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Steganalysis of Embedding
in Two Least-Significant Bits

Andrew D. Ker, Member, IEEE

Abstract—This paper proposes steganalysis methods for exten-
sions of least-significant bit (LSB) overwriting to both of the two
lowest bit planes in digital images: there are two distinct embed-
ding paradigms. The author investigates how detectors for stan-
dard LSB replacement can be adapted to such embedding, and how
the methods of “structural steganalysis,” which gives the most sen-
sitive detectors for standard LSB replacement, may be extended
and applied to make more sensitive purpose-built detectors for two
bit plane steganography. The literature contains only one other de-
tector specialized to detect replacement multiple bits, and those
presented here are substantially more sensitive. The author also
compares the detectability of standard LSB embedding with the
two methods of embedding in the lower two bit planes: although
the novel detectors have a high accuracy from the steganographer’s
point of view, the empirical results indicate that embedding in the
two lowest bit planes is preferable (in some cases, highly prefer-
able) to embedding in one.

Index Terms—Steganography, structural steganalysis, two least-
significant bit (LSB) embedding.

I. INTRODUCTION

EPLACEMENT of least-significant bits (LSBs) in digital
R images is an extremely simple form of information hiding.
For the nonexpert steganographer, its ease of embedding, high
capacity, and visual imperceptibility may prove attractive. How-
ever, it is now known that there are particular flaws which make
steganalysis (detection) of this embedding method much easier
than that of other additive steganography.

The aim of this paper is to consider the extension to replace-
ment of the two LSBs. Such embedding is still visually imper-
ceptible, of even higher capacity, and still extremely simple.
But there exist parallel “structural” weaknesses of such embed-
ding, which allows us to extend the most sensitive detectors for
LSB replacement to detect embedding in two bit planes; we will
develop and benchmark such detectors. One might ask why a
steganographer would want to extend the weak LSB embedding
method to more bit planes. It will be shown that, at least as far as
the detectors presented here are concerned, it is actually some-
what better (harder to detect) to embed in two bit planes than in
one. Therefore, if one must embed by replacement of bits (for
example, if steganography software is not available; see [1] for
a commandline LSB replacement program and some explana-
tion of scenarios in which LSB embedding may be necessary),
it would be better to use two bit planes than one.
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The format of this paper is as follows. Next, we shall describe
methods for embedding in the least and two least-significant bit
planes. In Section II, we recap the structural framework of [2],
presenting a modification of the standard LSB detector from [3]
in a form suitable for extension to multiple bit-plane replace-
ment. Methods for application of conventional LSB replace-
ment detectors to the detection of replacement of more than
one bit plane are outlined in Section III. Section IV explains
the extended structural framework and derives novel detectors
specialized for replacement of two bit planes. The new detec-
tors are benchmarked in Section V and conclusions appear in
Section VI

A. Embedding in Two LSBs

There are two obvious ways to embed a payload by over-
writing the least and second-least significant bits of a cover.
For definiteness, we also describe the standard LSB embedding
method, which is folklore to steganographers. Throughout this
paper, we assume that the cover object has NV bytes (more gen-
erally, words of some fixed bit length) and that the embedded
payload is of proportionate length p, with 0 < p < 1, where the
proportion is of the available capacity.

For embedding in the LSB only, Np bits are embedded in
the cover by selecting Np pixels and replacing the LSB of each
pixel by the corresponding bit of the payload. The author will
abbreviate this embedding method as LSB embedding.

For embedding in the two LSBs, 2/Np bits are embedded in
the cover by selecting Np pixels and replacing both of the two
LSBs of each pixel with two corresponding bits of the payload.
The author will abbreviate this as 2LSB embedding.

As an alternative method of using two LSBs, 2N p bits can
be embedded in the cover by selecting /N p pixels and replacing
only the second-LSBs of each pixel with a corresponding bits
of the payload, then repeating with a new selection of pixels
of which only the LSB is used. Therefore, changes occur in the
least and second-LSB planes independently. The author will ab-
breviate this as I2LSB embedding (the I signifying the indepen-
dence of the effects on the two lowest bit planes).

In each case, the selection of pixels and order of embedding
is generated from a secret key shared by the recipient. They can
therefore reconstruct the pixels used and recover the payload by
reading off the relevant bits from the stego object.

