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Steganalysis of LSB Matching in Grayscale Images
Andrew D. Ker

Abstract—We consider the problem of detecting spatial domain
least significant bit (LSB) matching steganography in grayscale
images, which has proved much harder than for its counterpart,
LSB replacement. We use the histogram characteristic function
(HCF), introduced by Harmsen for the detection of steganog-
raphy in color images but ineffective on grayscale images. Two
novel ways of applying the HCF are introduced: calibrating the
output using a downsampled image and computing the adjacency
histogram instead of the usual histogram. Extensive experimental
results show that the new detectors are reliable, vastly more so
than those previously known.

Index Terms—Communication systems, computer security, in-
formation hiding, signal analysis.

I. INTRODUCTION

THE aim of steganography is to hide information im-
perceptibly into a cover, so that the presence of hidden

data cannot be diagnosed. Steganalysis aims to expose the
presence of hidden data. In this letter, we present ways to detect
a simple—but particularly difficult to uncover—embedding
method for data in bitmap images; to our knowledge, this is the
first reliable detector of its kind.

In Section II we include a description of the least significant
bit (LSB) matching embedding algorithm and compare it with
its more common counterpart, LSB replacement. In Section III,
we define the histogram characteristic function (HCF), first used
by Harmsen et al. [1] to detect additive noise steganography in
color images; it fails in the case of grayscale images. In Sec-
tions IV and V, we describe two new ways to apply the HCF, and
in Section VI, we give experimental results showing that the new
techniques, separately or in combination, provide vastly more
reliable diagnosis of LSB matching steganography than hereto-
fore known. These results come from a distributed steganalysis
project that allows the rapid evaluation of many variants of ste-
ganalysis methods against a database of tens of thousands of
natural images. Finally, we outline some further directions for
research.

II. LSB MATCHING STEGANOGRAPHY

LSB steganography, in which the lowest bit plane of a bitmap
image is used to convey the secret data, has long been known
to steganographers. Because the eye cannot detect the very
small perturbations it introduces into an image and because it is
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extremely simple to implement,1 LSB methods are commonly
used among the many free steganography tools available on the
internet. There are two types of LSB steganography: LSB re-
placement can be uncovered relatively easily and is thoroughly
examined in [2]–[4], but fewer and weaker detectors have been
proposed for LSB matching. It is the latter we consider here, in
the particular case when the covers are grayscale images. The
LSB matching embedding algorithm is as follows.

Convert the secret data into a stream of bits. Take each pixel
of the cover image (possibly in a pseudo-random order gen-
erated by a shared secret key): if the LSB of the next cover
pixel matches the next bit of secret data, do nothing; otherwise,
choose to add or subtract one from the cover pixel value, at
random. When the secret message is fewer bits in length than
the number of pixels in the cover image, the pseudo-random per-
mutation ensures that changes are spread uniformly throughout
the image. The allowable range of pixel values will force the
decision of whether to increment or decrement, when the cover
pixel is saturated.

LSB replacement is very similar, except that the LSBs of the
cover pixels are simply overwritten by the secret bit stream. In
either case, the decoding method for the recipient is simply to
read back the LSBs of the stego image, according to the order
specified by the secret key, if needed; the original cover image
is not needed by the recipient and should be discarded by the
sender.

Success in finding reliable and sensitive detectors for LSB
replacement steganography has not been equalled for LSB
matching. It is not immediately obvious why LSB matching
should be any harder to detect, as both types of embedding add
noise at the same level into the covers. The distinction is in the
asymmetries inherent in LSB replacement—a cover pixel with
an even value might be left alone or might be incremented by
one but never decremented; the converse is true for odd-valued
cover pixels. The detectors of [2]–[4] are exploiting this asym-
metry, which is not induced by LSB matching. Indeed, these
detectors are completely ineffective in exposing LSB matching.

The literature does contain a few detectors for LSB matching
steganography. Westfeld [5] gives a detector for color images,
which has its basis in the effect that the embedding algorithm
has on the occurrences of close pairs of colors. Westfeld com-
ments that the detector can be applied to grayscale images by
converting triplets of gray pixels into the red, green, and blue
(RGB) components of a single color pixel, but in practice, this
detector performs barely better than a random decision—we
give some experimental evidence in Section VI. It is also likely
that the blind detector of Lyu and Farid [6] will be somewhat ef-
fective, but it has not been tested against a pure LSB matching

1In [2] is a program for simple LSB replacement, in the Perl scripting lan-
guage, that is only 80 characters long.
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steganography scheme. The other detector applicable to LSB
matching is due to Harmsen [1]. Although the technique was
presented for detection of LSB replacement (and some other
types of steganography) in RGB color bitmaps, it is equally ap-
plicable to LSB matching in grayscale images. We turn to it next.

