defined ρi for i = 1, . . . , n by ρi = {~s | i·~s ∈ τ}.
Thus ρi is precisely the P-strategy corresponding to the moves of τ in the ith subtree
of U .

Lemma 3.7.4 If σ1 and σ2 are EAC innocent strategies on U satisfying σ1 6⊆ σ2

then there is a compact innocent strategy ρ on U satisfying

σ1 • ρ 6⊆ σ2 • ρ.

Proof Let ~s be some legal position in σ1 \σ2; we can choose ~s to end in a P-move.
Suppose the first P-move of ~s is m and that the copycat threshold and offset of
σ1 at ε are tε and oε respectively. Choose a large natural number n bigger than
tε − oε. Define

~s1 =
•
ε

◦
m

· · ·
◦
−

︸ ︷︷ ︸

~s

•
m(n + oε + 1)

Then ~s1 ∈ σ1 \ σ2.

We apply the Separation Lemma to the sequence ~s1. This generates a compact
O-strategy τ and a legal position ~t such that ~t ∈ σ1∩ τ , ~s1 � ~t, and p~s1q = p~tq. This
ensures that ~t /∈ σ2.

Write

~s2 =
•
ε

◦
m

· · ·
•

m(n + oε + 1)
︸ ︷︷ ︸

~t

◦
n + 1

and ~s3 =
•
ε

◦
1

We can be sure that ~s2 ∈ σ1 ∩ τ because the behaviour of σ1 in response to the
move m(n + oε + 1) is forced by the properties of EAC, since n + oε + 1 > tε, and
contingent completeness of τ . Also ~t ≤ ~s2 so ~s2 /∈ σ2 ∩ τ .

Now we note that the value of n has no effect on the O-strategy τ or the legal
position ~t until the very last stage of the Separation Lemma. Hence we can choose
the value of n to be large enough to be certain that

(i) All of the non-initial O-moves of τ are contained in A = {i·~s | i ≤ n ∧ ~s ∈ N∗},

(ii) The same applies to the non-initial O-moves of s2.

Now apply Lemma 3.7.3 to the O-strategy τ . This generates a sequence of compact
innocent strategies 〈ρ1, . . . , ρn〉 with the property that ~s3 ∈ (σ1 • ρ1) · · · • ρn (from
the facts shown above, and because decomposing U into A ⇒ B with A = Un gives
that ~s2 � B = ~s3), and also that ~s3 /∈ (σ2 • ρ1) · · · • ρn. So by Corollary 3.7.2, we
can be certain that σ1 • ρ1 6⊆ σ2 • ρ1. �

Lemma 3.7.5

EAC Strategies and the Model DEAC 70

(i) Given a compact P-strategy τ on U one can generate an EAC P-strategy τ ′

on U such that τ ′ ⊇ τ .

(ii) Furthermore, having constructed τ ′ as above and given a legal position ~s ∈
τ ′ \ τ there is an EAC P-strategy τ ′′ such that τ ′ ⊇ τ ′′ ⊇ τ with ~s /∈ τ ′′.

Proof Suppose that the economical form of the innocent function of τ is f , and
by assumption this has a finite domain.

For (i) we will construct a function f ′, the economical form of τ ′. We first define
a set X ⊂ N∗ which codes a set of P-views at which f ′ will be given explicitly (see
the proof of Lemma 3.5.2).

Let ~v be any sequence on which f is defined. If f is defined at ~v · i for some i then
set tv = max {i | ~v · i ∈ dom(f)}, else take tv = 0. Also set b = max {i | ∃~w ≥
~v . f(~w) = (i, |~w| − |~v|)} and ov = tv − b. These maxima must exist, and are
specified by a computable function, because the domain of f is finite.

Define the set X inductively by

ε ∈ X
if ~v ∈ X then 1 ≤ i ≤ tv =⇒ ~v · i ∈ X.

We define the economical form of the innocent function f ′ of τ ′ as follows. For any
~v ∈ X set

f ′(~v) = f(~v)
f ′(~v · i) = (i − ov, 1) for i > tv,

f ′(~v · i · ~s · j) = (j, 1) for i > tv and any sequence ~s.

We also specify that tv = ov = 0 for any ~v ∈ dom(f ′) \ X.

It is clear that the domain of f ′ is prefix-closed and satisfies the other conditions
for it to be the economical form of an innocent function, and also that f ′(~v) = f(~v)
for all ~v ∈ dom(f). It is routine to check that f ′ is EAC with copycat thresholds
and offsets specified by ~v 7→ tv and ~v 7→ to.

For (ii), write ~s = ~t1 · m · ~t2 with ~t1 ∈ τ but ~t1 · m /∈ τ (the move m must be a P-
move by contingent completeness of τ). Since ~t1 ∈ τ , p~t1q is coded by some sequence
~b = 〈b1, . . . , bn〉, and ~b ∈ dom(f ′) \ dom(f) (since τ ⊆ τ ′). Set ~b′ = 〈b1, . . . , bn−1〉.

Now proceed to construct f ′′ exactly as f ′ was, but modify tb′ to be bn (do not
change ob′) before constructing the set X, and continue to the end of (i) above. We
must have increased the value of tb′ in this way, otherwise it could not have been
the case that the construction of τ ′ added the sequence ~s.

It is easy to see that the only change being an increased value of tb′ means that
f ′′ ⊆ f ′, and nothing changed the fact that f ⊂ f ′′ as before. Since ~b /∈ dom(f)

and with the new value of tb′ we have do not have ~b = ~b′ · i for i > tb′ , we have not
assigned a value for f ′′(~b). Hence ~t1 · m /∈ τ ′′, so ~s /∈ τ ′′. �

We can now prove the main result of this section.

EAC Strategies and the Model DEAC 71

Theorem 3.7.6 DEAC is order-extensional . That is for σ1, σ2 ∈ DEAC we have

(∀τ ∈ DEAC. σ1 • τ ⊆ σ2 • τ) =⇒ σ1 ⊆ σ2.

Proof Suppose that σ1 6⊆ σ2. We can then apply Lemma 3.7.4 give a compact
innocent strategy ρ with σ1 • ρ 6⊆ σ2 • ρ.

Decompose the arena U as A ⇒ B with A = B = U and let ~s be a legal position
of U in (σ1 • ρ) \ (σ2 • ρ).

This means that ~s = ~t � B for some legal position ~t such that

~t ∈ σ1 ∧ ~t � (A, a)+ ∈ ρ∗ for any initial A-move a in ~t
~t /∈ σ2 (else by the above we would have ~s ∈ σ2 • ρ).

Now we will apply Lemma 3.7.5 to the compact innocent strategy ρ to get an EAC
strategy τ ⊇ ρ. This will ensure that ~s ∈ σ1 • τ . We want to show that ~s /∈ σ2 • τ .
There may be a problem if there is a legal position ~t′ such that

~t′ � B = ~s
~t′ ∈ σ2

~t′ � (A, a)+ ∈ τ ∗ for any initial A-move a in ~t
~t′ � (A, a)+ /∈ ρ∗ for some initial A-move a in ~u.

Then we would have ~s ∈ σ2 • τ even though ~s /∈ σ2 • ρ.

If there is such a ~t′ it must be unique for the following reasons: its moves in the
arena B are specified by ~s, its P-moves in the arena A are forced by σ2 and its
O-moves in the arena A are forced by τ ∗.

Define ~u = ~t′ � (A, a) for the first initial A-move a occurring in ~t′ such that
~t′ � (A, a)+ ∈ (τ ∗ \ ρ∗). Then ~u ∈ (τ \ ρ).

So by (ii) of Lemma 3.7.5 there is an EAC strategy τ ′ such that ρ ⊆ τ ′ — hence
~s ∈ σ1 • τ ′ — and τ ′ ⊆ τ which together with ~u /∈ τ ′ means that ~t′ � (A, a)∗ /∈ (τ ′)∗

and so ~s /∈ σ2 • τ ′.

Hence σ1 • τ 6⊆ σ2 • τ . �

Corollary 3.7.7 DEAC is extensional, and hence weakly extensional. Thus DEAC

is a λη-model.

Remark 3.7.8 We emphasise that we have chosen to make a semantic proof of
this result even though much shorter proofs exist. We did so for two reasons:
the introduction of the Separation Lemma is of interest, and we will see in the
next section that we can extend the results obtained to give a semantic proof of a
classical syntactic result of the λ-calculus.

EAC Strategies and the Model DEAC 72

In fact the universality of DEAC allows us to deduce many of its properties from
well-known facts about the syntactic theory of the λ-calculus, or properties of other
models. As an example of the latter, the fact that Scott’s model D∞ satisfies the
ω-rule:

(∀u ∈ Λ. D∞ |= su = tu) =⇒ D∞ |= s = t

directly implies that DEAC is extensional, given the universality property. (The
original proof that D∞ satisfies the ω-rule is due to Wadsworth [Wad76] and Naka-
jima [Nak75].)

For completeness we also give an alternative, syntactic, method based on techniques
developed by Barendregt.

Alternative proof of Theorem 3.7.6 Let σ1, σ2 be elements of DEAC. Then,
by universality, σ1 = [[s]] and σ2 = [[t]], for some closed terms s and t. Assume
that σ1 6⊆ σ2. By the Exact Correspondence Theorem, NT(s) 6⊆ NT(t), where the
ordering on Nakajima trees is inclusion of the labelling function (modulo renaming
of bound variables).

Now we use standard results, commonly found as part of the proof of Böhm’s
Theorem for the λ-calculus. We will quote the versions appearing in [Bar84, 10.2-
10.4].

The fact that NT(s) 6⊆ NT(t) means that BT(s) 6∼α BT(t) for some α of minimal
length (see [Bar84, 10.2.21] for the definition of ∼α and [Bar84, 10.2.31] for the
proof). Then by [Bar84, 10.3.13], [Bar84, 10.4.1(ii)] and [Bar84, 10.3.4], there
is a sequence of terms u1, . . . , un such that λ ` su1 . . . un = I and tu1 . . . un is
unsolvable. Hence

[[s]] • [[u1]] • · · · • [[un]] = [[I]] 6⊆ ⊥= [[t]] • [[u1]] • · · · • [[un]].

But • is monotone so σ1 • [[u1]] 6⊆ σ2 • [[u1]]. �

3.8 Böhm’s Theorem

With a little more work we can give new proofs of some familiar results, and
although results about the model DEAC are only relevant to the λ-theory H∗ a
little syntactic analysis allows us to extend the results to λ. First we make a
generalisation to the Separation Lemma:

Lemma 3.8.1 Given EAC innocent P-strategies σ1 and σ2 on U , and even legal
positions ~s1 ∈ σ1 and ~s2 ∈ σ2, with ~s1 and ~s2 of equal length, and having the same
moves except for the last, there exists a compact innocent O-strategy τ and legal
positions ~t1 and ~t2 such that ~t1 ∈ σ1 ∩ τ and ~t2 ∈ σ2 ∩ τ with ~s1 � ~t1, ~s2 � ~t2,
p~s1q = p~t1q and p~s2q = p~t2q.

Proof This is just a modification of the Separation Lemma and we do not include

EAC Strategies and the Model DEAC 73

the full proof. One proceeds by constructing numbers F 1, (T ∗
k)1 for the first se-

quence/strategy pair, and F 2, (T ∗
k)2 for the second, then set F = max(F1, F2) and

T ∗
k = max((T ∗

k)1, (T ∗
k)2) before proceeding with the rest of the construction, once

for each sequence/strategy pair, making compact innocent O-strategies τ 1 and τ 2.
It is routine to verify that τ = τ 1∪ τ 2 is a strategy satisfying the stated conditions.

�

Lemma 3.8.2 If σ1 an σ2 are EAC strategies on U such that there is some legal
position ~s ∈ σ1∩σ2 and justified P-moves m1 and m2 such that ~s ·m1 ∈ σ1 \σ2 and
~s · m2 ∈ σ2 \ σ1 then there is a sequence of compact innocent strategies ρ1, . . . , ρn

such that

(σ1 • ρ1) · · · • ρn = [[λxy.x]] (σ2 • ρ1) · · · • ρn = [[λxy.y]].

Proof We only sketch the proof, which is by analogy with Lemma 3.7.4.

Suppose the first P-move of ~s is m and that the copycat threshold and offset of
σi at ε are tiε and oi

ε respectively (for i = 1, 2). Choose a large natural number n
bigger than t1ε − o1

ε and t2ε − o2
ε. Define

~s1 =
•
ε

◦
m

· · ·

︸ ︷︷ ︸

~s

◦
m1

•
m(n + o1

ε + 1)
◦

n + 1

~s2 =
•
ε

◦
m

· · ·

︸ ︷︷ ︸

~s

◦
m2

•
m(n + o1

ε + 2)
◦

n + 2

We apply the generalised version of the Separation Lemma above to the strategies
with these sequences, to generate a compact innocent O-strategy τ together with
legal positions ~t1 ∈ σ1 ∩ τ and ~t2 ∈ σ2 ∩ τ , and

p~t1q =
•
ε

◦
m

•
m(n + o1

ε + 1)
◦

n + 1
and p~t2q =

•
ε

◦
m

•
m(n + o1

ε + 2)
◦

n + 2

Set ~u1 =
•
ε

◦
1

and ~u2 =
•
ε

◦
2

.

As before, we can choose n sufficiently large to make all the non-initial O-moves of
τ (and the moves in ~t1 and ~t2) occur in {i · ~s | i ≤ n ∧ ~s ∈ N∗}.

Applying Lemma 3.7.3 to the O-strategy τ generates a sequence of compact inno-
cent strategies 〈ρ1, . . . , ρn〉 with the property that ~ui ∈ (σ1 • ρ1) • · · · • ρn. Further-
more, since σi is AC at the initial P-view, and we exceed the copycat threshold

EAC Strategies and the Model DEAC 74

with the move m(n + oi
ε + i) we know that σi plays copycat after the last move of

~si, hence (σi • ρ1) · · · • ρn plays copycat immediately after the first move (all this
for i = 1, 2). This implies the desired result. �

We can also convert the compact innocent strategies ρi into EAC strategies τi,
using Lemma 3.7.5 and the same techniques as before. The following theorem
gives the consequence of this, and summarises the things we can prove about the
λ-theory H∗ using these results about the model. It amounts to a characterisation
of separability in the theory H∗.

For notational convenience, given a sequence u1, . . . , un and a term s we write s~u
for the term su1u2 . . . un.

Lemma 3.8.3 Let s and t be closed terms. Consider equality in the theory H∗,
with ordering given by inclusion of Nakajima Trees. Write ⊥ for the least element
(the unsolvables).

(i) s = t iff for all sequences of closed terms u1, . . . , un, s~u = t~u.

(ii) s 6⊆ t iff there exists a sequence of closed terms u1, . . . , un such that s~u = λx.x
and t~u = ⊥.

(iii) s and t are inconsistent iff there exists a sequence of closed terms u1, . . . , un

such that s~u = λxy.x and t~u = λxy.y.