Each method has its advantages and disadvantages. The stan-
dard LSB embedding can only embed half as much data as the
others, but the distortion to the cover is limited to pixel value
changes of, at most, one, with on average Np/2 pixels changed.
The 2LSB and I2LSB embedding methods carry twice the pay-
load of plain LSB embedding and the 2LSB method changes
fewer pixels than I2LSB at the cost of the average distortion
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TABLE I
EMBEDDED PAYLOAD AND STEGO NOISE PROFILE FOR THE
METHODS OF EMBEDDING IN LEAST AND TWO LSBS

payload stego noise probability
(bits) 0 +1 +2 +3
LSB Np — % % 0 0
2LSB | 2Np 1-3 3 L L
DLSB | 2Np |1-p+B 3_p p_p P

being higher; both 2LSB and I2LLSB embedding change more
pixels than standard LSB embedding. The stego noise profile of
each embedding method is summarized in Table L. It is easy to
verify that stego noise at this level remains quite imperceptible
visually, even under maximum embedding, as long as the cover
is not pathological.

II. STRUCTURAL STEGANALYSIS OF
LSB EMBEDDING REVIEWED

LSB replacement is a weak form of steganography because
of the structure it contains: when replacing an LSB, an even
cover value may be incremented or unchanged, but never decre-
mented; conversely for an odd cover value. There is no detection
power in this property when individual pixels are considered,
but the same property in pairs of pixels does give quite sensi-
tive detectors for the presence of even small quantities of data
hidden by LSB replacement. The first detectors making implicit
use of such properties include [4] and [5]. The first work to de-
scribe the structure explicitly was [6], with an improved method
appearing in [3]. Subsequently, the structural property was fully
generalized to groups of two or more pixels, in [2] (with [7]
explaining some difficulties in an application to groups of size
four); this also included a clean exposition involving matrices,
more easily generalizable than [6]. (Reference [8] also contains
a similar exposition, but a different treatment of cover assump-
tions.) The exposition format of [2] will be used to re-present
the method of [3] in a clear way suitable for extension; some of
the notation must be slightly altered.

Although steganography detectors that will detect embedding
in multiple bit planes as a side-effect of their intended applica-
tion already exist, such as [9], they are very weak when com-
pared with structural detectors. To our knowledge, the literature
contains only one other statistical detector specifically designed
for multiple bit replacement, which appears in [10]; this is de-
veloped by extending the steganalysis method now known as
“WS” [11], which is the only LSB replacement detector not
easily placed into the structural framework of [2] which has
nearly as good performance. As such, the detector of [10] is
quite different than those presented here, and makes different
cover assumptions; it also works for embedding in more than
two bit planes, but does not accurately detect I2LLSB embedding.
Its performance will be examined briefly, in Section V where it
is shown to be weaker than the structural detectors, except for
near-maximal embedded payloads.

The outline of the structural detectors, suggested in [2], is as
follows. They are quantitative in that they estimate the propor-
tionate length of payload. First, we define a macroscopic prop-
erty of stego images which depends on the proportionate amount
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of hidden data p, a vector B(p); we will derive how B(p) de-
pends on p and B(0) and then invert so that, given a stego image,
we can hypothesize a value for p and compute what this would
imply for B(0). In the second stage, we give a model for cover
images, expressed in terms of B(0). Then, we can find the value
of p which leads to a value of B(0) closest to the model: this is
the estimator for p.

A. Macroscopic Property

As in [2], we will use calligraphic letters (X') for sets, up-
percase letters (X) for random variables, and lowercase let-
ters (x) for constants and realizations of random variables. For
our purposes, the cover will be fixed, and the payload random.
Suppose that a digital image consists of a series of N samples
with values s1, s2,...,sy intherange 0...2M + 1 (typically,
M = 127). A sample pair is a pair of sample locations (7, k)
forsome 1 < j # k < N. Let P be a set of sample pairs; we
will use the set of all pairs of horizontally or vertically adjacent
pixels (as in [6]). When the image is in color, we pool the sample
pairs from each color channel. Consider some subsets of P

Cr = {(4, k) € P| sk/2] = |5;/2] +m}
BY, = {(j. k) € P|si = s; + m, with s; even}
B, ={(j.k) € Plsp = sj + m, with s; odd}

in the first of these, — M < m < M; for the second, —2M <
m < 2M + 1; and for the third, —2M +1 < m < 2M.

The sets C,, we call trace sets: they do not involve the
LSBs of the pairs, so any pair in C,, must remain there after
LSB overwriting. The sets B2, and B, we call trace sub-
sets;! it is simple to check that each C,, is partitioned into
Bgm,BgmH,Bim_l,Bém, and that LSB replacement moves
sample pairs among the four trace subsets of each trace set.
In [2], BY, was called &,, (“even”) and BZ, was called O,,
(“odd”), but we will later want to extend the breakdown of
trace subsets to modulo 4 arithmetic and the notation B%, (“a
binary number ending in 0, followed by a number m higher”)
will do so nicely. Note that these sets are not quite equivalent
to those called &,,, and },,, used by Dumitrescu et al. in [6]:
their definition is symmetrical in the order of the pairs but
introduces a special case at m = 0 which causes complications
for extended analysis, as explained in [2].