III. HISTOGRAM CHARACTERISTIC FUNCTION (HCF)

Consider a grayscale cover image, made up of pixels with
intensity in the range (usually ). Write

for the intensity of the cover image at location .
We imagine that a maximal-length hidden message (one secret
bit per cover pixel) is embedded using LSB matching to form a
stego image .

Harmsen’s detector uses only the relative frequency of occur-
rence of each intensity, i.e., the histogram. Write

for the histogram of the cover image and similarly for
the histogram of the stego image after embedding. We model
steganographic embedding as independent additive noise (mod

) and write for the mass function of the noise random
variable, which takes value with probability proportional to

.
Because the addition of integer random variables corresponds

to the convolution of their mass functions, . Let
, , and be the -element discrete Fourier

transforms (DFTs) of , , and , respectively;
then, we have

Harmsen calls the HCF of the stego image. In view of
the symmetry of DFTs of real signals, we need consider only

. The distribution of the added noise in the
case of LSB matching is just , .
Elementary calculation gives that ; this
monotone function, always no greater than 1, drops to zero as
reaches . Therefore, will be no larger than and
for large will be appreciably smaller.

The types of steganography considered by Harmsen also have
this property. Thus, to diagnose their presence, Harmsen uses
the center of mass (COM) of the HCF

where to avoid the redundant parts of the DFT. After
steganographic embedding

(1)

In [1], Harmsen generalizes this to multidimensional signals,
using multidimensional DFTs and producing a multidimen-
sional COM. It is simply this COM that is the discriminator
for detecting steganography in RGB color images. Tested
against a number of additive-noise steganography methods in
color bitmaps (not including LSB matching), quite reliable
performance is observed. We have performed tests against LSB
matching and found quite good performance here, too, although

Fig. 1. Values of C(H[k]) (circles) before and (crosses) after embedding for
100 images from four different sources.

not as good as quoted in [1]. This is probably because Harmsen
used a very limited and homogeneous set of test covers, and
this tends to inflate the performance results.

Harmsen does not try the detector on grayscale images, al-
though the theory suggests that it should work in the same way.
The one-dimensional analogue is to give a positive diagnosis of
steganography when is greater than a threshold. It turns
out that such a detector performs very poorly indeed.

The reason is illustrated in Fig. 1, plotting the classifier
for 100 grayscale images, before and after embedding.

The images came from four different sources, and the chart
is divided according to the image source. As can be seen, (1)
generally holds (the crosses are almost all lower than the cor-
responding circles). However, the values of depend
heavily on the source of cover image, and worse, there is high
variability amongst , often far more than the typical
differences between and . The significant
weakness of this method is that the detector does not see the
cover image and so does not know .

There is an essential difference between the color and
grayscale bitmaps. In the former, the histograms are fairly
sparse, with colors occurring in clusters. Because there are only

(as opposed to ) possibilities for the pixels in grayscale
images, such clustering does not happen. The result is noise
in the HCF COM, which swamps its discriminating ability.
In Section VI, we give evidence that it makes a poor detector
of LSB matching steganography when the cover images are
grayscale.

IV. CALIBRATION BY DOWNSAMPLED IMAGE

We first address the problem of the high variability of
. Consider downsampling an image by a factor of two

in both dimensions using a straightforward averaging filter. Pre-
cisely, let be the pixel intensities of the downsampled
cover image given by

and the similarly downsampled version of the stego
image. We divide the summed pixel intensities by four and take
the integer part to reach images with the same range of values
as the originals. We compute the HCF and COM of these two
downsampled images and .

Our observation is that and are usually
very close—the downsampling operation does not greatly af-
fect the COM of the HCF of cover images. Fig. 2 plots these
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Fig. 2. (x-axis) C(H [k]) is close to (y-axis) C(H [k]). Scatterplot from 2000
JPEG images.

two quantities computed from a library of 2000 JPEG cover
images; the correlation coefficient is 0.9967, and the quantities
are within 20% of each other for 90% of these images. Even
scanned images that have never been subject to JPEG compres-
sion, which are usually very noisy and difficult to predict, tend
to have this property (we observed a correlation coefficient of
0.9737 from a set of 3000 images never subject to JPEG com-
pression).2 We conclude that, for images without hidden data

(2)

Second, although the LSB matching process does introduce
noise into the downsampled cover image and consequently re-
duces the COM of the HCF, we have observed that it does so to
a lesser extent than in the full-sized images, i.e.,

(3)

The inequality is justified by experimental evidence: Fig. 3 plots
these two quantities for 2000 JPEG images to demonstrate that
(3) usually holds; it is true for 97.5% of these cover images.
We attribute this effect to the adding and rounding operations in
the downsampling process, which tend to even out added noise.
Combining (2) and (3) gives a new detector for the presence
of LSB matching steganography: in most
images that have been subject to steganography, with approxi-
mate equality in other images. In view of the variation between
the magnitudes of such values, we use as a
dimensionless discriminator; the downsampled image is cali-
brating the COM of the full-sized image.3 The reliability of this
detector is tested in Section VI.