The first reflects the extensionality of DEAC, the second is a consequence of the
lemma which is needed to prove order-extensionality, and the last comes from the
generalisation Lemma 3.8.2.

We now try to lift the results of this theorem to the theory λ. (i) does not seem to
have a sensible analogue, and it is certainly not true as it stands (in λ, λxy.xy 6=
λx.x but for all closed terms t, (λxy.xy)t = (λx.x)t = t). For (ii) and (iii) we have
more success.

Theorem 3.8.4 Let s and t be closed terms. Give Nakajima trees the ordering
of inclusion (modulo renaming of bound variables, this amounts to inclusion of
variable-free form).

(i) NT(s) 6⊆ NT(t) iff there exists a sequence of closed terms u1, . . . , un such
that λ ` s~u = λx.x and t~u unsolvable.

(ii) NT(s) and NT(t) are inconsistent iff there exists a sequence of closed terms
u1, . . . , un such that λ ` s~u = λxy.x and λ ` t~u = λxy.y.

Proof (i, ⇐=): If there is a sequence ~u such that λ ` s~u = λx.x and t~u unsolvable

EAC Strategies and the Model DEAC 75

then certainly NT(s~u) = NT(λx.x) and NT(t~u) = ⊥, so H∗ ` s~u = λx.x and
H∗ ` t~u = ⊥ (we also write ⊥ for some unsolvable term). Hence, by Lemma 3.8.3,
NT(s) 6⊆ NT(t).

(i, =⇒): The hypothesis allows us to apply Lemma 3.8.3 to show that there is
a sequence of terms ~u such that H∗ ` s~u = λx.x and H∗ ` t~u = ⊥. Hence
NT(s~u) = NT(λx.x) 6= ⊥, so s~u is solvable. Hence by the definition of solvability
there is a sequence of terms ~v such that λ ` s~u~v = λx.x. Also t~u must be unsolvable,
so likewise t~u~v.

(ii, ⇐=): If there is a sequence ~u such that λ ` s~u = λxy.x and λ ` t~u = λxy.y then
certainly NT(s~u) = NT(λxy.x) and NT(t~u) = NT(λxy.y), so H∗ ` s~u = λxy.x
and H∗ ` λxy.y Hence, by Lemma 3.8.3, NT(s) and NT(t) are inconsistent.

(ii, =⇒): The hypothesis allows us to apply Lemma 3.8.3 to show that there is
a sequence of terms ~u such that H∗ ` s~u = λxy.x and H∗ ` t~u = λxy.y. Hence
NT(s~u) = NT(λxy.x) and NT(t~u) = NT(λxy.y), so by the definition of Nakajima
tree both s~u and t~u are solvable with λ ` s~u = λxyz1 . . . zn.xs1 . . . sm for some n, m
and terms si, and λ ` t~u = λxyz1 . . . zn′ .yt1 . . . tm′ for some n′, m′ and terms ti.

Suppose n′ ≥ n (the other case is symmetrical). Set X = λa1 . . . amb1 . . . bn′−ncd.c
and Y = λa1 . . . am′cd.d. It is easy to check the following:

λ ` s~uXY r1 . . . rn′ = λxy.x
λ ` t~uXY r1 . . . rn′ = λxy.y

where r1 . . . rn′ are any terms. �

(ii) of the above Theorem is a generalisation of Böhm’s Theorem, which is usually
stated as follows: “If s and t are different closed terms in βη-normal form then there
is a sequence of closed terms ~u such that λ ` s~u = λxy.x and λ ` t~u = λxy.y.”

The version we have proved has the weakest possible precondition for such a se-
quence of terms to exist, namely NT(s) and NT(t) are inconsistent (equivalently,
there is a node where both NT(s) and NT(t) are labelled, and the labels are dif-
ferent), because we have shown the implication both ways.

Chapter 4

Explicit EAC Strategies and the
Model DXA

Our aim in this chapter is to modify the model DEAC to find a game model which
does not validate η-conversion. To do so, we will need to augment EAC strategies
with some extra information. By examining the parts of Nakajima trees which
use fresh variables, in the light of the Exact Correspondence Result, it becomes
clear that the additional information we require is that which specifies copycat
thresholds at each P-view.

We are thus lead to the definition of an EXAC strategy, and we describe the prob-
lems involved in the search for a CCC of such strategies, and the solution XA. This
category also has a reflexive object, but for which the retraction morphisms are
not isomorphisms, and hence the model DXA which arises in it does not validate
η-conversion. We formulate an analogue of the variable-free form for Böhm trees,
and show that an Exact Correspondence for this model holds. This means that
the local structure of DXA is the λ-theory B. Unlike DEAC, however, DXA is not
extensional or even weakly extensional.

4.1 Specifying Copycat Thresholds

To find a model in which η-conversion is not validated, we require the terms I and
1 to be denoted differently. They have the same variable-free form of Nakajima
tree, so it is not apparent how this might be achieved. The key is to make use of
the fact that valid copycat thresholds are not unique — any number greater than
a given valid copycat threshold is also a valid copycat threshold (Lemma 3.4.3).
Different thresholds (at some P-view) may be used to distinguish I and 1.

This idea is prompted by the observation that when one compares a term with
its denotation, the part of the EAC strategy which is specified by the rules of

76

Explicit EAC Strategies and the Model DXA 77

copycat (the part which is not specified explicitly – see the proof of Lemma 3.5.2)
corresponds precisely to the part of the Nakajima tree which has been generated by
η-expansion (i.e. the part of the tree with the fresh variables as the head variables).
Recall the Nakajima trees of I and 1 — the former has fresh variables appearing at
every node except the root, whereas the latter is similar except that there is not a
fresh variable at the first child of the root. Therefore we aim to find a model where
I and 1 are represented by the strategy with the same moves, but the copycat
threshold of [[I]] at the first P-view is 0, whereas that of [[1]] is 1.

However, the definition of an EAC strategy is stated in terms of the existence of
some computable function which associates a pair of numbers to each P-view of the
strategy and this function is not specified along with the strategy. (A consequence
of this is that there is no computable procedure for finding valid thresholds for an
EAC strategy, nor for deciding whether a given innocent strategy is EAC.)

Remark 4.1.1 It is really the thresholds (rather than the offsets) which are
important because, for a certain P-view ~v of an EAC strategy σ, the copycat
threshold t usually gives enough information to compute the offset o directly. This
is clear since fσ(~v · (t + 1)) = (t + 1− o, 1), as long as the move coded by ~v · (t + 1)
actually exists in the arena in question. When this move does not exist, any value
would do for the offset. However, in this case the value of the offset is irrelevant and
we will not take this technicality into account. Similarly, when none of the moves
coded by ~v · i exist for any i, the threshold is irrelevant. We will not distinguish
between strategies which only differ in such circumstances. In practice, we only
consider strategies over the arena U , in which all such moves always exist, so this
technicality can be ignored.

This motivates the following definition:

Definition An effectively and explicitly almost-everywhere copycat strategy
(EXAC strategy) is given by a pair 〈σ, tσ〉, where σ is an EAC strategy and tσ

is an effective function mapping the P-views where σ is defined to valid copycat
thresholds. We sometimes write the EXAC strategy 〈σ, tσ〉 just as σ.

We will usually refer to the first and second part of an EXAC strategy as the “(un-
derlying) EAC strategy (part)” and the “threshold function (part)”, respectively.
In view of our remark above, however, we will sometimes speak of the offsets as if
they too are specified by the threshold function.

This definition allows us to make the intended finer distinction between strategies:
two strategies with the same moves must be equal as EAC strategies, but may
have different copycat thresholds and so can be distinguished as EXAC strategies.
There is an obvious forgetful map from EXAC strategies to EAC strategies, which
takes only the strategy part (i.e. erasing the threshold information).

Explicit EAC Strategies and the Model DXA 78

In a similar vein to the economical form of innocent strategies, using the same
encoding of a P-view as a sequence of natural numbers, we can give an economical
form of EXAC strategies over single-tree arenas. We can also take advantage of
the fact that parts of the strategy are completely dictated by its copycat nature.
Let us say that a P-view is entirely explicit if none of the O-moves in it exceed the
copycat threshold of the P-view at which they are made. Thus if a P-view is not
entirely explicit the ensuing move can be deduced from the threshold and offset of
the P-view preceding the first O-move in it which did exceed the copycat threshold.

Definition The economical form of an EXAC strategy is a map from N∗ to
N × N0 × N0 × Z. The domain is the encoding of P-views in the same way as
economical form of an EAC strategy. The map is defined at a sequence ~v only if
the P-view encoded by ~v is entirely explicit, in which case

~v 7→ (i, r, t, o)

where the resulting P-move is encoded as before — it is the ith child of the move
2r from last of the P-view — and the copycat threshold and offset at this P-view
are t and o respectively.

Example 4.1.2 We take the EXAC strategies η0 and η1 to be 〈[[I]], t0〉 and
〈[[1]], t1〉, where t0 maps every P-view to the threshold 0 and t1 does likewise ex-
cept that the minimal P-view is mapped to the threshold 1. Since [[I]] = [[1]], they
have the same EAC strategy part, but different threshold functions. These are the
suggestions we made for the denotations of I and 1 in a model not supporting η-
conversion. Nearly every P-view of either is not entirely explicit, and the respective
economical forms are given by:

ε 7→ (1, 0, 0,−1) and ε 7→ (1, 0, 1,−1)
〈1〉 7→ (2, 1, 0, 0)

4.2 Composition of EXAC Strategies

We now need a method to compose EXAC strategies. Of course the EAC strategy
part will just be the standard composition of innocent strategies, and we give below
an algorithm for computing the composition of the threshold functions.

Algorithm 4.2.1 (The Composition Algorithm) Let 〈σ, tσ〉 be an EXAC
strategy over A ⇒ B, and 〈τ, tτ 〉 be an EXAC strategy over B ⇒ C. Take a
P-view ~v on which the strategy σ ; τ (which is given by the usual composition of

Explicit EAC Strategies and the Model DXA 79

innocent strategies) is defined and suppose that the last move of the P-view is m
and the resulting move is m:

σ ; τ :
•
ε
· · ·

•
m

︸ ︷︷ ︸

~v

7→
◦
m

We write ~u = u(~v, σ, τ) for the uncovering of the composition up to the move m
(see the definition in Section 2.2). Along with the following move m it will be of
the form:

•
ε

· · ·
•
m

?
m1

?
m2

· · ·
?

mp−1

?
mp

︸ ︷︷ ︸

~u

◦
m

The moves mi are the intermediate interactions which might have taken place
between σ and τ before the move m became the visible outcome. They are all in
the arena B and they are either O- or P-moves, depending on which strategy is
looking at them (which is why they are written ? as in Example 2.2.6). Possibly
there are no such intermediate moves, in which case p = 0. We do not care about
justification pointers, and for tidiness set m0 = m and mp+1 = m.

For 1 ≤ i ≤ p + 1 we consider the P-view that the strategies σ or τ are faced with
when making the move mi, setting

~ui = p~u≤mi−1
� XqX

where X depends on which strategy is to make the move mi (which depends on
the parity of i). X will be (A, B, b) or (B, C, c), where b or c is the initial B- or
C-move hereditarily justifying mi.

Define ti and oi to be the copycat threshold and offset of σ, or τ as appropriate, at
the P-view ~ui. These are specified by tσ or tτ . Then set:

Explicit EAC Strategies and the Model DXA 80

t′i =

{
ti + |A| , if mi is a root of the arena B
ti, otherwise

o′i =

{
oi + |A| , if mi is a root of the arena B
oi, otherwise

T1 = t′1
O1 = o′1

Ti+1 = max(Ti + o′i+1, t
′
i+1)

Oi+1 = Oi + o′i+1

t = Tp+1

o =

{
Op+1 − |A| + |B| , if m is a root of the arena C
Op+1, otherwise

Then t and o are the copycat threshold and offset of the composition 〈σ, tσ〉 ; 〈τ, tτ 〉
at the P-view ~v.

Now we must show that this method does indeed produce an EXAC strategy,
i.e. that the composite threshold function specifies valid thresholds and offsets for
the composite strategy. In fact it does so only under some restrictions, for which
we need an additional definition.

Definition Let σ be an EAC strategy over a single-tree arena. If σ has a first
move, then it has a copycat threshold and offset, say t and o, at the P-view con-
sisting only of the root O-move. The l-number of σ is the value t− o, and we write
it l (σ).

If σ = 〈σ1, . . . , σn〉 is an EAC strategy over an arena with n trees, which is defined
on at least one of the minimal P-views, then we define l (σ) = minn

i=1,σi 6=⊥{l (σi)}.

Theorem 4.2.2 If σ : A ⇒ B and τ : B ⇒ C are EAC strategies satisfying
l (σ) ≥ |A| (or σ is everywhere undefined) and l (τ) ≥ |B| (or τ is everywhere
undefined) then Algorithm 4.2.1 produces valid copycat thresholds and offsets for
σ ; τ .

Proof Firstly, we may assume that C is a single tree arena, because if C =
〈C1, . . . , Cn〉 then we can write τ = 〈τ1, . . . , τn〉 and set σ ;τ = 〈σ ;τ1, . . . , σ ;τn〉 and
since l (τ) = minn

i=1{l (τi)} we can be sure that the condition l (τi) ≥ |B| holds for
each i where τi has a first move.

We choose a P-view ~v of the composite strategy σ ; τ , overloading notation so that
~v refers to both the P-view and the sequence of natural numbers which encodes it;
we do likewise for moves.

Explicit EAC Strategies and the Model DXA 81

However we must be very careful when referring to “the ith” child of a move m.
This may well be ambiguous — in the special case where m is the root of C, the ith

child of the move m in the arena A ⇒ C is the (i − |A|)th child of the same move
in the arena C. In all other cases there is no difference which arena the move m is
looked at in. In what follows (A @ m)>n will unambiguously refer to selecting the
subtree rooted at m and deleting the first n subtrees of that, relative to the arena
A.

Using the notation of the Algorithm, we aim to show:

(i) The arenas ((A ⇒ C) @ m)>(t−o) and ((A ⇒ C) @ m)>t are order-isomorphic;

(ii) If i > t then f(~v · i) = (i − o, 1) and further f(~v · i · ~w · j) = (j, 1) for all
sequences ~w and numbers j ≥ 1;

(iii) For all ~w ≥ (~v · k) with k ≤ t, if f(~w) = (i, |~w| − |~v|) then i ≤ t − o;

(iv) If f(~v) = (i, 0) then i ≤ t − o.

This is what we need, for the strategy σ ; τ to be AC at the P-view ~v. We note
that condition (ii) is sufficient for the composition to be EC where necessary.

We assume that neither σ nor τ is everywhere undefined; these special cases will
be dealt with at the end.

Proof of (i) and (ii):

Note that σ’s thresholds and offsets are relative to the arena A ⇒ B, whereas τ ’s
are relative to B ⇒ C. We imagine, therefore, that all these moves take place
in the arena (A ⇒ B) ⇒ C; then consideration of the values of t′i and o′i shows
that they are the same offsets, but always relative to this new arena, which we will
henceforth shorten to ABC.