Now assume that the payload of length pN is of the form
of a random bitstream (it suffices to be uncorrelated with the
cover) embedded using LSB replacement (the selection of pixels
used is also assumed uncorrelated with cover or payload). Sup-
pose that a sample pair lies in trace set C,,,. Each sample in the
pair is altered independently with probability (p/2), moving the
sample pair among the trace subsets of C,,, according to the tran-
sition diagram (Fig. 1).

The author counts the size of the trace subsets: let b% repre-
sent the number of sample pairs in B¢, before embedding, and
the random variable B/, be the number after such random em-
bedding (we shall later use b/, for a realization of B! ). Con-
sider, for example, Bé?n. Sample pairs can be in Bgm, after em-
bedding, in four ways: either having been in B3, before and

I'This is a simplification of the terminology of [6] which we introduced in [2].
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Fig. 1. Transitions between the trace subsets of C,,,, when proportion p of max-
imum payload is embedded by LSB replacement.

remaining there (and, on average, a proportion (1 — (p/2))? of
the b9, pairs in this position should remain), having been in
BY 11 ®0/2(1 = (p/2)) of bY,, ., will do so), having been in
B3, before and moving to BY,, (p/2(1—(p/2)) of the b3,,,
will do so), or having been in B}, ((p/2)? of b3, will do so).
Thus

P2 P P
E [BIZ(:n] = (1 - 5) bgm+ 5 (1 - 5) bgm+1

P P P\2
5 (1= 5) W+ (5) 0

This calculation can be repeated for each BY), .1, B4, 1, BiL,
to get four linear equations. They can be expressed in vector
form if we write by, = (b9,,,,b9,, 41,03 _1,b3,,)" and simi-
larly B!, (and later b, for the realization of B/ ). Then

E[Bp,] = Mby, (1)

(-5 505 50-5) ()

R L B O R O N ()
O IO R () 1 (5
B 50-3) 50-3) (-3

Observe that M can be written as a Kronecker tensor product
M = P ® P where

poop
2

P= p21p. (2)

2 2

This is no surprise as it reflects the independence of LSB change
in the samples of each pair.

At this stage, we appeal to the Law of Large Numbers, as-
suming that in an observed stego object, the sizes of the trace
subsets b9, ..., bl are approximately equal to their expecta-
tions. Therefore, (1) can be inverted to obtain estimators for the
cover image, given a stego image plus knowledge of p. But the
inverse of M has rational polynomial entries, and the substitu-
tion ¢ = 1/(1 — p) makes for a simpler expression

bm ~ (Q ® Q)bl, 3)

where

_1(1+q 1—9¢
Q_2(1—q 1+q>' @

In this way, we have estimated properties of the cover image
by, in terms of properties of the stego image b, and p (which
is in one—one correspondence with q), possibly with some small
error introduced by assuming that the observed vector is close
to its expectation.

B. Cover Model and the Detector It Induces

The second part of the structural framework requires an as-
sumption about cover images. As explained in [7], this can be-
come rather difficult when the structure involved is more than
simply pairs of pixels. But here, we only have pairs and only one
sensible assumption, the same assumption (mutatis mutandis)
used in [3] and [6]

b2, ~ bl for each m. 4)

In [7], such assumptions are termed symmetries, because they
are symmetrical in form and should hold, in natural images, be-
cause of symmetry of parity structure: we do not expect any
correlation between pixel differences and pixel parity, in a con-
tinuous-tone image.

However, these assumptions are not useful, for all m, in dis-
criminating cover from stego images, for example, from (1)

E [By, — By,
P2 A%
= (1= 2) (88— 3) + (£) (b — 15..)

This shows that the assumption b9, & b}, remains valid even
after steganography. Indeed, it will tend to hold more tightly
as p increases. This indicates that the symmetry b9, ~ b3, is
not useful for discrimination between cover and stego objects.
There is no such problem with 9, o~ b, 11, best verified
empirically (we omit to do so here) and it is only these assump-
tions which we will use in the detector.

Finally, we make an estimate of ¢ by finding, via (3),
which value most closely matches the cover assumptions.
There are a number of ways to measure the “distance”
from assumptions, and in this work, we will use the simple
technique of [3] which proposes the sum-square deviation
S(q) = 3, (09,41 — b3,p1)?. From (3), we read off each
term

4 (bgm—‘,-l - b%m—f—l)
= (1= ¢%) (b, + iy = by — byo)
+(1+q) ( /2971,+1 - bIQI'm.-i-l)
+ (1 - 9)2 (bl20m,—1 - b/21m,+3) .