V. HCF OF ADJACENCY HISTOGRAM

We now turn to the essential difference between color and
grayscale images, namely, that the histograms of the former

2The 2000 images used to construct the scatterplot are taken at random from
the set of 20 000 images described in Section VI. The 3000 uncompressed im-
ages refer to the set described in Section VI.

3Another form of calibration was developed independently by Fridrich in [7],
although this technique is quite different and only applicable in DCT-domain
steganography.

Fig. 3. (x-axis) C(H [k]) � C(H [k]) is usually greater than (y-axis)
C(H [k]) � C(H [k]). Scatterplot from 2000 JPEG images.

tend to be sparse. One way to make the histogram artificially
more sparse is to consider the two-dimensional adjacency his-
togram, expressing how often each pixel intensity is observed
horizontally next to each other:

. Because adjacent pixels tend to have
close intensities, this histogram is sparse off the diagonal. It is
affected by steganography, mutatis mutandis, in the same way
as the standard histogram.

As before, we form the HCF (this time using a two-
dimensional DFT) and the two-dimensional COM. In order to
produce a one-dimensional discriminator, it is necessary to com-
bine the two-dimensional COM somehow. In view of the sym-
metry between the two components, we use only one quadrant
of the DFT and simply take the components’ sum, so the dis-
criminator used is equal to

As before, we expect this to be low in the presence of
steganography. We can also combine this technique with the
calibration of Section IV.

VI. EXPERIMENTAL RESULTS

We compare the standard HCF COM detector against the ad-
jacency histogram version and calibrated versions of both. We
also include the statistic outlined in [5]. These results were pro-
duced by a distributed steganalysis database, outlined in [3], that
uses a dedicated cluster of machines rapidly to evaluate the reli-
ability of detectors over very large sets of cover images. We test
here against two sets of images.

3000 Uncompressed Images. The entirety of the USDA
NRCS Photo Gallery http://photogallery. nrcs.usda.gov: The
images were downloaded as very high resolution TIF files
(mostly 2100 1500) and appear to be scanned from a variety
of film and paper sources. For testing, the images were resam-
pled to 640 418 and converted to grayscale.

20 000 JPEG Images. From a stock photo CD [8]: These
images are stored in JPEG format at quality factor 58 (fairly
harsh compression) and are approximately sized 640 400.
They were converted to grayscale before use.

In Fig. 4, we give receiver operating characteristic (ROC)
curves, showing how false-positive and false-negative errors
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Fig. 4. ROC curves. (Top) Generated from 20 000 images that have been
subject to fairly harsh JPEG compression. (Bottom) From 3000 uncompressed
bitmaps.

tradeoff as the detection threshold is varied, for the two sets
of cover images embedded with maximal-length random mes-
sages. Note that the -axes have been scaled to focus on regions
of interest. In [3], we argue that a reasonable one-dimensional
measure of performance is the false positive rate when the
false negative rate is 50%; this is shown in Table I. In order
to simulate the fairly mild JPEG compression effects caused
by typical storage in a digital camera, we have repeated this
experiment with the 3000 uncompressed images first subject
to JPEG compression at quality factor 80. In the case of max-
imal-length embedded messages, it is apparent that the new
techniques give rise to detectors that are much more reliable:
Detection in uncompressed covers (which contain a lot of noise
even before embedding) is now possible, and detection in JPEG
compressed covers becomes extremely reliable.

However, the calibration technique presented here is not so
useful when the amount of hidden data is less than the maximum
possible, as can be seen from the lower half of Table I. The ad-
jacency histogram still leads to improved detectors, but calibra-
tion brings no substantial benefits and, in one case, a moderate
worsening of performance. Further inspection shows the cause:
Equation (3) does not hold for shorter messages. This issue re-
mains to be addressed.

VII. CONCLUSION AND FUTURE WORK

We have given two novel ways to apply the HCF in the diag-
nosis of steganography and demonstrated that they produce reli-

TABLE I
FALSE-POSITIVE RATE AT WHICH FALSE-NEGATIVE RATE IS 50%

able detectors for LSB matching steganography in grayscale im-
ages. We should transfer these improvements into the full-color
case. While the adjacency histogram may not be so useful, it
is highly likely that calibration will improve the reliability of
detection. We also aim to find a more refined method of calibra-
tion, from further study of , that degrades gracefully
with shorter messages.

Finally, it is apparent from Harmsen’s work that the detec-
tors given here will also detect other types of steganography.
While most unlikely to match the performance of dedicated
asymmetry-exploiting statistics for LSB replacement, such as
in [2], there may be applications in spread-spectrum spatial-do-
main steganography or possibly even in the DCT domain.
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