We show by induction that all Ti and Oi satisfy:

(a) (ABC @ m)>(Ti−Oi) ∼= (ABC @ mi)
>Ti;

(b) If j > Ti and the jth child (relative to the arena ABC) of the last move in the
interaction ~ui (i.e. mij) is played the resulting continuation has as the next
visible move the P-move m(j −Oi) (relative to the arena ABC), justified by
m;

(c) Furthermore a subsequent move m(j − Oi)w1 will result in an interaction
ending in mijw1, and in general for any odd-length sequence ~w the move
m(j − Oi)~w will result in an interaction ending in mij ~w and for even-length
sequences ~w the move mij ~w will result in an interaction ending in m(j−Oi)~w.

For i = p + 1 the moves mi = m and mij and their descendants are visible in the
arena C.

For i = 1 the properties we require are just the AC property of σ or τ at ~u0.

Explicit EAC Strategies and the Model DXA 82

Suppose that we have proved the result for Ti and Oi.

Either Ti+1 = Ti + o′i+1, so we must have Ti + o′i+1 ≥ t′i+1, say Ti = t′i+1 − o′i+1 + l.
Then

(ABC @ m)>(Ti−Oi) ∼= (ABC @ mi)
>Ti

by AC property of σ or τ , (ABC @ mi)
>(t′i+1−o′i+1) ∼= (ABC @ mi+1)

>t′i+1

hence (ABC @ mi)
>(t′i+1−o′i+1+l) ∼= (ABC @ mi+1)

>(t′i+1+l).

But Ti+1 − Oi+1 = Ti − Oi and Ti+1 = t′i + l hence

(ABC @ m)>(Ti+1−Oi+1) ∼= (ABC @ mi+1)
>Ti+1.

Or Ti+1 = t′i+1, so we must have Ti + oi+1 ≤ t′i+1, say Ti = t′i+1 − o′i+1 − l. Then

(ABC @ m)>(Ti−Oi) ∼= (ABC @ mi)
>Ti

hence (ABC @ m)>(Ti−Oi+l) ∼= (ABC @ mi)
>(Ti+l)

by AC property of σ or τ , (ABC @ mi)
>(t′i+1

−o′i+1
) ∼= (ABC @ mi+1)

>t′i+1.

But Ti+1 − Oi+1 = t′i+1 − o′i+1 − Oi = Ti − Oi + l hence

(ABC @ m)>(Ti+1−Oi+1) ∼= (ABC @ mi+1)
>Ti+1.

Now for the proof of (b) and (c) suppose that the strategy dictating the first move
of the interaction is τ , i.e. m is in the arena C (the other case is similar and will
require some τ ’s to be replaced by σ’s and one other difference which we note
below). Suppose that the move mij is made after the move mi, with j > Ti. Then
the interaction sequence looks like:

•
ε

· · ·
•
m

?
m1

?
m2

?
m3

· · ·
?

mi−2

?
mi−1

?
mi

︸ ︷︷ ︸

~ui

?
mij

τ σ τ σ τ

(Here and hereafter we are omitting the justification pointers, because where they
should point to are determined by the property of AC.) We can predict how this
interaction would continue: since j > Ti ≥ t′i we know by the EAC property of τ
that we must continue:

· · ·
?

mi−1

?
mi

︸ ︷︷ ︸

~ui

?
mij

?
mi−1(j − o′i)

τ τ

Here mij refers to the jth child of m relative to the arena ABC, and mi−1(j − o′i)
is the (j − o′i)

th child relative to the arena ABC.

Explicit EAC Strategies and the Model DXA 83

But j − o′i > Ti − o′i ≥ Ti−1 so by the induction hypothesis we know that this
interaction must continue until it reaches the visible P-move m(j − o′i − Oi−1) =
m(j − Oi):

· · ·
?

mi−1

?
mi

︸ ︷︷ ︸

~ui

?
mij

?
mi−1(j − o′i)

· · ·
◦

m(j − Oi)

τ τ I.H.

We have to be a little careful, because the move m(j −Oi) has to be visible, i.e. it
is in the arena C. If the move m is a root of C then this will only be true as long
as j − Oi > |B| . Thankfully in this case we can use that l (τ) ≥ |B| so that
j − Oi > Ti − Oi ≥ t′1 +

∑i−1
j=2 o′j −

∑i−1
j=1 o′j = t′1 − o′1 = t1 − o1 ≥ |B| .

Of course, there will be no such problem in the case that σ was the strategy to
dictate the move immediately after m, because m would have to be a A-move.
However, in this case we have to show that the move mi−1(j − o′i) is not visible,
i.e. it is in the arena B. There is no problem unless mi−1 is a root of B. Then
similarly to above, we can use the condition that l (σ) ≥ |A| giving j − o′i >
Ti − o′i ≥ t′i − o′i = ti − oi. Now since the move mi−1 is a root of B this value is the
l-number of σ, hence the required result.

If there is a further P-move m(j−Oi)w1, by the inductive hypothesis, the following
must result:

· · ·
?

mi−1

?
mi

︸ ︷︷ ︸

~ui

?
mij

?
mi−1(j−o′i)

· · ·
◦

m(j−Oi)

•
m(j−O1)w1

· · ·
?

mi−1(j−o′i)w1

τ τ I.H. I.H.

and because τ must be EC at this view, we have:

· · ·
?
mi

︸ ︷︷ ︸

~ui

?
mij

?
mi−1(j−o′i)

· · ·
◦

m(j−Oi)

•
m(j−O1)w1

· · ·
?

mi−1(j−o′i)w1

?
mijw1

τ I.H. I.H. τ

And it is clear how subsequent moves will be copied by τ , and the induction
hypothesis will always apply, giving the desired result.

Finally we note that in order to consider the children of the root of C to be labelled
with respect to A ⇒ C rather than ABC we must set o = Op+1, unless m is a
root of C in which case o = Op+1 − |A| + |B| . We can set t = Tp+1 in any case,
because the threshold refers to children of m, and m could not be a root of C.

Property (a) proves (i); (b) and (c) together give (ii).

Proof of (iii):

We require a little result for use later:

Explicit EAC Strategies and the Model DXA 84

Directly from the definition we have that Ti+1 ≥ Ti+o′i+1 so Tp+1 ≥ Tn+
∑p+1

i=n+1 o′i.

Also we have Op+1 =
∑p+1

i=1 o′i and Tn ≥ t′n. Thus

Tp+1 − Op+1 ≥ Tn −
n∑

i=1

o′i ≥ t′n −
n∑

i=1

o′i.

Now suppose that we have a sequence ~w such that fσ;τ (~v ·k · ~w) = (i, |~w| +1) with
k ≤ t (here fσ;τ is the economical form of the innocent function of the composition).
We aim to show that i ≤ t − o. We would prefer to talk in terms of children of
moves in the arena ABC, in which case we say that the resulting move is mi′. Here
i′ = i unless m is a root of C, in which case i′ = i + |B| − |A| . Then we want to
show that i′ ≤ Tp+1 − Op+1.

All we know about the interaction which produced this move is that it must be of
the form:

· · ·
•
m

?
m1

· · ·
?

mp
︸ ︷︷ ︸

u(~v, σ, τ)

◦
m

•
mk

some ?, ◦ and • moves
︷ ︸︸ ︷

· · · · · · · · · ? ◦
mi′

Let us write ~u = u(~v · k · ~w, σ, τ). Since the move mi′ is justified by m it must be
in the arena A and it was σ which caused it. So we examine the view σ saw when
making that move:

~u1 = p~u � XqX

where as before X is the appropriate component. As the move m must be in this
view (because of the visibility condition) so there cannot be justification pointers
from O-moves jumping over it. Hence ~u1 = p~u1≤mq · ~x = pu(~v, σ, τ)≤m � Xq · ~x, for
some sequence ~x, and f(~u1) = (i, |x|), where f is fσ or fτ as appropriate. Again,
in terms of the arena ABC, this resulting move is child number i′ of the move
justifying it.

Now we look at the first element of ~x, call it k1.

Either k1 ≤ t′1. But then by the EAC property of σ or τ we must have i′ ≤
t′1 − o′1 ≤ Tp+1 − Op+1 by the result shown above. So the result holds in this case.

Or k1 > t′1. But then the EAC property of σ or τ forces that ~x = 〈k1〉 with
i′ = k1 − o′1. So the uncovering must look like:

· · ·
•
m

?
m1

· · ·
? ?

m1k1

◦
mi′

σ τ σ

Explicit EAC Strategies and the Model DXA 85

Because to whichever strategy was last to act the move of the interaction m1 is a
P-move, we can be sure it is in view when the move mi′ is made.

So we know that the move m1k1 was made by either σ or τ . Again we look at the
view it had:

~u2 = p~u≤m1k1
� XqX

As before we can deduce that ~u2 = pu(~v, σ, τ)≤m1
� Xq · ~x for some sequence ~x and

again we examine the first move, call it k2. Either k2 ≤ t′2, whence as before we
can deduce k1 ≤ t′2 − o′2 hence i′ ≤ t′2 − o′2 − o′1 ≤ Tp+1 − Op+1, or k2 > t′2 so that
~x = 〈k2〉 and k1 = k2 − o′2.

We can use the argument inductively: at each stage the interaction looks like:

· · ·
•
m

?
m1

?
m2

· · ·
?

mn
· · ·

?
mnkn

· · ·
?

m2k2

?
m1k1

◦
mi′

σ τ τ σ

and because of the EAC property of σ or τ at pu(~v, σ, τ)≤mn � Xq either kn ≤ t′n,
whence i′ ≤ t′n −

∑n
i=1 o′i ≤ Tp+1 − Op+1, or kn−1 = kn − o′n and we can apply the

argument again.

At the last stage, when n = p + 1, we actually know that the sequence ~x is
singleton, because the move mp+1 = m is answered directly by mk, by hypothesis.
So i′ = k −

∑p+1
i=1 o′i (by chasing back the definitions of kn) and k ≤ Tp+1 by

hypothesis, hence i′ ≤ Tp+1 − Op+1. All cases have now been covered.

Proof of (iv):

The move m must be mi and be justified by m. We need to show that the EAC
properties of σ and τ force i ≤ t − o. Again, relative to the arena ABC we can
say that the move m is the i′th child of m, where i′ is as above. Again, we wish to
show that i′ ≤ Tp+1 − Op+1.

The proof is similar to that of (iii). We consider the sequence which each strategy

had in view, when making the move mi′, ~u1 = pu(~v, σ, τ) � XqX
. Once again

the move m must be in view, so ~u1 = pu(~v, σ, τ)≤mq · ~x. We look at the first
element of ~x, k1 say, and as before either k1 ≤ t′1 — exactly as before this leads to
i′ ≤ Tp+1 − Op+1 — or we can deduce that the move before m is m1k1 and apply
the argument inductively. Note that, unlike in (iii), the move before m is actually
mp.

After n steps we will be have either kn ≤ t′n, hence i′ ≤ Tp+1 − Op+1, or mp−n+1 =
mnkn. So this time we reach the final stage after p/2 steps (we know p must be
even because m and m are in the same component) and here have no choice but
that mp/2+1 = mp/2kp/2, hence kp/2 ≤ t′p/2 − o′p/2 and i′ ≤ Tp+1 − Op+1 follows

directly from the result shown at the start of the proof of (iii).

Special Cases:

Explicit EAC Strategies and the Model DXA 86

If τ is everywhere undefined and then so is the composition. If σ is everywhere
undefined then for the composition to be defined on the P-view ~v the moves m and
m must be in C, with no intermediate moves in between. Now we can treat this
in the same way as the usual cases. �

We will also need the following:

Lemma 4.2.3 Composition of EXAC strategies is associative.

Proof The proof is straightforward and we omit it. One proceeds by examining
the uncovering of three strategies together (that is, the sequence including inter-
mediate moves in both hidden arenas) and relating this to the uncoverings of the
two different bracketings of the triple composition. �

4.3 The Category AEXAC

We first define the “obvious” category, which derives directly from the conditions
required for the composition algorithm to work correctly. Perhaps surprisingly we
can show that this does not give rise to a CCC.

Definition The category of arenas and EXAC strategies, written AEXAC, is defined
as follows.

(i) Objects are r.e. arenas.

(ii) The morphisms from A to B are the EXAC strategies on the arena A ⇒
B which have l-number greater than or equal to |A| , or are everywhere
undefined.

(iii) The identity morphism on A is the EXAC strategy 〈idA, 0〉, i.e. the copycat
threshold is zero everywhere. The offset at the minimal P-view is − |A| , and
0 everywhere else.

(iv) Composition of morphisms is given by composition of EXAC strategies via
algorithm 4.2.1.

One can show that this does indeed specify a category. We already have associa-
tivity of composition, and we must also show:

Lemma 4.3.1

(i) If σ : A ⇒ B satisfies l (σ) ≥ |A| (or is everywhere undefined) and τ : B ⇒ C
satisfies (or is everywhere undefined) l (τ) ≥ |B| then l (σ ; τ) ≥ |A| , or σ ; τ
is everywhere undefined.

(ii) For any morphism σ : A → B we have σ ; idB = σ = idA ; σ.

Proof Both are elementary consequences of the construction of the composition

Explicit EAC Strategies and the Model DXA 87

algorithm. �

Also, AEXAC has the obvious terminal object E (the arena consisting of no trees
defined in Example 2.1.2) and products given in the usual way. However,

Theorem 4.3.2 AEXAC does not form a CCC with the usual constructions.

Proof Suppose that σ : A×B → C. Then we know that l (σ) ≥ |A| + |B| . We
need a morphism Λ(σ) : A → B ⇒ C, which must have l-number at least |A| , so
we could take Λ(σ) to be the same EXAC strategy as σ. However this choice may
not be unique.

For example, consider η0 and η1 as defined earlier in this section. Note that the
only difference between the two strategies is their threshold for the initial P-view.
One can verify that both η0 and η1 can be considered as morphisms U → U ⇒ U
and that in this case η0 × idU ; evalU,U = η1 × idU ; evalU,U : U × U → U , and that
this is the same as the morphism U ×U → U described by η1. Hence there are two
candidates for Λ(η1). �

We should perhaps also say that it is not clear that AEXAC forms a CCC with any
unusual constructions either.

In order to fix this up, we made another attempt. The problem with AEXAC is that
the conditions for an EXAC strategy to be a morphism A → (B ⇒ C) are weaker
than those to be a morphism on A×B → C. One solution might be the following:

(i) An object is a pair (A, n) where n ∈ N0.

(ii) A morphism σ : (A, n) → (B, m) is an EXAC strategies on A ⇒ B such that
l (σ) ≥ m + |A| .

(iii) Composition is composition of EXAC strategies.

(iv) The identity on (A, n) is 〈idA, t〉, where t is the function mapping the minimal
P-view to n and the others to zero.

Then we can set (A, n) ⇒ (B, m) = (A ⇒ B, m + |A|), which gives the same set
of morphisms A × B → C and A → B ⇒ C.