This allows us to express S(g) as a quartic in ¢, of which the
minimum may be found by differentiating. There may be up to
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three turning points, in which case it is necessary to substitute
back into S(q) to find which is the global minimum.2

This detector, although presented using a much shorter nota-
tion, is almost equivalent to that in [3]: the difference is due to
the asymmetrical definition of trace subset. It will be named the
couples/least squares method (LSM) detector for LSB embed-
ding (“couples” indicating that pairs of pixels are considered
and “LSM” for the least squares method dubbed in [3]). This
is the detector we shall extend to work with 2LSB and [2LSB
embedding. It was preferred to extend this detector rather than
the original sample pairs detector of [6] because of its broadly
better performance, and than the triplet-based detector of [2] or
the quadruplet detector of [7] because they have already com-
plicated cover assumptions which become more difficult under
extension to two bit planes.

This is not to say that the least-squares detector is without
drawbacks. Most notably, its performance for large p, particu-
larly p > 0.8, is very poor. (This seems to be omitted in [3].)
As noted in [2], this is because the matrix P becomes ill-condi-
tioned for large p (indeed, it is not invertible when p = 1) and the
discontinuity in the substitution ¢ = 1/(1 — p) is symptomatic
of this. More precisely, the condition number of the matrix in (3)
is ¢? which is equal to (1 — p) 2. The condition number bounds
the norm of errors in the output of a linear transformation rela-
tive to errors in the input. Recall that we have approximated, at
(3), E[B.,] by b.,. Errors in this approximation may therefore
be magnified by as much as (1 — p)~2 into errors in by, and
this can be substantial for p close to 1.

The author has suggested in [2] that this problem should be
avoided by applying such steganalysis methods after other more
robust, but less accurate methods, have indicated that p is not
close to 1. Such a “screening” method is an easy way to con-
centrate the performance of a detector where it is best but we
shall ignore it in this paper. Our detectors will not be “screened”
and we should not be discouraged by poor performance for high
values of p. In any case, the interesting performance is for small
p, where discrimination of stego objects from cover objects is
difficult.

III. CONVENTIONAL LSB STEGANALYSIS
FOR 2LSB/I2LLSB EMBEDDING

Before extending the structural techniques to two bit planes,
we consider how detectors for LSB embedding can be applied
to detect 2LSB and I2LSB embedding.

An obvious method is to delete the LSB in a stego image,
leaving an image with one fewer bit plane. The effects of the
2LSB or I2LSB embedding on the original now appear to be to
ordinary LSB replacement. Therefore, a simple way to detect
2L.SB or I2LSB embedding is to apply the method of the pre-
vious section (or any other detector for LSB replacement) to an
image after the LSB plane is deleted: its estimate for p should
be a good one.

2In [8] it is shown that one should always take the smallest root of a poly-
nomial somewhat analogous to our S’(¢g), but this depends on further assump-
tions about the nature of the covers. The author prefers not to make additional
assumptions, especially since the method of checking each turning point to find
the global minimum is computationally cheap.
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This halving of the dynamic range may have some effect
on the accuracy of the detector, and we have thrown away a
lot of information by deleting half of the payload. So we ask
whether we can also estimate the part of the payload embedded
in the LSB using conventional methods. Imagine that 2LSB or
I2LSB embedding is a two-stage process, first embedding in the
second-LSB, and then in the LSB; the second stage is conven-
tional LSB embedding (except that, under 2LSB embedding, the
locations of the payload are not truly independent). If the first
stage does not break the model for cover images used by the
LSB detector, then the stego image after the first stage is still
ripe for conventional LSB steganalysis and we could form an-
other estimate for p in the standard way. In this way, we could
make two estimates—one for the payload in the second-least bit
plane and one for the payload in the least—which may be valu-
able to combine in order to reduce overall error.

However, it is, in general, not the case that random embed-
ding in the second-LSB plane preserves the cover model of
Section II. A fully rigorous proof of this can be constructed
using the structural technology of the following section, but the
algebra is extremely messy and we therefore stick to a simplified
explanation here, for I2LSB embedding only, and point to ex-
perimental results for verification. Let us make the assumption
that the second-LSB plane is uncorrelated with any other. Sup-
pose that proportion p/2 of these bits is randomly flipped—this
mimics the first stage of I2LSB embedding as described before.
Count the sizes of the trace subsets after this, and call their ex-
pectations b, and bl . Now by a calculation similar to that in
the previous section, we can derive

bg’m—l—l - béllm—i-l
=(1- P)2 (b2m+1 - b}lm,-}—l)
+p(1 - p) (bgm—l—.?) - béll’m—l—3 + blolm—l - b}lm—l)

+ %P2 (2b2m+1 - béllm—?; - blllm-l—c')) (0)
with a similar equation for b3, 5 — b}, 3. The first two terms
vanish under the assumption (5), but the third term does not,
in general, equal zero. Some empirical investigations can check
that although usually fairly small, 23,1 — bl,,_5 — bl s
differs significantly from zero in natural images. Therefore, the
assumption (5) is broken by embedding in the second-LSB, and
we can no longer expect the method of Section II to give cor-
rect answers for the size of payload in the LSB plane when em-
bedding is also carried out in the second-LSB plane. The error
induced is substantial and its extent can be seen in Section V.