However, in this case, the identity will not work correctly! Sometimes the thresh-
olds of σ ; id come out greater than σ. To fix this, we find we must include infor-
mation in the objects specifying minimal thresholds for the morphisms. But this
breaks the function spaces again, and we have to add information specifying the
minimum l-number for some other P-views, whereupon there are again problems
with identities...

What we believe to be the least fixed point of the fixing-up process is presented in
the next section.

Explicit EAC Strategies and the Model DXA 88

4.4 The Category XA

We now present a new category based on EXAC strategies, which does form a
CCC. Although it is more complicated than the “almost-CCC” AEXAC, it seems to
be the simplest way to construct a CCC.

Firstly let us write br(A) for the number of branches of a tree at the root (assuming
that this is finite). Then we can write br(A @ m), for any move m of a finitely-
branching forest A, to mean the number of direct children of m in A. Then we
make the following definition:

Definition Let A be an r.e. arena and X a finitely-branching r.e. sub-arena of A.
We say that an EXAC strategy σ over A is X-explicit if the following holds:

Let σ : ~v 7→ (i, r, t, o) be the economical form of any clause of the innocent function.
Suppose that the sequence ~v codes a P-view ending in the O-move m, and that the
consequent P-move encoded by this clause is m. Then

(i) if m is in the sub-arena X then t − o ≥ br(X @ m),

(ii) if m is in the sub-arena X then t ≥ br(X @ m).

An intuitive description of this definition is the following: The subarena X deter-
mines a part of the arena A where the strategy is known to be explicitly defined,
i.e. that is neither in the domain nor the range of automatic copycat forced by the
threshold information of σ. This means that given a strategy σ over A which is
X-explicit, any P-view of σ with moves only in X is entirely explicit.

The following lemma will be useful later.

Lemma 4.4.1 If A is an r.e. arena of which M ⇒ M is a subarena (i.e. A is
a single tree r.e. arena which is not equal to E or M) then every EXAC strategy
over A is (M ⇒ M)-explicit.

Proof Let σ be an EXAC strategy over such an arena A. Either σ =⊥, in which
case it is vacuously (M ⇒ M)-explicit, or it makes a move in response to the initial
O-move ε.

The only P-view on which the conditions for σ to be (M ⇒ M)-explicit come into
play is the initial P-view (when br((M ⇒ M) @ ε) = 1), as br((M ⇒ M) @ m) = 0
for any P-move m and m /∈ (M ⇒ M) for any non-initial move O-move m. Thus
we only need to show that l (σ) ≥ 1. But suppose that l (σ) = 0 — then by the
condition (iv) of the definition of AC at the initial P-view we must have that the
innocent function of σ maps ε to (i, 0) with i ≤ l (σ), a contradiction if σ 6=⊥. �

We can now define a category of EXAC strategies which will form a CCC.

Explicit EAC Strategies and the Model DXA 89

Definition The category XAEXAC, or simply XA, is given by the following:

(i) Objects are pairs (A, X) consisting of a r.e. arena A and a finitely-branching
r.e. sub-arena X.

(ii) A morphism σ : (A, X) → (B, Y) is an EXAC morphism on A ⇒ B which
is (X ⇒ Y)-explicit.

(iii) Composition of morphisms is composition of EXAC strategies via Algo-
rithm 4.2.1.

(iv) The identity strategy on (A, X), id(A,X), is the EXAC strategy 〈idA, t〉, where
idA is the EAC identity strategy on A, and t is the function that takes the
least value on every P-view which still leaves the EXAC strategy 〈idA, t〉 as
(X ⇒ X)-explicit.

Theorem 4.4.2 This does form a category. We already know that composition
is associative so it remains to show that:

Composition of morphisms is well-defined: If σ : (A, X) → (B, Y) and
τ : (B, Y) → (C, Z) then σ ; τ is (X ⇒ Z)-explicit.

Identities work as required: If σ : (A, X) → (B, Y) then σ ; id(B,Y) = σ =
id(A,X) ; σ.

Proof

Composition of morphisms is well-defined:

Take any P-view ~v on which the composite strategy σ ; τ is defined. Suppose that
the last move of this P-view is m and the resulting P-move is m.

Firstly suppose that m ∈ X ⇒ Z. We will have to take the special case when m
is a root of C separately, so first assume that this is not the case. Then we know
that either m ∈ X ⇒ Y or m ∈ Y ⇒ Z, depending on whether σ or τ makes
the next (possibly hidden) move after m. In either case, in the notation of the
Composition Algorithm, we that t1 − o1 ≥ br(X ⇒ Z @ m) by hypothesis. But
then if we examine t and o, the threshold and offset of the composition at this
P-view, we see that:

t − o = Tp+1 − Op+1

≥ (t′1 +
∑i=p+1

i=2 o′i) − (
∑i=p+1

i=1 o′i)
= t′1 − o′1
= t1 − o1

≥ br(X ⇒ Z @ m)

In the special case when m is the root of C, we have that o = Op+1 − |A| + |B| ,
but also we know that the strategy making the first move after m is τ , and that

Explicit EAC Strategies and the Model DXA 90

br(X ⇒ Z @ m) = br(Y ⇒ Z @ m) + |A| − |B| , so the above reasoning is still
sound.

Secondly, suppose that m ∈ X ⇒ Z. There are no special cases; we always have
that t′p+1 = tp+1 ≥ br(X ⇒ Z @ m) by hypothesis (this is because m cannot be a
root of B or C). But t = Tp+1 ≥ t′p+1 so that t ≥ br(X ⇒ Z @ m).

Hence σ ; τ is X ⇒ Z-explicit.

Identities work as required:

It is simple to verify that the identity on (A, X) has the following economical form.
Suppose that A = 〈A1, . . . , An〉, so that id(A,X) = 〈id1, . . . , idn〉, say. Then:

idi : ε 7→ (i, 0, br(Xi @ ε),−n)
t 7→ (t + n, 1, br(Xi @ t), 0)

~s · t 7→ (t, 1, br(Xi @ (~s · t)), 0) for all nonempty sequences ~s

Here we have extended the definition of br slightly, to have that br(A @ m) = 0
when m is not in A.

That is, the copycat threshold of id(A,X) at a P-view ending in the O-move coded
by m in either of the two copies of the arena A (which copy it will be depends on
the parity of the length of m) is the number of children of m in X, or zero if m is
not in X.

We note that, since X is an r.e. arena, the threshold function of the identity strategy
is given by a recursive function as we require for it to be EAC.

Now we know that for an EAC strategy σ on A ⇒ B, idA ; σ = σ = σ ; idB, where
idA and idB are the EAC identity strategies. It remains to show that this still
holds when one also includes copycat thresholds and offsets. We will only consider
idA ; σ, as the other proof is very similar and uses no additional techniques.

Let us select some P-view ~v on which idA ; σ is defined, and suppose that it ends
in the O-move m, with m the resulting P-move. There are four cases:

(i) Both m and m are in B.

(ii) m is in B, m is in some component (A, a).

(iii) m is in B, m is in some component (A, a).

(iv) m is in (A, a1), m is in (A, a2).

Let us write tσ and oσ for the copycat threshold and offset of σ at the same P-view
~v. In each case we want to show that these match the copycat threshold and offset
of the composition. In what follows “condition (i)” (or (ii)) refers to the fact that
σ is X ⇒ Y -explicit, at the P-view ~v.

(i) Is completely trivial.

(ii) Examining the way the EAC identity strategies work (simply copycat) we
see that the uncovering must be of the form

· · ·
•
m

?
m1

◦
m

Explicit EAC Strategies and the Model DXA 91

where m is the same move in A as m1, since it was arrived at by copycat. σ
made the move m1 in response to the P-view ~v.

There are three cases. Let us first assume that m is not a root of B and m
(equivalently m1) not a root of A. Then, in the notation of the Composition
Algorithm, we have:

t′1 = tσ o′1 = oσ

t′2 = br(X @ m1) o′2 = 0
T1 = tσ O1 = oσ

T2 = max(tσ, br(X @ m1))
∗
= tσ O2 = oσ

(* by condition (ii)) Hence t = tσ and o = oσ as required.

In the case when m is not a root of B but m is a root of A, we have similarly:

t′1 = tσ + |A| o′1 = oσ + |A|
t′2 = br(X @ m1) o′2 = − |A|
T1 = tσ + |A| O1 = oσ + |A|

T2 = max(tσ, br(X @ m1))
∗
= tσ O2 = oσ

(* by condition (ii))

In the case when m is a root of B, we must have that m is a root of A, and
the calculation above applies.

(iii) Very similar to (ii), with no special cases.

(iv) As before, we see that the uncovering must be of the form

· · ·
•
m

?
m1

?
m2

◦
m

where m is the same move in A as m1, and m2 is the same move in A as m.
The move m2 is made by σ in response to the P-view ~v.

There are two cases this time. First suppose that m2 is not a root of A.
Then:

t′1 = br(X @ m) = br(X @ m1) o′1 = 0
t′2 = tσ o′2 = oσ

t′3 = br(X @ m2) o′3 = 0
T1 = br(X @ m1) O1 = 0

T2 = max(br(X @ m1) + oσ, tσ)
∗
= tσ O2 = oσ

T3 = max(tσ, br(X @ m2))
∗∗
= tσ O3 = oσ

(* by condition (i), ** by condition (ii)). If m2 is a root of A then:

Explicit EAC Strategies and the Model DXA 92

t′1 = br(X @ m) = br(X @ m1) o′1 = 0
t′2 = tσ + |A| o′2 = oσ + |A|
t′3 = br(X @ m2) o′3 = − |A|
T1 = br(X @ m1) O1 = 0

T2 = max(br(X @ m1) + oσ + |A| , tσ + |A|)
∗
= tσ + |A| O2 = oσ + |A|

T3 = max(tσ, br(X @ m2))
∗∗
= tσ O3 = oσ

(* by condition (i), ** by condition (ii)). So either way the result holds.

�

Theorem 4.4.3 The following constructions make XA into a CCC:

Terminal Object: The terminal object is (E, E).

Binary Products: The product (A, X) × (B, Y) is (A × B, X × Y). The

projection strategy π
(A,X)×(B,Y)
(A,X) is given by the EXAC strategy 〈πA×B

A , t〉,

where πA×B
A is the EAC projection strategy and t is the threshold function

specifying the least value at each P-view to make this EXAC strategy ((X ×
Y) ⇒ X)-explicit. Similarly for the other projection.

Exponentials: The exponential object (A, X) ⇒ (B, Y) is (A ⇒ B, X ⇒ Y).
The evaluation map eval(B,Y),(C,Z) is the same EXAC strategy as id(B,Y)⇒(C,Z).

Proof

Terminal Object:

The only morphisms with the terminal object as codomain are clearly the 0-tuples.

Binary Products:

Suppose that A = 〈A1, . . . , Am〉 and B = 〈B1, . . . , Bn〉, so that π
(A,X)×(B,Y)
(A,X) is an

m-tuple, 〈π1, . . . , πm〉.

Then it is easy to check that πi has the following economical form:

πi : ε 7→ (i, 0, br(Xi @ ε),−n − m)
t 7→ (t + n + m, 1, br(Xi @ t), 0)

~s · t 7→ (t, 1, br(Xi @ (~s · t)), 0) for all nonempty sequences ~s

We claim that give any morphisms σ = 〈σ1, . . . , σm〉 : (C, Z) → (A, X) and τ =

〈τ1, . . . , τn〉 : (C, Z) → (B, Y), we have 〈σ1, . . . , σm, τ1 . . . , τn〉 ; π
(A,X)×(B,Y)
(A,X) = σ.

We already know that this holds for the EAC strategy part of the EXAC strategies
under consideration, and the fact that it also holds for the threshold functions is

Explicit EAC Strategies and the Model DXA 93

almost entirely similar to the proof that identities work as required when composed
on the right.

There is only one case where the copycat thresholds and offsets of π
(A,X)×(B,Y)
(A,X) differ

from those of id(A,X), namely the initial P-views, so this leaves two cases to check.

Either the first move of σ is in A or C. If the former, the interaction sequence of
the first move of the composition is:

· · ·
•
m

?
m1

?
m2

◦
m

where m is a root of A, m1 the corresponding root of A × B, and m2 and m are
the first A-move made by σ.

Then using the same techniques as above we can show that, if tσ and oσ are the
threshold and offset of σ at the initial P-view, we have:

t′1 = br(X @ ε) + |C| = br((Z ⇒ X) @ ε) o′1 = −n − m + |C|
t′2 = tσ o′2 = oσ

t′3 = br(X @ m2) o′3 = 0
T1 = br(X @ ε) + |C| O1 = −n − m + |C|

T2 = max(br(X @ ε) + |C| + oσ, tσ)
∗
= tσ O2 = oσ + |C| − n − m

T3 = max(tσ, br(X @ m2))
∗∗
= tσ O3 = oσ + |C| − n − m

(* by condition (i), ** by condition (ii)). So, because we are in the special case
where m is the root, t = tσ and o = oσ.

In the other case, the first move made by σ is immediately visible, so the interaction
sequence looks like:

· · ·
•
m

?
m1

◦
m

where m a the root of A, mi the corresponding root of A × B, and m the root of
C.

t′1 = br(X @ ε) + |C| = br((Z ⇒ X) @ ε) o′1 = −n − m + |C|
t′2 = tσ o′2 = oσ

T1 = br(X @ ε) + |C| O1 = −n − m + |C|

T2 = max(br(X @ ε) + |C| + oσ, tσ)
∗
= tσ O2 = oσ + |C| − n − m

(* by condition (i)). So in either case t = tσ and o = oσ.

Since the strategy 〈σ1, . . . , σm, τ1 . . . , τn〉 is clearly Z ⇒ (X × Y)-explicit, this is
sufficient to prove that this works as the tupled morphism, and also the required
universal property of the projection. The proof for the other projection is, of course,
entirely similar.

Explicit EAC Strategies and the Model DXA 94

Exponentials:

If σ is any morphism (A, X) → ((B, Y) ⇒ (C, Z)) we claim that the composition
σ × id(B,Y) ; eval(B,Y),(C,Z) is a morphism (A, X) × (B, Y) → (C, Z) which is the
same EXAC strategy as σ. Hence for τ : (A, X) × (B, Y) → (C, Z), the curried
morphism Λ(τ) is uniquely given by the same EXAC strategy as τ .

As before, we already know this result to be true as far as the moves of the strate-
gies go, and it remains to check the thresholds and offsets. The proof contains a
considerable amount of tedious detail, all in a similar vein to that shown above, of
which we give an outline.

Firstly, we note that σ × id(B,Y) is shorthand for

〈π(A,X)×(B,Y)
(A,X) ; σ, π

(A,X)×(B,Y)
(B,Y) ; id(B,Y)〉.

Let us write this as 〈σ′, π
(A,X)×(B,Y)
(B,Y) 〉. Recall that the thresholds and offsets of the

projection morphisms do not differ very much from those of the relevant identity
morphisms: routine calculation shows that σ′ has exactly the same thresholds as σ,
and also the same offsets, except that the offset at any minimal P-view is decreased
by |B| .

Then it remains to show that, at any P-view ~v of the composition 〈σ ′, π
(A,X)×(B,Y)
(B,Y) 〉;

eval(B,Y),(C,Z), the copycat threshold and offset matches that of σ. As before, sup-
pose that the P-view ends in the move m and has resulting move m, and write tσ

and oσ for the copycat threshold and offset of σ ~v.

There are nine cases, corresponding to whether m and m are in the arenas A, B
or C. Each gives a different interaction sequence, and requires a separate proof.
Some cases have special subcases, when m or one of the intermediate moves is a
root of some tree. All cases, although sometimes long, are very similar to the proofs
already given for identities and projections. �

Remark 4.4.4 The definition of EXAC strategy is really intended for arenas of
the form Un. We can define the full subcategory XU, of which the objects are pairs
(A, X) with A = Un for some n and X a finitely-branching r.e. arena with n trees,
which has the same cartesian closed structure as XA.

4.5 The Model DXA

Recall the single-tree arenas U and M defined in Example 2.1.2. The former is
“maximal”, in that it is (countably) infinitely branching and infinitely deep. The
latter is “minimal”, consisting of one a single node.

Let us write U0 for the object (U, M) of XA, and U1 for the object U0 ⇒ U0. The
reader may wish to verify that, for example, the concrete representation of U1 is
given by (U, 〈{ε, 〈1〉}〉).

Explicit EAC Strategies and the Model DXA 95

Recall also the EXAC strategy η1 from Example 4.1.2. We repeat the definition
for convenience: the EAC strategy part is the same as the strategy idU (since
U = U ⇒ U this does define an EAC strategy over U). The copycat threshold is
zero at every P-view except the initial P-view, when it is 1. Thus the economical
form is given by:

ε 7→ (1, 0, 1,−1)
〈1〉 7→ (2, 1, 0, 0)

It is routine to check that η1 specifies two morphisms of XA, f : U0 → U1 and
g : U1 → U0. (In fact it is the case that these morphisms could equally be
specified as the EXAC strategies which have EAC strategy part idU , and the least
copycat thresholds to make them explicit in the necessary sub-arenas to be mor-
phisms of that type. The definition of morphisms by EAC strategy and “least
threshold function” to make them explicit in the appropriate sub-arenas seems to
be a recurring theme.)

We can now show that f and g form a retraction from U1 into U0: we know that
that EAC strategy part of f , g, idU0

and idU1
are all the same as idU , so that same

holds for f ; g and g ; f . Thus it remains only to check threshold functions. Simple
applications of the Composition Algorithm show that the thresholds of both f ; g
and g ; f are 1 at the minimal P-view, and zero elsewhere. The same holds for
idU1

, whereas idU0
has threshold which is zero at every P-view. Hence, as EXAC

strategies and thus as morphisms in XA,

g ; f = idU1
, f ; g 6= idU0

.

Thus allows us to identify a λ-algebra M(XA, U0, f, g), which we shall write as
DXA. To distinguish the denotation of a term as an EAC strategy in DEAC (which
is the same as the denotation in D and DREC), from the denotation as an EXAC
strategy in this model we write it [[s]]XA.

Remark 4.5.1 The λ-algebra DXA could equivalently have been presented as
M(XU, U0, f, g) (see Remark 4.4.4).

We will want to lift some results about EAC strategies and the model DEAC to
EXAC strategies and the model DXA. We make that connexion precise with the
following.

Theorem 4.5.2 Let E : XA → AEAC be given on objects by E((A, X)) = A and
on morphisms by E(〈σ, tσ〉) = σ. Then

(i) E is a full, exact cartesian closed, functor, and

(ii) E preserves the reflexive object and the retraction morphisms.

Hence for any term s and valuation ρ, [[s]]ρ = E([[s]]XA
ρ).

Proof (i) is straightforward verification (note that for example the projections

Explicit EAC Strategies and the Model DXA 96

in XA are defined to be precisely the projections in AEAC, along with the least
copycat threshold to make them explicit in the appropriate subarena).

To show that E is full suppose that σ : A → B is an arrow of AEAC. (Suppose that
neither A nor B are equal to the empty arena E, these are special cases dealt with
below). Then σ is an EAC strategy on A ⇒ B and hence has some recursive valid
threshold function tσ, so 〈σ, tσ〉 is an EXAC strategy over A ⇒ B. Furthermore
by Lemma 4.4.1 this EXAC strategy is (M ⇒ M)-explicit hence it is a morphism
(A, M) → (B, M) of XA. (The special cases are as follows: if A is the empty arena
E then the EXAC strategy above will certainly be (E ⇒ M)-explicit, symmetrically
for B = E, and if A = B = E then σ =⊥, which is (E ⇒ E)-explicit.)

For (ii), clearly E(U0) = U , E(f) = Fun and E(g) = Gr. It remains to observe
that the λ-algebra M(C, R,Fun,Gr) (where R is a reflexive object via Fun and
Gr in the CCC C, for the definition see Section 1.6) is completely determined by
cartesian closed structure of C, along with R, Fun and Gr. �

Corollary 4.5.3 DXA is sensible. [[s]]XA = ⊥ if and only if s is unsolvable.

Note that the functor E restricts to a functor E ′ : XU → UEAC with the same
properties.

4.6 Böhm Trees in Variable-Free Form and Exact

Correspondence

In Chapter 3 we showed that the denotation of term, in the models D, DREC and
DEAC, has a very close connexion with the term’s Nakajima tree. Here we will show
that the same connexion exists between the denotation of a term in DXA and the
Böhm tree of the term.

Recall that the Böhm tree of term s, written BT(s) is given (informally) by the
following: if s is unsolvable then BT(s) =⊥. If s has HNF λx1 . . . xn.ys1 . . . sm then

BT(s) = λx1 . . . xn.y

BT(s1) · · · BT(sm)

Thus each node of the Böhm tree has a finite number of abstractions, a head vari-
able, and a finite number of children. We consider Böhm tree modulo α-conversion,
so that the the following information is sufficient to describe a Böhm tree of a closed
term: for each node we have numbers specifying the number of abstractions and
children, and information to describe where head variable was abstracted in the
tree in the same was as we did for Nakajima trees in Section 3.2.

Explicit EAC Strategies and the Model DXA 97

We encode this information into a variable-free form in the following manner:

Definition For a (N × N0 × N0 × Z)-labelled tree p the tree p∗ is the same tree
labelled identically, except that nodes at depth d labelled (i, d+1, t, o) are relabelled
(i, d + 2, t, o).

Similarly the tree {p}n, for n ∈ N0, is labelled identically except that firstly the
node at the root (i, r, t, o) is first relabelled to (i, r, t, o − n), and then nodes of
depth d are relabelled as follows:

(i) those labelled (i, d, t, o) are relabelled (i + n, d, t, o);

(ii) those labelled (i, d + 1, t, o) for i ≤ n are relabelled (n − i + 1, d, t, o);

(iii) those labelled (i, d + 1, t, o) for i > n are relabelled (i − n, d + 1, t, o).

For a term s with free variables within ∆ the variable-free form of the Böhm tree
of s, VFBT∆(s), is the following (N × N0 × N0 × Z)-labelled tree:

VFBT∆(s) = ⊥, the empty tree, for unsolvable s.

VFBT∆(λx1 . . . xn.s) = {VFBT∆·〈x1,...,xn〉(s)}
n,

if s is of the form vjs1 . . . sm.

VFBT∆(vjs1 . . . sm) = (j, 1, m, m)

VFBT∆(s1)
∗ VFBT∆(sm)∗

����
HHHH

where ∆ = 〈vk, . . . , v1〉 (note the reverse order).

Lemma 4.6.1 The encoding of head variables in VFBT matches that in VFF.
Precisely, for any term s with free variables within ∆ and any sequence ~v ∈ N∗

at which (the labelling function of) VFBT∆(s) is defined we have VFBT∆(s)(~v) =
(i, r, t, o) implies VFF∆(s)(~v) = (i, r).

Furthermore, for any k, {VFBT∆(s)(~v)}k = (i, r, t, o) implies {VFF∆(s)(~v)}k =
(i, r).

Proof Trivial when one compares the definitions of VFBT and VFF. �

This definition is at first sight rather opaque, and indeed it could have been stated
in a clearer fashion but that this would have complicated Theorem 4.6.5 below. The
effect of the definition is illustrated by the following lemma, which is analogous to
Lemma 3.2.2.

Lemma 4.6.2 Let s be a term with all free variables occurring within ∆ =
〈vk, . . . , v1〉. Construct the Böhm tree of s, and rename all the bound variables
so that if ~a ∈ N∗ codes a node of BT(s) then the ith abstracted variable at this

Explicit EAC Strategies and the Model DXA 98

node is x~a
i . Let this renamed Böhm tree have labelling function A, and consider

VFBT∆(s) also as a labelling function.

Then for any sequence ~a = 〈a1, . . . , ap〉 there are three possibilities for A(~a):

(i) If ~a /∈ dom(A) then VFBT∆(s) is unlabelled or undefined at ~a,

(ii) If A(~a) = λx~a
1 . . . x~a

n.vj, and the node coded by ~a has m children, then
VFBT∆(s) = (j, p + 1, m, m − n).

(iii) If A(~a) = λx~a
1 . . . x~a

n.x
〈a1 ,...,ap−r〉
j , and the node coded by ~a has m children,

then VFBT∆(s) = (j, r, m, m − n).

Proof Entirely similar to the proof of Lemma 3.2.2. �

Example 4.6.3 One may check that VFBT(I) and VFBT(1) are:

(1, 0, 0,−1) and (1, 0, 1,−1)

(2, 1, 0, 0)

The node λxy.x, in the Böhm tree of 1, corresponds to the node of VFBT(1)
labelled (1, 0, 1,−1), which is so labelled because the head variable is the first
abstracted variable zero levels up the tree (namely x), the node has one child, and
the number of abstractions at this level is 1 − (−1) = 2.

The following result will be useful in what follows.

Lemma 4.6.4 If σ : (A, X) → U1 is a morphism in XA, for any object (A, X),
then σ ; g : (A, X) → U0 is the same EXAC strategy as σ.

If τ : (A, X) → U0 is a morphism in XA, for any object (A, X), then τ ; f :
(A, X) → U1 is the same EXAC strategy as τ , unless the threshold and offset of τ
at the minimal P-view, t and o, satisfy t − o = |A| . In this case τ ; f is the same
EXAC strategy as τ except that the threshold at the minimal P-view is t + 1.

Proof Recall that both f and g are the EXAC strategy η1, which is the same
as the EXAC strategy idU0

, except that the threshold at the minimal P-view is
1 rather than 0. Hence we can use the proof that identities work as required in
Theorem 4.4.2 to show that σ ; f and τ ; g are the same EXAC strategies as σ and
τ respectively, except at the minimal P-view.

It remains to examine the minimal P-view. Suppose that the first move of σ is in
the arena A rather than U , with copycat threshold and offset tσ and oσ. Then, in
the notation of the Composition Algorithm,

t′1 = 1 + |A| o′1 = −1 + |A|
t′2 = tσ o′2 = oσ

T1 = 1 + |A| O1 = −1 + |A|

T2 = max(1 + |A| + oσ, tσ)
∗
= tσ O2 = oσ − 1 + |A|

Explicit EAC Strategies and the Model DXA 99

Recall that U1 = (U, M ⇒ M) . Then (∗) is because σ must be (X ⇒ (M ⇒ M))-
explicit, hence tσ − oσ ≥ |A| + 1.

Thus t = tσ and o = oσ, i.e. the threshold and offset of σ ; f at the minimal P-view
match that of σ. A similar calculation applies when the first move of σ is in the
arena U .

The same figures occur in the calculation of τ ;g at the minimal P-view, except that
in this case we only know that τ , as a morphism (A, X) → U0, must be (X ⇒ M)-
explicit, so that tτ − oτ ≥ |A| . When equality holds, t = tτ + 1, when it is a strict
inequality, t = tτ as for σ. �

We use this to show a powerful connexion between the denotations of terms in DXA

and Böhm trees.

Theorem 4.6.5 (Exact Correspondence for DXA) If s ∈ Λ with free vari-
ables in ∆ = 〈vk, . . . , v1〉 then [[s]]XA

∆ = {VFBT∆(s)}k when the former is considered
as an EXAC strategy in economical form and the latter as a labelling function.

In particular for closed terms s, [[s]]ε = VFBTε(s)

Proof We show by induction on the length of ~α, for all terms s and contexts ∆
simultaneously, that

(i) ~α · i ∈ dom([[s]]XA
∆) if and only if ~α · i ∈ dom(VFBT∆(s)). The latter is

trivially equal to dom({VFBT∆(s)}k).

(ii) If [[s]]XA
∆ (~α) = (i, r, t, o) and {VFBT∆(s)}k(~α) = (i′, r′, t′, o′) then i′ = i, r′ = r

and t′ = t.

We will be able to use the Exact Correspondence Theorem for D, together with
Lemma 4.6.1 and Theorem 4.5.2 to prove that i′ = i and r′ = r, and then show
t′ = t by considering the composition algorithm. In view of Remark 4.1.1 this will
ensure that o′ = o too (in the base case o′ = o comes for free, but the proof of the
inductive step is easier without having to consider offsets).

Base Case: If s is unsolvable then both [[s]]M∆ and VFBT∆(s) are everywhere
undefined.

Otherwise s has a head normal form λx1 . . . xn.ys1 . . . sm. Then in the notation
above t′ = m and o′ = m − n − k.

We must return to the definition of [[−]]XA to discover the copycat thresholds and
offsets.

[[s]]XA
∆ = Λ(· · ·Λ(Λ

︸ ︷︷ ︸

n Λ’s

([[ys1 . . . sm]]XA
Γ) ; g) ; g · · ·) ; g

where Γ = ∆ · 〈x1, . . . , xn〉. Since Λ(σ) is the same EXAC strategy as σ, and by
Lemma 4.6.4 so is σ ; g, this has the same thresholds and offsets as [[ys1 . . . sm]]XA

Γ .
Let V = U0 × · · · × U0

︸ ︷︷ ︸

k + n times

.

Explicit EAC Strategies and the Model DXA 100

[[ys1 . . . sm]]XA
Γ = (ΠΓ

y • [[s1]]
XA
Γ) · · · • [[sm]]XA

Γ

We will show, by induction on m, that the threshold of this strategy at the minimal
P-view is m and the offset is m − n − k. For convenience we also include the fact
that the first P-move of the composite strategy is played in the arena V in the
induction hypothesis.

Case m = 0: The strategy is just ΠΓ
y . Depending on y, this is just one of the

projections V → U0, which we know has threshold 0 and offset −n − k at the
minimal P-view. We also know that the first P-move is played in the arena V .

Inductive Case Suppose that we have a strategy σ : V → U0 with threshold m and
offset m − n − k at the minimal P-view, and which makes the first P-move in the
arena V . Then for any strategy τ : V → U0,

σ • τ = 〈σ ; f, τ〉 ; evalU0,U0
.