IV. EXTENDING STRUCTURAL STEGANALYSIS
TO TWO BIT PLANES

Purpose-built detectors for 2LSB and I2LSB embedding,
based on the structure of replacement of two least significant
bits, are now developed. First, we must change the definition of
trace sets and subsets to recognize the two lowest bit planes

Cm = {4, k) € P|Ls1/4] = |s;/4] + m}

BY = {(j,k) € P|s = s; +m, with s; = 0 (mod 4)}
BY = {(j, k) € P|sk = s; +m,with s; = 1 (mod 4)}
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Fig. 2. Transitions between the trace subsets of C,,, when proportion p of the
maximum payload is embedded by 2LSB replacement. The transition labeled
a has probability (1 — (3p/4))?, those labeled b have probability (p/4)(1 —
(3p/4)), and those labeled ¢ have probability (p/4)?.

and similarly for B0 and BL!. As required, C,, is preserved by,
and the trace subsets Bfn sensitive to, operations on the two least
significant bit planes. The trace sets C,,, are each partitioned into
16 trace subsets which we shall consider in the following order:

0
B B4m+17B4m+27B4m+3 B4m 17B4m784m+1 B4m+2
B4m 27B4m 1 64 B4m+1784m 39 B4m 27B4m 1 B4m

Count the sizes of the trace subsets and form vectors of length
16: by, = (B39, ..., b3L )T of the sizes before embedding, and
B, = (B2, .. B’ 11) for the random vector (with realisa-
tion b)) of correspondlng sizes after embedding of a message,
assumed random.

From this point the two embedding methods must be treated
separately, because they induce different transitions on the trace
subsets.

A. Structural Steganalysis of 2LSB Embedding

A diagram, analogous for Fig. 1 for 2LSB embedding, is now
constructed. Under 2LSB embedding, a message of length 2p N
causes each pixel to be selected with probability p, and if se-
lected, then there is probability (1/4) that it is not changed, and
(1/4) that it is changed to each of the three other pixels with the
same most-but-two significant bits.

Consider, for example, a sample pair in the trace subset
B, 1. With probability (1 — (3p/4))?, neither pixel value
is altered, leaving the pair in the same trace subset. With
probability (p/4)(1 — (3p/4)), the first value is unchanged
and the second changed from 4y + 1 to each of 4y, 4y + 2,
or 4y + 3, moving the pair into BY,, BIY, 5, or BLY, 5. With
the same probability, the first value is changed, from 4z to
each of 4z + 1, 4z + 2, or 4z + 3, and the second unchanged:
this moves the sample pair into B9}, B1® |, or Bil . The
final case is that both values in the pair are changed and this
will move the sample pair into any of the nine remaining trace
subsets of C,,, each with probability (p/4)2. These transitions
are displayed in Fig. 2. There are symmetrical transitions from

each other trace subset. Fig. 2 has been laid out so that a change
in the first sample value is represented by a vertical move, and
a change in the second value by a horizontal move.

As before, the expected size of each trace subset after em-
bedding is a linear combination of the sizes before embedding.
Analogous to (1), we can express this in vector form. Com-
pleting all of the transitions in Fig. 2, one can check that the
matrix can again be written as a tensor product (which reflects
independence between horizontal and vertical transitions)

EB,] = (P'® P )by (7
where

(o3 p p
4 4 4 4
P 3 P p
p— 4 4 4 4
p po 3% P
4 4 4 4

p p P 3

4 4 4 4

Now invert, again appealing to the law of large numbers. The
substitution ¢ = 1/(1 — p) is still helpful. This time, the inverse
equation is

bm % (Q'® Q)By, ®)
where
143¢g 1—¢q 1—q 1-—¢q
Q,:} l—q 1+3¢ 1-q 1-g¢q
4 l—-q 1—q 143¢ 1-—¢q
1-¢q 1—-q 1—q 14+3¢

Having completed the analysis of the effects of embedding
on trace subsets, we must now formulate a set of cover assump-
tions. The equivalent to (5) would be