First examine σ ; f — we are in the special case of Lemma 4.6.4, so that the
threshold of σ ; f is m + 1 and the offset m − n − k.

It is now simple to use the Composition Algorithm to examine the threshold and
offset of 〈σ ; f, τ〉 ; evalU0,U0

at the minimal P-view. Since we know that the first
P-move of σ is in the arena V , there is one intermediate move, which is the root of
V ⇒ U1 at which σ is to play. Thus the strategy τ is irrelevant for this calculation
and in the notation of the Composition Algorithm the resulting threshold and offset
is calculated as follows:

t′1 = 1 + k + n o′1 = −1 + k + n
t′2 = m + 1 o′2 = m − n − k
T1 = 1 + k + n O1 = −1 + k + n
T2 = max(m + 1, 1 + k + n + m − n − k) O2 = −1 + k + n + m − n − k

= m + 1 = m − 1

Hence t = m + 1 and o = m − 1 − (n + k) + 2 = m + 1 − n − k. One can also
see that the first move of the composition is in the arena V , which completes the
inductive step of this claim.

This completes the proof that the threshold and offset of [[s]]XA
∆ at the minimal

P-view are m and m − n − k respectively.

This shows that 〈i〉 ∈ dom([[s]]XA
∆) if and only if 1 ≤ i ≤ m and si is solvable. On

the other hand, 〈i〉 ∈ dom(VFBT∆(s)) if and only if 1 ≤ i ≤ m and si is solvable.
This completes the proof of (i).

Suppose that [[s]]XA
∆ (ε) = (i, r, t, o) and {VFBT∆(s)}k(ε) = (i′, r′, t′, o′). Now

Lemma 4.6.1 means that {VFF∆(ε)}k(ε) = (i′, r′). On the other hand, Theo-
rem 4.5.2 means that [[s]]∆(ε) = (i, r), and the Exact Correspondence Theorem for
DEAC gives that i′ = i and r′ = r.

Explicit EAC Strategies and the Model DXA 101

Finally, by the definition of VFBT, t′ = m = t and o′ = m−n− k = o, completing
the base case of the outer induction.

Inductive Step: Again if s is unsolvable then both functions are everywhere
undefined, so assume that s has hnf λx1 . . . xn.ys1 . . . sm and again write Γ =
∆ · 〈x1, . . . , xn〉. We assume the results (i) and (ii) for each of the terms s1, . . . , sm,
each with the context Γ, for all sequences ~α of length up to l.

Let ~α be any sequence of length l. Take 1 ≤ j ≤ m. We show that (i) and (ii) hold
for the term s and context ∆, for the sequence j · ~α. We already know it holds for
the sequence ε, and (also by the base case) that the domain of both functions is
contained in the set {j · ~α | 1 ≤ j ≤ m, ~α ∈ N∗}. This will therefore establish the
inductive step.

Suppose that [[s]]XA
∆ (j · ~α) = (i, r, t, o) and {VFBT∆(s)}k(j · ~α) = (i′, r′, t′, o′). We

know by result (i) of the inductive hypothesis that one is defined if and only if
the other is. Lemma 4.6.1 means that {VFF∆(s)}k(j · ~α) = (i′, r′). On the other
hand, Theorem 4.5.2 means that [[s]]∆(j ·~α) = (i, r), and the Exact Correspondence
Theorem for DEAC gives that i′ = i and r′ = r. We next show that t′ = t, completing
the proof of (ii).

Now by the definition of VFBT,

{VFBT∆(s)}k(j · ~α) = (i′, r′, t′, o′)
if and only if {VFBT∆(s)}(k+n)(sj)(~α) = (i′′, r′′, t′, o′′)

for some irrelevant numbers i′′, r′′, o′′ (this is simple to verify). Then by the
inductive hypothesis [[sj]]

XA
Γ (~α) = (i′′, r′′, t′, o′′)

With this fact in hand we examine [[s]]XA
∆ , aiming to calculate [[s]]XA

∆ (j · ~α) from this
fact.

As we found in the base case, [[s]]XA
∆ = [[ys1 . . . sm]]XA

Γ = (ΠΓ
y • [[s1]]

XA
Γ) • · · · • [[sm]]XA

Γ ,
which with the •’s decoded is

〈· · · 〈〈ΠΓ
y ; f, [[s1]]

XA
Γ 〉 ; eval ; f, [[s2]]

XA
Γ 〉 ; eval ; f · · · , [[sm]]XA

Γ 〉 ; eval

where eval is evalU0,U0
. What follows is not a rigorous analysis, as such a thing

would be impossible to typeset as well as extremely tedious.

We already know, from proof of the Exact Correspondence Theorem for DEAC,
that if the first O-move made against this strategy is j then the result of this
multiple composition is to copy moves made by and against σj from the components
where they are hidden into ones where they are not; this composite strategy makes
moves which are (a small translation of) those of σj. What is important is that
between visible moves, except between the initial move and the first P-move, all
of the intermediate moves are not roots of the arenas they occur in (the reader
is invited to draw a picture — on a large piece of paper — and demonstrate this
for themselves). The reason this is important is because for ΠΓ

y and evalU0,U0
the

Explicit EAC Strategies and the Model DXA 102

copycat thresholds and offsets are always zero except at the initial P-view (this is
very simple to check).

Thus when we work out the threshold and offset of [[s]]XA
∆ at the P-view coded by

j · ~α using the composition algorithm and the fact that the threshold and offset of
[[sj]]

XA
Γ at the P-view coded by ~α are t′ and o′′, the calculation will be either of the

form
t′1 = 0 o′1 = 0 or t′1 = t′ o′1 = o′′

t′2 = 0 o′2 = 0 t′2 = 0 o′2 = 0
...

...
t′p = 0 o′p = 0 t′p = 0 o′p = 0
t′p+1 = t′ o′p+1 = o′′ t′p+1 = 0 o′p+1 = 0

depending on which component the visible moves appear in. In the first case
T1 = T2 = · · · = Tp = 0 and t = Tp+1 = max(t′, o′′) = t′, In the second case, T1 = t′

so t′ = T2 = · · · = Tp+1 = t.

Thus in either case we have shown that the copycat threshold of [[s]]XA
∆ at the P-view

coded by j · ~α is t′, but by assumption it is also t. Hence t = t′.

Finally, we show (i) as follows: j ·~α·i ∈ dom([[s]]XA
∆) if and only if ~α·i ∈ dom([[sj]]

XA
Γ),

this is because of the way the multiple composition which defines [[s]]XA
∆ copies the

moves of sj after the first P-move j. But ~α · i ∈ dom([[sj]]
XA
Γ) if and only if

~α · i ∈ dom(VFBTΓ(sj)) (by (i) of the inductive hypothesis) if and only if j · ~α · i ∈
dom(VFBT∆(s)) by the definition of VFBT.

This completes the inductive step of the outermost induction. �

Corollary 4.6.6 For closed terms s and t,

[[s]]XA ⊆ [[t]]XA ⇐⇒ BT(s) ⊆ BT(t).

The order on DXA is inclusion of EXAC strategies, namely inclusion of both EAC
strategy part and threshold function. The order on Böhm trees is inclusion of
labelling function, modulo renaming of bound variables, which amounts to inclusion
of variable-free form. Thus the local structure of DXA is the λ-theory B.

Example 4.6.7 Applying the Exact Correspondence Theorem to the variable-
free forms of the Böhm trees we looked at in Example 4.6.3, we can deduce that
the economical forms of [[I]] and [[1]] are, as we hoped, the EXAC strategies η0 and
η1 described in Example 4.1.2.

As with the model DEAC, the Exact Correspondence Theorem allows us to prove
the powerful result of universality holds for DXA.

Theorem 4.6.8 DXA is a universal λ-algebra.

Proof The proof is an easier analogue of that of Lemma 3.5.2. Suppose that

Explicit EAC Strategies and the Model DXA 103

σ′ = 〈σ, tσ〉 is an EXAC strategy on U (to be an element of the model it must
be a member of the homset Hom � � (1, U0)). Let f be the economical form of the
innocent function of σ, and write tv and ov for the threshold and offset of σ at the
P-view coded by ~v.

Let the set X ⊆ N
∗ be defined inductively by:

ε ∈ X
if ~v ∈ X then 1 ≤ i ≤ tv =⇒ ~v · i ∈ X.

This has the property that the domain of the economical form of σ ′ is a subset of
X (this is straightforward to verify).

We define the labelling function of Böhm-like tree A as follows. The domain of A
is the set X. For any sequence ~v = 〈v1, . . . , vp〉 ∈ X we define A(~v) by:

(i) If ~v /∈ dom(f) then A(~v) is undefined (the partially-labelled tree has label ⊥
at this node).

(ii) If f(~v) = (i, r) then A(~v) = λx~v
1 . . . x~v

n.x
〈v1,...,vp−r〉
i , where n = tv − ov.

Now there are no free variables in the Böhm-like tree A which is also clearly r.e.,
hence by Theorem 1.5.4 there is some term s with BT(s) = A.

Now we prove that VFBTε(s), as a labelling function, is the same as the economical
form of σ′. Take any sequence ~v ∈ X. If f is not defined on this sequence, neither is
the economical form of σ′, but on the other hand A is not labelled at ~v by (i) above.
If f(~v) = (i, r) then we know that the node in X coded by ~v has tv children, hence

similarly for A, and also that A(~v) = λx~v
1 . . . x~v

n.x
〈v1 ,...,vp−r〉
i , where n = tv − ov, by

(ii) above. Thus VFBTε(s)(~v) = (i, r, tv, ov) by Lemma 4.6.2. On the other hand,
by definition the economical form of σ′ also maps ~v to (i, r, tv, ov).

Finally, we appeal to the Exact Correspondence Theorem for DXA, which shows
that [[s]]ε has economical form given by the labelling function of VFBTε(s), which
by the above is the economical form of σ′. �

The universality result for DXA tells us immediately about its extensionality prop-
erties. Recall that in Section 3.7 we showed that DEAC was order-extensional and
hence extensional.

The same is not true for DXA; note that [[I]]XA 6= [[1]]XA. Since for all terms s and
t, Ist = 1st, we can be sure that DXA is not extensional, but in fact it is not even
weakly extensional (hence not a λ-model).

A simple proof uses the strong correspondence between the DXA and the closed
term model of the λ-calculus. The general result is as follows.

Lemma 4.6.9 If 〈A, •, [[−]]−〉 is a universal and weakly-extensional λ-algebra then
[[I]] = [[1]].

Proof Consider s = x and t = λy.xy. For any a ∈ A we have a closed term u

Explicit EAC Strategies and the Model DXA 104

such that [[u]] = a. Hence [[s]](x:=a) = [[u]] and [[t]](x:=a) = [[λy.uy]].

But since u is closed we know that u ≡ λz.v for some term v, hence [[λy.uy]] =
[[λy.v[z := y]]] = [[λz.v]] = [[u]]. So by weak extensionality, we must have [[I]] =
[[λx.s]] = [[λx.t]] = [[1]]. �

Corollary 4.6.10 DXA is not weakly extensional.

Chapter 5

Conclusions

5.1 Connexions with Other Work

We turn to the work of Di Gianantonio et al., who have recently been looking at
history-free game models of untyped λ-calculus.

A game model is introduced in [DFH99]. It has interesting parallels with the
work presented here — it is a modification of the history-free game setting used
in [AJM94] with the distinction between questions and answers removed. As usual
with history-free games, there is a decomposition of the function space into a linear
function space and exponential, and some extra work needs to be done to construct
a cartesian closed category.

Rather than giving a reflexive object directly, however, the authors use a complete
partial ordering and take the limit of a chain generated by iterating a functor.
Thus the construction of the reflexive object is reminiscent of the construction of
Scott’s D∞ models [Sco69]. (The use of iteration to find fixed points is described
in [McC98], and indeed it was this technique that Abramsky and McCusker used for
their history-free game model of the lazy λ-calculus). By introducing an indexing
for terms, the authors use results of labelled reduction and approximate normal
forms (see [Wad76]) to show directly that the local structure of all game models
arising in this way is H∗.

In a follow-up paper [DF98] a type assignment system is given, and a connexion
between the denotation of a term and the set of types which it can be assigned
is made. This is some sort of correspondence result, but it does not seem at all
related to our Exact Correspondence Theorem. Its significance is difficult to judge,
although it does present a finitary description of a denotational semantics for the
untyped λ-calculus.

A third paper on this subject, [DF00], shows how different reflexive objects may be
constructed, using modifications of the techniques of [DFH99]. It is shown that such
reflexive objects fall into three classes, which must give models with local structure

105

Conclusions 106

equal to B, H∗, or the theory of equality of Lévy-Longo trees L, depending on the
properties of the retraction morphisms.

The work presented in these three papers is in a different style to that presented
here, and not only because it uses the history-free style of games instead of the
innocent approach. The use of chains of iterates to construct reflexive objects, as
opposed to our setting in which the reflexive object is simple to define, seems to
make the model rather more cumbersome to work with. Local structure results are
proved using approximations to terms and strategies; there is no Exact Correspon-
dence Theorem and, importantly, no universality result. The models constructed
are in fact λ-algebras and not λ-models (although the authors refer to them as
λ-models) because they do not have extensionality properties.

The characterization of precisely which equational theories can be constructed in
this history-free setting is interesting. However the construction of models of the-
ories other than H∗ is not related to our construction of the model DXA, which
arises from a quite different category to AEAC, so we would not expect it to apply
to our style of game. The parallel construction in our setting would instead be the
use of different retraction morphisms in the category A. That construction of a
model which invalidates η-conversion is possible in this way has been known to the
author for some time. Take, for example, morphisms Fun′ and Gr′ defined to be
the appropriate type and by the strategies which are given by [[λx.xx]] and [[λxy.x]]
respectively: it is routine to check that these still form a retraction, but it is not an
isomorphism. One can then form a λ-algebra M(A, U,Fun′,Gr′) which does not
validate η-conversion. However it is not clear that its local structure is precisely B,
and the Exact Correspondence is broken by the use of retraction morphisms which
shuffle moves as well as types.

5.2 Further Directions

We conclude with some areas in which the thesis is limited, and further research
which is indicated.

Observational Quotient; Towards an Algebraic Definition of

EAC

One limitation of this work is that the definition of an EAC strategy is rather pulled
from thin air; it is more or less a translation of Theorem 1.5.4 into the language of
economical forms of innocent strategies. Although it makes for a very satisfactory
model (and the non-uniqueness of copycat thresholds leads us to consider the EXAC
strategies) it would be nice to arrive at the EAC model in an algebraic way. Copycat
strategies are a recurring theme in all styles of game semantics, and similar ideas

Conclusions 107

also appear in other parts of computer science. We believe that there are strong
connexions between copycat strategies and data independence, see e.g. [LR96]. A
better understanding of the EAC condition would be very worthwhile for these
reasons. An algebraic characterization might also simplify the proof that EAC
strategies compose.