00 ~ 101 ~ p10 ~ 11
b,, =~ b,, =b,, ~b,, foreachm

but again we find that some of these symmetries do not discrim-
inate covers from stego objects. For example, when p = 1, then
the matrix P’ consists of a single repeated entry (1/4); therefore,
P’ @ P’ is made up only of the entry (1/16). Equation (7) im-
plies that all of the entries in the vector F[B. ] are equal. This
means that any cover assumption of the form B!, ~ BJ will also
hold for maximally embedded stego images whenever B!, and
BJ are within the same trace subset.3 This immediately helps
us restrict our attention to the following ten symmetries:

b ~ b2, forn =3 (mod 4)

b2 =~ b0 forn ={2,3} (mod 4)

b ~ bl forn ={1,2,3} (mod 4)

W'~ b0 forn=2 (mod4)

bl ~ blt, forn = {1,2} (mod 4)

bio = b}ll./ forn=1 (mod4). 9)

3Note that this does not guarantee that the cover assumption is unbroken in all
stego images; only that it holds under maximal embedding as well as no embed-
ding. Nonetheless, this at least indicates that, given our process of minimizing
the sum—square error, we should not include such symmetries.
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There may be some further filtering of the symmetries: it seems
somehow strange to include the assumptions 6%, 12 R bil +2
00 . plo 10 o pll

and by, 1o & by, o butnot by, o ~ by, 104

Now it is possible to construct the estimator for p: as before,
we minimize the sum-square deviation S(q) = >, (b3, .1 —
bir.+1)? + - - - where we include some or all of the symmetries
in (9). For example, (8) gives

4 (00001 = Bt ) = A(1 +30)?
+B(1—q)(1+3¢)* +C(1 - q)?
where
A= gy — Vi
B = bl + bl o + bl 45 + bl + bl 1 + b5 o

/00 /01 /10 /11 /11 /11
- b4m+4 - b4m+3 - b4m+2 - b4m+2 - b4m+3 - b4m+4

_ 01 101 101 10 10
C =gy + Vigg1 + Vipgo + 0o + b4y,
/10 ni ni /i

+ bimt1 + bgm—z + Va1 + by

/00 /00 /00 /01 /01
- b4m+5 - b4m+6 - b4m+7 - b4m+4 - b4m+5
_ b/Ol _ b/10 _ b/lO _ b/lO

4m—+6 4m—+3 4m—+4 4m—+5

Each deviation from a cover symmetry has the same form.
This again allows us to express the overall sum—square devia-
tion from all of the cover symmetries as a quartic in gq. Again,
differentiate and find the global minimum to estimate ¢ and,
hence, p. The resulting cubic equation is not displayed which
must be solved in order to find these turning points because it is
immensely long to write down, but it can be determined by ele-
mentary if rather tedious calculation from (8) and (9). This esti-
mator is called of p the 2couples detector of 2LSB replacement.

Recall from Section II that the couples/LSM detector suffers
from poor performance when p is close to 1, because of small
deviations between E[B!, ] and by,. This effect is again evident
here. The condition number of the system (8) is ¢* = (1 —p) 2
is the same as for the standard couples/LSM detector. One there-
fore expects to see a degradation in performance for the same
values of p as in the couples/LSM case, but we note in passing
that the deviation may be a little larger in the case of 2couples
because each trace set is divided into more trace subsets, which
are therefore smaller, and the law of large numbers approxima-
tion will be correspondingly less precise. Theoretical analysis
of such errors is beyond the scope of this work and we defer to
the experimental evidence of Section V.

B. Structural Steganalysis of I2ZLSB Embedding

When the embedding in the two-least bit planes is indepen-
dent, the transitions between trace subsets is different. But they
can be determined in exactly the same way and the resulting dia-
gram (indicating the transitions from 8", . ;) is shown in Fig. 3.
There is a high degree of symmetry not only between horizontal
and vertical transitions but also between square blocks of four
trace subsets.

4A number of possible sets of assumptions were evaluated experimentally,
and it was concluded that it does not make a great deal of difference whether all
ten symmetries are used or a subset, but including any of the other six symme-
tries results in much poorer performance. Therefore, the decision was made to
use all ten of the symmetries in (9).
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Fig. 3. Transitions between the trace subsets of C,,,, when proportion p of the
maximum payload is embedded by I2LSB replacement. The transition labeled
a has probability (1 — (p/2))*, those labeled b have probability (p/2)(1 —
(p/2))3, those labeled ¢ have probability (p/2)%(1 — (p/2))?, those labeled d
have probability (p/2)3(1 — (p/2)), and that labeled e has probability (p/2)*.

Considering the symmetry between these transitions (or more
prosaically writing down the matrix associated with Fig. 3 and
checking), we see that the trace subsets, before and after embed-
ding, are related by the fourfold Kronecker product

EB,]=(P®P®P® P)bm (10)
where P is as in (2). The approximate inverse equation is
b & (Q®Q 2 Q® Q)BY, (1n

where @ is as in (4).

The cover assumptions are the same for 2LLSB steganalysis.5
Again, we seek to minimize the sum—square deviation S(q) =
Zm(égglﬂ - l;i,ln_i_l)z + - - - but this time S is a polynomial of
higher degree. For example, (11) gives

16 (65,1 = bih)
=A(1+¢)"+ B(1 - )(1+¢q)> + C(1 — ¢)*(1 + ¢)?
+D(1—-q*(1+q)+ E(1-q)*

where

__1/00 /11
A= b4m+1 - b4m+1

B = b + bims + Vi + Vi

4m 4m
701 /10 /11 /11
- b4m+3 - b4m+2 - b4m+2 - b4m+3
__1/00 /01 /01 /10 /10 /11
C = bymyo + bgm1 + b0+ Vi o + b1 + by o
bIOO blOl b/Ol bllO bllO b/ll
“Ym+4 T Y4m4+4 T Y445 T Y4m+3 T Y4m+4 T Y4m44
_ 1/01 /10 /11 /11
D = Vyy1 + b, + Va3 + by
_ b/OO _ bIOO _ blOl _ b/lO
4m—+5 4m+6 4m—+6 4m—+5

__ /11 700
E= b4m—1 - b4m+7'

5Again, experiments show that we might as well take all ten symmetries in

9).
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Fig. 4. Random messages inserted by 2LSB embedding into 3000 color never-
compressed bitmap images. The x-axis is the proportionate payload. Above,
observed bias (median error) of estimators; below, interquartile range (log axis).

The function S(q) is a polynomial of degree eight, so differ-
entiating may find up to seven turning points and we substitute
back into S to find the global minimum. The author calls this
estimator of p the [2couples detector of I2LSB replacement.

Once again, we can expect poor performance for values of
p close to 1. This time, however, the condition number of the
matrix in (11)is ¢* = (1 — p)~*. Therefore, we expect the poor
performance to appear more rapidly as p increases.

V. EXPERIMENTAL RESULTS

The steganalysis estimators are now benchmarked, using
large sets of cover images, simulating steganography of various
kinds, and comparing the values produced by the estimators
with the true embedded data rate. Estimator bias will be
measured by the sample median, and estimator spread by the
sample interquartile range (in preference to mean and stan-
dard deviation because of the results of [12] which indicate
that the error distributions can be so heavy tailed that sample
standard deviation may not even converge). Our primary test
set of covers is 3000 never-compressed bitmaps, downloaded
from http://photogallery.nrcs.usda.gov; originally very high
resolution color images, we reduced them in size to approx-
imately 640 x 450 pixels. These images were also converted
to grayscale and/or subjected to JPEG compression (quality
factor 90) so as to benchmark the performance of the detectors
on these different types of cover—we shall see that the type of
cover makes a big difference.

First, we perform some experiments to verify the results of
Section III. For embedding rates p € {0,0.05,0.1,...,1}, we
inserted random messages by 2LSB embedding in each of the
3000 covers, and tested the performance of the following esti-
mators: applying the standard couples/LSM detector, applying
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Fig. 5. Above, observed bias; below, interquartile range (log axis), when each
estimator is applied to the corresponding method of steganography. The x-axis
is the proportionate payload. Data from 3000 color never-compressed bitmaps.
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Fig. 6. ROC curves (z-axis representing false positive rate and y-axis rep-
resenting true positive rate) comparing LSB embedding detected using cou-
ples/LSM, and 2LSB embedding detected using 2couples, with the same size
payload. Left, results from 3000 never-compressed color images. Right, from
3000 color images subject to JPEG compression before embedding.

the standard detector after deleting the lowest bit plane, aver-
aging the previous two estimates, and applying the 2couples de-
tector. Also tested was the other 2LSB detector in the literature
[10]. The results are shown in Fig. 4.