A first attempt would be to fix a notion of observable and take the observational
quotient (see Chapter 3 of [HO00]) of the category AREC (or just of the model
DREC). A suitable definition of the latter might be:

Definition The partial order � on D is defined by σ � τ if for all ρ ∈ D,

ρ • σ :
•
ε

7→
◦
1

=⇒ ρ • τ :
•
ε

7→
◦
1

and we write σ ≈ τ if σ � τ and τ � σ.

Then the following are true: � is a congruence with respect to •; σ ⊆ τ implies
σ � τ ; ⊥ is the unique least element; the definition is not altered if we restrict
attention to quantification over compact elements ρ (and a fortiori to recursive
elements); for any λ-terms s and t, if [[s]] 6= [[t]] then [[s]] 6≈ [[t]] (and hence no two
different EAC elements of D are equivalent).

Although the EAC strategies all inhabit different equivalence classes of ≈, there
are some elements not equivalent to any EAC strategy. If one takes the pseudo-
term “λx1x2x3 . . . • x2x1x4x3x6x5x8x7 . . .”, and gives it a denotation consistent
with the Exact Correspondence Theorem, it is fairly clear that such a strategy is
observationally inequivalent to any EAC strategy.

Now the observational quotient is of interest for a variety of reasons in its own
right but it also suggests the question of whether there is a simple, hopefully less
syntactic, restriction one can make on strategies such that there is precisely one
EAC strategy in each equivalence class of the observational quotient of what is
left. Taking our ideas on infinitary λ-calculus into consideration — see below — it
appears that the definition of EAC is actually imposing two conditions on terms:
finiteness and extensionality. Can the conditions be factored?

Failing that, perhaps there is a separate algebraic characterisation of the EAC
strategies which fully reflects their parametric nature.

Connexions with Infinitary Lambda Calculus

We return to the observational quotient of DREC. Since DREC is arguably the most
natural game model of untyped computation, it is of interest to study its properties.

Conclusions 108

Consideration of strategies which are observationally inequivalent to EAC strate-
gies, such as that which intuitively denotes “λx1x2x3 . . . • x2x1x4x3x6x5x8x7 . . .”,
leads us towards an infinitary version of the λ-calculus.

Nakajima introduced a brand of infinite terms when presenting the η-expanded
trees in [Nak75] which we used for the Exact Correspondence Theorem. Perhaps
this approach can be used for our aims, although his method (each term is a
sequence of terms which approximate it) is based on the D∞ model rather than
syntax.

Infinitary λ-calculi are a topic of current research interest. In [KKSdV97] Kennaway
et al. describe a uniform method for constructing infinite terms, identifying three
independent ways in which terms can be infinite (infinite abstraction, infinite depth
and infinite application). By describing 8 metrics on parse trees for terms and
constructing the metric completions they give calculi with all possible combinations
of these infinite phenomena. However it looks like the intuitive infinite calculus we
are after is none of these. Another approach is described by Berarducci in [Ber96],
but the focus is on infinite term re-writing and again the set of infinite terms seems
not to be what we want. Infinite re-writing would certainly have to play a part
in our language, and we would hope that infinite trees such as the Nakajima trees
would be the normal forms with respect to a notion of (possibly transfinite) head
reduction.

John Longley has commented that the space of increasing sequences of Böhm trees
might correspond to the recursive innocent strategies. However we would prefer
to identify a new language with infinitary terms, a suitable equational theory,
and which is universally modelled by the observational quotient of DREC. This
language might have some interesting features (solvability is not equivalent to the
existence of head normal forms, for a start). Finding such a language has the
important justification of providing a (hopefully) compact syntax to reason about
innocent strategies. This is something which has hitherto been lacking: certainly
the innocent functions or economical forms are sufficient to describe strategies, but
not in any elegant way.

Models of Other Theories

It should be possible to modify these game models to capture other λ-theories. In
view of the work of Di Gianantonio et al. we should perhaps start with equality of
Lévy-Longo Trees of [Lév75] and [Lon83] (the theory generated in this way is called
L). By slightly weakening the definition of EXAC strategies, to allow a threshold
and/or offset at a node where the innocent function is undefined, it seems likely
that the EXAC model can be refined into a universal model with equational theory
equal to L. Hopefully there will be no extra complications in defining a CCC for
these strategies, such as we found in moving from EAC to EXAC strategies.

Conclusions 109

On the other hand, we could perhaps define a new set of undefined strategies
⊥0,⊥1, . . . ,⊥∞ which have slightly special composition rules and are intended to
denote the unsolvables of order 0, 1, . . . ,∞. This could be placed in the EAC
setting, and we would expect to arrive at a model which validates η-conversion.
Presumably there is some theory which is to L as H∗ is to B; hopefully the model
would be a universal λ-algebra inducing this theory. It would certainly be of interest
to find a game model of some theory other than H∗, B or L, in view of the results
of [DF00].

It has to be said that these ideas make for rather contrived models, even more so
than the Böhm tree model presented, since we are tagging our semantic models
with thinly disguised syntax in order to induce the required theories. An algebraic
definition of EAC would probably also lead to algebraic definitions for other models.

Much more speculatively, we wonder if it would be possible to attack the problem
of describing a syntax-free model of the “plain” theory λ, a problem which has
hitherto remained unsolved. A reason for optimism is that game semantics is
quite intensional in nature; on the other hand, our gut feeling is that λ is just
too intensional even for game models. If there are limitations, it would be very
interesting to find out why. The work of [DF00] suggests that the composition
algorithm of all game models makes them “strongly biased towards head reduction”.

Realizability Over Game Models

We have seen that DEAC and DXA provide very satisfactory models of the untyped λ-
calculus. However it is D and DREC which are the compellingly “natural” innocent
game models of untyped computation, and we can examine them as combinatory
algebras in their own right. Of particular interest are the realizability categories
over these combinatory algebras.

The subject of realizability first arose in mathematical logic, with the work of
Kleene in [Kle45], but has since grown into a useful tool for denotational seman-
tics. One takes a fairly simple structure — usually a (partial) combinatory algebra
— and uses the elements of it to “realize” a richer structure. A survey of the use
of realizability for denotational semantics can be found in Longley’s thesis [Lon95].
The realizability construction we are interested in is the category of modest sets
generated by a combinatory algebra, which is equivalent to the perhaps more fa-
miliar category of partial equivalence relations which appears in [Gir72] and derives
from [Kre59]. For any partial combinatory algebra A, the category of modest sets
over A, written Mod(A), is cartesian closed, regular, and has a natural numbers
object which lives in a hierarchy of high order functional objects (we call the hi-
erarchy of functional objects generated by the lifted NNO N⊥ and exponentiation
the simple type structure).

In the original study of realizability the combinatory algebra used for realizers was

Conclusions 110

the set of Turing machines (encoded as Kleene’s first model K1) but the work of
Phoa ([Pho90] and [Pho92]) suggests that insight may be gained by allowing other
(partial) combinatory algebras. In particular, although all such structures will be
untyped and Turing complete, it turns out that they may generate realizability
categories with quite different properties. In his thesis [Lon95], Longley lays out
a very general setting for constructing realizability categories, and amongst other
things shows how different denotational models of PCF arise from realizability con-
structions carried out with different models of untyped computation. For example,
take the term combinatory algebra Λ/β and Kleene’s first model K1. In [Lon95] it
is shown that the simple type structures in Mod(Λ/β) and Mod(K1) are not the
same; in particular the latter contains “parallel” elements not present in the former.
It turns out that the Mod(K1) describes a fully abstract model of PCF extended
by a parallel-conditional operator described in [Plo77]. This reflects the fact that
K1 as a partial combinatory algebra performs “parallel” computations. Since the
λ-calculus performs only “sequential” computations, similarly to PCF, this leads
to the Longley-Phoa conjecture: for any sensible λ-theory T , the interpretation of
PCF in Mod(Λ/T) is fully abstract. (The conjecture was made implicitly for the
case T = B in [Pho91]; Longley made it explicit and showed that the conjecture is
independent of T — at least in the cases when H ⊆ T ⊆ B — in [Lon95]).

In [Lon98] Longley used van Oosten’s decision tree combinatory algebra B (from
[vO97]) and realizability to define the Sequentially Realizable Functionals (SR),
and an analogue which has effectiveness built in (SReff). (We will refer to this
combinatory algebra as B to avoid confusion with the Böhm tree λ-theory.) One
of Longley’s aims is to study higher type computability; it turns out that there are
many candidates for the class of effective functionals, including the PCF-definable
functionals, SReff , the functionals which inhabit the Scott domains, and so on.
Longley describes a number of alternative ways in which SReff arises, apart from
realizability over B: the extensional collapse of the effective sequential algorithms,
the extensional collapse of the programming languages µPCF and PCF+catch, the
type structure in a presheaf category, the closed term model of PCF extended with
a combinator called H, and so on. Longley argues that, due to the ubiquity of this
class, SReff provides a good definition of the sequential effective functionals.

Longley continues this programme in [Lon99]. Of particular interest here is that
he describes a game combinatory algebra A, due to Abramsky (the style is that of
the history-free strategies of [AJM94]). A is shown quite easily to be equivalent
to B (in the sense that there are PCA homomorphisms between them which are
iso) and hence the simple type structure in Mod(A) is SR. A also has an effective
analogue which realizes SReff in the same way. Interestingly, these combinatory
algebras also have “well-bracketed” subalgebras, and the well-bracketed effective
version of A realizes a fully-abstract model of PCF.

This leads to our first conjecture: that the same holds for innocent game models.
In particular, that the category of modest sets over D (respectively DREC) has SR

Conclusions 111

(SReff) as simple type structure, and that DREC has a subalgebra, which arises
by imposing a reading of question and answer onto moves and enforcing well-
bracketing, which realizes a universal and fully-abstract model of PCF.

This would be of interest for a number of reasons. Firstly it gives more weight
to Longley’s claim that SR and SReff are natural classes of functionals. It would
show that the same higher order functionals are realized by both history-free and
innocent game models. Potentially the result could be of more interest than merely
paralleling the history-free models, since it is certain that D is not as easily equiv-
alent to B as A is — the latter equivalence is really rather trivial. In fact it seems
quite likely that D is not equivalent to B at all, although the conjecture is that they
have the same simple type structure. This would highlight an essential difference
between the history-free and innocent game models. Finally, we expect that the
proof of the conjecture would involve a better understanding of D and DREC, and
their observational quotient.

This conjecture appears to be difficult to prove. Some initial work suggests that
something stronger may be true: that the simple structure in D is that same as in
the observational quotient of D and that the latter is equivalent to B (similarly
for DREC and the effective analogue of B).

Proving facts about type structures in realizability models can be very hard. We
would hope to use the methodology of applicative morphisms developed in [Lon95]
to attack the problem. Applicative morphisms allow one to prove equivalence
between PCAs by defining a translation between them and showing that certain
maps on terms of the two PCAs are realizable. Details can be found in Chapter 2
of [Lon95]. An “applicative equivalence” implies equivalence of PCAs, and there
is also the weaker property of “applicative inclusion” between two PCAs which
(as long as the natural numbers objects behave properly) implies that their simple
type structure is the same. We hope to exhibit an applicative inclusion between D
and its observational quotient, and an applicative equivalence between the latter
and B.

The work of Laird [Lai98] is relevant here. We have already noted that Laird studies
the same class of strategies that we use for our models, where the well-bracketing
condition is removed, although for the different purpose of constructing a fully-
abstract of µPCF. In Chapter 5 of [Lai98], Laird studies the observational quotient
of the category of unbracketed innocent strategies (equivalent to A) and shows,
by an involved syntactic proof, that this is equivalent the category of sequential
algorithms [BC82]. This implies that the extensional collapse of the category is
equivalent to SR. It appears that the first part of our conjecture follows from this
work. However we would prefer to prove it directly because Laird’s proof is rather
involved, and we expect to gain considerable insight into innocent strategies in
doing so.

A particular angle that has arisen in early work on this conjecture is that some

Conclusions 112

strategies are “redundant” in that they play moves which gain them no extra
information, assuming that they are playing against an innocent opponent. If the
definition of redundancy can be made precise, we expect that there is precisely one
irredundant strategy in each equivalence class of the observational quotient.

Another conjecture in [Lon98] is that “any reasonable class of strategies that is
‘sufficiently unconstrained’ [sufficiently many of the conditions on strategies which
make for the universal fully-abstract PCF model are relaxed] would yield SR as its
extensional collapse”. Investigation of this, at least in the innocent game setting,
would be worthwhile.

Finally, there is some hope that these game models may shed light on the dif-
ficult questions raised by Longley in [Lon95] and subsequently. For example, it
remains unproven that the simple type structures in Mod(Λ/B) and Mod(Λ/H∗)
are equal. Perhaps the universal game models for these theories will provide some
help. Longley comments that “it seems likely that the [Longley-Phoa conjecture]
could be made much easier by a different choice of PCA”. Using the techniques of
applicative morphisms, the conjecture becomes one of relating the well-bracketed
strategies of [HO00] with the EAC strategies developed here. Although certainly
still difficult, this question may prove more tractable than the original.

A New Composition Algorithm for Bohm Trees

The Exact Correspondence Result and Composition Algorithm for EXAC strategies
give a new method for finding the Böhm tree of the composition of two terms whose
Böhm trees are known. The standard way to find BT(st) from BT(s) and BT(t)
is to take the finite approximants to the trees to be composed and use these to
form finite approximants to the composition (see [Bar84, §18.3]). Instead one
could translate the two Böhm trees into EXAC strategies and use the algorithms
described in this work to find the composite strategy, and translate back into a
Böhm tree. This indirect method has an advantage over the standard method: one
can find a particular node of the composite tree in a way which only examines those
nodes of the composed trees which are relevant. This “lazy” method for composing
Böhm trees might have practical uses.

Index

1 (term), 12
⊥ (undefined or “empty” strategy), 29
⊥′ (an undefinable strategy), 42

A (category of arenas and innocent
strategies), 36

AEAC (category of arenas and EAC
strategies), 60

AEXAC (category of arenas and EXAC
strategies), 86

AREC (recursive subcategory of A), 38
(A,a)-component, 27
A @~s (subtree selection), 55
A>m (initial subtree deletion), 55
almost-everywhere copycat (AC), 57
α-conversion, 10
ancestor, 7
applicative structure, 16
approximation, 41
arena, 22

finitely branching, 23
function space, 23
product, 23
recursive, 23
recursively enumerable, 23
single-tree, 22
sub-, 23

B (equational theory), 15
B-component, 27
β-conversion, 11
Böhm’s Theorem, 75
Böhm-like tree, 13

free variables, 13
recursively enumerable, 13

Böhm tree, 12, 96

br(A) (branching factor of A), 88

child, 7
coding, 55
combinatory algebra, 17
component, 27
component strategies, 28
composite strategy, 30
composition, 30
composition algorithm, 78
context, 9
context subtrees, 39
contingent completeness, 28
copycat collapse, 61
copycat offset, 57
copycat threshold, 57

least, 59
valid, 57

D (innocent game model), 38
DEAC (EAC game model), 61
DREC (recursive game model), 38
DXA (Böhm-tree game model), 95
depth, 8
determinacy, 28

E (arena), 22
economical form, 44

of idU , 45
of πA

Ai
, 59

of an EXAC strategy, 78
effectively almost-everywhere copycat

(EAC), 57
effectively and explicitly almost-

everywhere copycat (EXAC),
77

113

INDEX 114

empty strategy, 29
entirely explicit, 78
equational theory, 19
η-conversion, 11
η0 (EXAC strategy), 78
η1 (EXAC strategy), 78
everywhere copycat (EC), 55
exact correspondence theorem, 50

for D, 50
for DXA, 99

explicit, 61, 77
extensional, 18

f (retraction morphism), 95
forest, 22
Fun (retraction morphism), 38

g (retraction morphism), 95
Gr (retraction morphism), 38

H∗ (equational theory), 15
having enough points, 20
head normal form (hnf), 12
head variable, 12
hidden , 25

I (term), 12
ias, 30
identity, 35, 36
inheritance (in a tree), 7
initial move, 22
innocence, 32
innocent function, 33

of idA, 35
of πA

Ai
, 36

interaction sequence, 30

justification pointer, 24
justified P-move, 33
justify, 24

hereditarily, 24

l-number, 80
labelling function, 8
Λ (set of terms), 8

Λ(A) (set of terms with constants), 16
λ (equational theory), 10
λ-algebra, 17

extensional, 18
nontrivial, 19
order-extensional, 71
universal, 18
weakly extensional, 18

λ-model, 18
λ-theory, 11

consistent, 11
sensible, 15

λη (equational theory), 11
λη-algebra, 19
λη-model, 19
λη-theory, 12
least copycat threshold, 59
legal position, 26
lluf subcategory, 60
local order structure, 19
local structure, 19, 42

mo
f (~v) (O-move coded by f at ~v), 55

mp
f(~v) (P-move coded by f at ~v), 55

M (arena), 23
M(−,−,−,−), 20
move, 22

polarity, 23

N (nonzero natural numbers), 7
N0 (natural numbers with zero), 7
Nakajima tree, 14, 45

O-move, 23
O-view, 26
observational quotient, 107
offset, 57
Ω (term), 12
ω-rule, 72
Opponent, 21
order-extensional, 71

P-move, 23
P-view, 26

INDEX 115

a, 27
play, 29
projection, 36
Proponent, 21

realizability, 109
reflexive object, 19
restriction, 40
retract, 19
retraction morphisms, 19

sensible, 15
separation lemma, 63
sequence, 7

interaction, 30
justified, 24
well-formed, 24

sequence-subset form, 22
sequentially realizable functionals,

110
strategy, 28

almost-everywhere copycat (AC),
57

approximant, 41
compact, 34
composition, 30
effectively almost-everywhere

copycat (EAC), 57
effectively and explicitly almost-

everywhere copycat (EXAC),
77

empty, 29
everywhere copycat (EC), 55
identity, 35, 36
innocent, 32
O-, 28
P-, 28
projection, 36
recursive, 34

sub-arena, 23
substitution, 9
syntactic equality, 10

term, 8

abstraction, 8
application, 8
closed, 9
solvable, 12

threshold, 57
tree, 7

Σ-labelled, 8
partially Σ-labelled, 8

U (arena), 23
U0 (object of XA), 94
U1 (object of XA), 94
Un (approximant of U), 41
U (subcategory of A), 38
UEAC (subcategory of AEAC), 60
UREC (subcategory of AREC), 38
u(−,−,−) (uncovering), 31
undefined strategy, 29
underlying EAC strategy, 77
universal, 18
untyped λ-calculus, 8

free variable, 9
variable, 8

valuation, 17
variable convention, 10
variable-free form, 46

of a Böhm tree, 97
VFBT, 97
VFF, 46
view, 26
view characterisation lemma, 27
visibility condition, 26

weakly extensional, 18
well-bracketing, 24

X-explicit, 88
XA, 89
XU (subcategory of XA), 94

Bibliography

[Abr90] S. Abramsky. The lazy λ-calculus. In D. A. Turner, editor, Research
Topics in Functional Programming, pages 65–117. Addison Wesley,
1990.

[AJ92] S. Abramsky and R. Jagadeesan. Games and full completeness for
multiplicative linear logic. In R. Shyamsundar, editor, Foundations
of Software Technology and Theoretical Computer Science, pages 291–
301. Springer-Verlag, 1992.

[AJM94] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for
PCF (extended abstract). In Theoretical Aspects of Computer Soft-
ware: TACS’94, Sendai, Japan, pages 1–15. Springer-Verlag, 1994.
LNCS Vol. 789.

[AM95a] S. Abramsky and G. A. McCusker. Games and full abstraction for the
lazy λ-calculus. In Proceedings, Tenth Annual IEEE Symposium on
Logic in Computer Science, pages 234–243. IEEE Computer Society
Press, 1995.

[AM95b] S. Abramsky and G. A. McCusker. Games for recursive types. In C. L.
Hankin, I. C. Mackie, and R. Nagarajan, editors, Theory and For-
mal Methods of Computing 1994: Proceedings of the Second Imperial
College Department of Computing Workshop on Theory and Formal
Methods. Imperial College Press, 1995.

[AM97] S. Abramsky and G. McCusker. Game semantics. Lecture notes for
1997 Marktoberdorf Summer School, 1997.

[AM99] S. Abramsky and G. A. McCusker. Call-by-value games. In Mogens
Nielsen and Wolfgang Thomas, editors, Computer Science Logic: 11th
International Workshop Proceedings, volume 1414 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[AO93] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda
calculus. Information and Computation, 105(2):159–267, 1993.

116

BIBLIOGRAPHY 117

[Bar77] H. P. Barendregt. The type free lambda calculus. In J. Barwise,
editor, Handbook of Mathematical Logic, volume 90 of Studies in Logic
and the Foundations of Mathematics, pages 1091–1132. North-Holland,
Amsterdam, 1977.

[Bar84] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundations of Mathematics.
North-Holland, Amsterdam, 1984.

[BC82] G. Berry and P.-L. Curien. Sequential algorithms on concrete data
structures. Theoretical Computer Science, 20(3):265–321, 1982.

[Ber96] A. Berarducci. Infinite lambda-calculus and non-sensible models. In
Logic and Algebra, volume 180 of Lecture Notes in Pure and Applied
Mathematics, pages 339–378. Marcel Dekker Inc., 1996.

[Bla92] A. Blass. A game semantics for linear logic. Annals of Pure and
Applied Logic, 56, 1992.

[Böh68] C. Böhm. Alcune proprietà delle forme β-η-normali nel λ-K calcolo.
Pubblicazioni dell’ Istituto per le Applicazioni del Calcolo, 696, 1968.

[Chu32] A. Church. A set of postulates for the foundation of logic. Annals of
Mathematics (2), 33:346–366, 1932. Second paper with same title in
Vol. 33, pages 839–864, of same journal.

[Cro93] R. L. Crole. Categories For Types. Cambridge mathematical text-
books. Cambridge University Press, 1993.

[Cur30] H. B. Curry. Grundlagen der kombinatorischen Logik. Amer. J. Math.,
52:509–536, 789–834, 1930.

[Cut80] N. J. Cutland. Computability: An Introduction to Recursive Function
Theory. Cambridge University Press, 1980.

[dB72] N. G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation. Indag. Math., 41:381–392,
1972.

[DF98] P. Di Gianantonio and G. Franco. A type assignment system for the
game semantics. Proceedings of the Italian Conference on Theoretical
Computer Science 98, World Scientific, pages 37–47, 1998.

[DF00] P. Di Gianantonio and G. Franco. The fine structure of game lambda-
models. In Proceedings of the Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science FSTTS’00, Lec-
ture Notes in Computer Science. Springer-Verlag, 2000. to appear.

BIBLIOGRAPHY 118

[DFH99] P. Di Gianantonio, G. Franco, and F. Honsell. Games semantics for
untyped λ-calculus. In J. Y. Girard, editor, 4th International Confer-
ence, TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings, number
1581 in Lecture Notes in Computer Science. Springer-Verlag, 1999.

[Fel86] W. Felscher. Dialogues as a foundation for intuitionistic logic. In
D. Gabbay and F. Guenthener, editors, Handbook of Philosophical
Logic, Volume III, pages 341–372. D. Reidel Publishing Company,
1986.

[Gir72] J.-Y. Girard. Interprétation functionelle et élimination des coupures
de l’arithmétique d’order superior. PhD thesis, Paris, 1972.

[Har00] R. S. Harmer. Games and Full Abstraction for Non-Deterministic
Languages. PhD thesis, University of London, 2000.

[HO00] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II
and III. To appear in Information and Computation, 2000.

[Hug00] D. H. D. Hughes. Games and Full Completeness for System F. PhD
thesis, University of Oxford, 2000.

[HY97] K. Honda and N. Yoshida. Game theoretic analysis of call-by-value
computation. Personal Communcation, 1997.

[Hyl76] J. M. E. Hyland. A syntactic characterization of the equality in some
models of the lambda calculus. Journal of the London Mathematical
Society, 2(12):361–370, 1976.

[KKSdV97] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Infinitary
lambda calculus. Theoretical Computer Science, 175(1):93–125, 1997.

[Kle45] S. C. Kleene. On the interpretation of intuitionistic number theory.
Journal of Symbolic Logic, 10, 1945.

[KNO99] A. D. Ker, H. Nickau, and C.-H. L. Ong. A universal innocent game
model of the Böhm tree lambda theory. In Computer Science Logic:
Proceedings of the 8th Annual Conference of the EACSL, Madrid,
Spain, September 1999, number 1683 in Lecture Notes in Computer
Science, pages 405–419. Springer-Verlag, 1999.

[KNO00] A. D. Ker, H. Nickau, and C.-H. L. Ong. A universal innocent model
of the Böhm tree lambda theory. Technical Report TR-10-00, Oxford
University Computing Laboratory, 2000.

[KNO01] A. D. Ker, H. Nickau, and C.-H. L. Ong. Innocent game models of
untyped λ-calculus. To appear in Theoretical Computer Science, 2001.

BIBLIOGRAPHY 119

[Koy82] C. P. J. Koymans. Models of the lambda calculus. Information and
Control, 52(3):306–332, 1982.

[Kre59] G. Kreisel. Interpretation of analysis by means of constructive func-
tionals of finite types. In A. Heyting, editor, Constructivity in Math-
ematics, pages 101–128. North-Holland, Amsterdam, 1959.

[Lai98] J. Laird. A Semantic Analysis of Control. PhD thesis, University of
Edinburgh, 1998.

[Lév75] J. J. Lévy. An algebraic interpretation of the λ-β-k-calculus and a
labelled λ-calculus. In C. Böhm, editor, Proceedings of the Symposium
on λ-calculus and Computer Science Theory, volume 37 of Lecture
Notes in Computer Science, pages 147–165. Springer-Verlag, Berlin,
1975.

[LL78] P. Lorenzen and K. Lorenz. Dialogische Logik. Wissenschaftliche
Buchgesellschaft, Darmstadt, 1978.

[Lon83] G. Longo. Set-theoretic models of λ-calculus: Theories, expansions,
isomorphisms. Annals of Pure and Applied Logic, 24:153–188, 1983.

[Lon95] J. R. Longley. Realizability Toposes and Language Semantics. PhD
thesis, University of Edinburgh, 1995.

[Lon98] J. R. Longley. The sequentially realizable functionals. Technical Re-
port ECS-LFCS-98-402, LFCS, Division of Informatics, University of
Edinburgh, 1998. Submitted to Annals of Pure and Applied Logic.

[Lon99] J. R. Longley. Realizability models for sequential computation. Notes
of a talk given at the 1998 APPSEM workshop, Pisa, 16 September,
1999.

[LR96] R. S. Lazić and A. W. Roscoe. Using logical relations for automated
verification of data independent CSP. In Proceedings of the Workshop
on Automated Formal Methods (Oxford, U.K., June 1996), to appear
in Electronic Notes on Theoretical Computer Science, 1996.

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer-
Verlag, Berlin, 1971.

[McC98] G. A. McCusker. Games and Full Abstraction for a Functional Met-
alanguage with Recursive Types. Distinguished Dissertations in Com-
puter Science. Springer-Verlag, 1998.

BIBLIOGRAPHY 120

[Nak75] R. Nakajima. Infinite normal forms for the λ-calculus. In C. Böhm,
editor, Proceedings of the Symposium on λ-calculus and Computer Sci-
ence Theory, volume 37 of Lecture Notes in Computer Science, pages
62–82. Springer-Verlag, Berlin, 1975.

[Nic96] Hanno Nickau. Hereditarily Sequential Functionals: A Game-Theoretic
Approach to Sequentiality. Shaker-Verlag, 1996. Dissertation, Univer-
sität Gesamthochschule Siegen.

[Ong88] C.-H. L. Ong. The Lazy Lambda Calculus: An Investigation into the
Foundations of Functional Programming. PhD thesis, University of
London, 1988.

[Pho90] W. K.-S. Phoa. Domain Theory and Realizability Topses. PhD thesis,
University of Cambridge, 1990. Available as CST-82-91, Department
of Computer Science, University of Edinburgh.

[Pho91] W. K.-S. Phoa. From term models to domains. In Proceedings of The-
oretical Aspects of Computer Software, Sendai, volume 526 of Lecture
Notes in Computer Science. Springer-Verlag, 1991.

[Pho92] W. K.-S. Phoa. An introduction to fibrations, topos theory, the ef-
fective topos and modest sets. Technical Report ECS-LFCS-92-208,
Department of Computer Science, University of Edinburgh, 1992.

[Plo72] G. D. Plotkin. A set-theoretical definition of application. School of
Artificial Intelligence, Memo MIP-R 95, University of Edinburgh, 1972.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–225, 1977.

[Plo78] G. D. Plotkin. Tω as a universal domain. J. Comput. Syst. Sci.,
5:223–257, 1978.

[Sch24] M. Schönfinkel. über die Bausteine der mathematischen Logik. Math.
Annalen, 92:305–316, 1924.

[Sco69] D. S. Scott. Models for the λ-calculus. Unpublished manuscript, 1969.

[Sco74] D. S. Scott. The language LAMBDA (abstract). Journal of Symbolic
Logic, 39:425–427, 1974.

[Sco93] D. S. Scott. A type-theoretical alternative to CUCH, ISWIM and
OWHY. Theoretical Computer Science, 121:411–440, 1993.

[vO97] J. van Oosten. A combinatory algebra for sequential functionals of
finite type. Technical Report 996, University of Utrecht, 1997. To
Appear in Proc. Logic Colloquium, Leeds.

BIBLIOGRAPHY 121

[Wad71] C. P. Wadsworth. Semantics and Pragmatics of the λ-calculus. PhD
thesis, University of Oxford, 1971.

[Wad76] C. P. Wadsworth. The relation between computational and deno-
tational properties for Scott’s D∞-models of the λ-calculus. SIAM
Journal of Computing, 5:488–521, 1976.