It is apparent that all of the structural detectors’ performance
is poor for (the uninteresting case of) p close to 1, manifesting
substantial negative bias and large spread. It has already
been mentioned that this would, in practice, be avoided by
“screening.” The new 2couples detector is the superior method
for the interesting case of p < 0.5, although application of the
couples/LSM method to an image with the lowest bit plane
deleted is, in fact, a better performer for p > 0.5. But the stan-
dard couples/LSM method is not a good estimator for 2LSB
embedding, suffering immediately from significant negative
bias and large deviations; its effect is also to ruin the average
of two applications of the standard method, with and without
the least bit-plane removed. This verifies our calculations in
Section III, showing that embedding in the second-least bit
plane damages the assumptions of couples analysis in the least
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Fig. 7. Observed false positive rate at which the false negative rate is 50%, testing each steganography method against the corresponding steganalysis method.
Left, results from 3000 never-compressed grayscale images. Right, from 3000 color images subject to JPEG compression before embedding.

bit plane. (These experiments were repeated for [2LSB embed-
ding but the charts are very similar and we do not include them
here; the conclusion is the same: standard couples steganalysis
is not appropriate for I2LSB embedding either.)

Observe that the detector of [10] is weak, except for very large
payloads. For payloads below p = 0.5, estimator errors are
2-3 times larger for the detector of [10] than our novel 2cou-
ples detector. This accords with the observations of [13] and
[12], where analogous detectors for plain LSB steganography
were carefully benchmarked. Further experiments, for which a
chart is not displayed, show that the performance of the detector
in [10] is relatively much worse when the cover images had
been previously subjected to JPEG compression. It appears that
WS-based detectors cannot match the performance of structural
detectors based on [2] in the (interesting case of) detection of
small payloads, but they do not suffer from poor performance
near p = 1 and, therefore, have a place in the estimation of
near-maximal payloads.

Experiments are now undertaken which compare the per-
formance of each LSB, 2LSB, and I2LSB embedding when
the appropriate structural detector—couples/LSM, 2couples,
I2couples—is applied. Fig. 5 shows the corresponding results.
Note that the I2couples detector shows poor performance more
rapidly as p grows; this is in accordance with the theory of
the previous section, because this detector is based on a linear
system with a higher condition number. Note also that the
2couples and I2couples detectors, for p < 0.4, are substantially
more accurate in estimating the value of p.

But we should not be misled: although it appears that the es-
timation of LSB steganography is harder than 2L.SB or I2LSB
(by the methods presented here), that is not the case when the
relative sizes of the payload are considered: a value of p for
2LSB or I2LSB embedding represents twice as much data as
the same value for LSB. In Fig. 6, we make an equivalent pay-
load comparison of LSB and 2LSB steganography, detected by
the couples/LSM and 2couples detectors, focusing now on the
binary question of whether any data are embedded. Such perfor-
mance is measured by receiver operating characteristic (ROC)
curves, which display how false positive and false negative rates
vary as sensitivity—in this case, a threshold for the diagnosis of
steganography—is altered. Two such ROC curves are displayed,
for two types of cover objects and selecting an interesting em-
bedding rate for each.

Observe that, given a payload of fixed size, the discrimina-
tion of cover objects from stego objects is slightly harder (less
reliable) when the embedding is done using 2LSB than LSB
replacement. Ideally, this would be verified for a range of em-
bedding rates, and for I2LSB embedding as well, but we cannot
display ROC curves for every possible rate. Instead, we settled
on the metric of the false positive rate when the false negative
rate is 50% (used and justified in part in [1]), displaying how
this varies with the embedding rate (this time measured in bits
per cover pixel, fairly to compare LSB with 2LSB and I2LSB
embedding, at intervals of 0.005) in Fig. 7. Two such charts are
shown, illustrating the cases of never-compressed grayscale and
previously JPEG-compressed color images. From the steganog-
rapher’s point of view, the least detectable embedding method
is 2LSB embedding. I2LSB is intermediate and LSB is the most
detectable. For never-compressed grayscale images, the differ-
ence is quite small (although some simple bootstraps show that
it is nevertheless statistically significant for p € [0.005,0.05])
and very substantial for color JPEGs.

The experiments were repeated on a wide range of sets of
cover images (including one taken directly from digital cam-
eras in raw format, never subject to image-processing opera-
tions) with very consistent results: the detector of [10] is sub-
stantially outperformed by the structural detectors except for
near-maximal payloads (for which the discrimination problem
is extremely easy in any case); from the steganographer’s point
of view, there is a small advantage in using 2LSB embedding in
never-compressed images and a large advantage in covers previ-
ously subject to JPEG compression (including when the covers
are substantially reduced in size after compression). In no case
did we find it significantly preferable to use LSB embedding
over 2LSB embedding.

VI. CONCLUSIONS AND FURTHER WORK

After making a clear distinction between 2LSB and I2LSB
embedding, we have extended the structural framework of
[2] to produce novel detectors specialized for these embed-
ding methods. They have been demonstrated to be more
sensitive than the other such detector in the literature. The
various embedding methods have been benchmarked against
their respective detectors: as close as possible we have been
comparing them on a like-for-like basis, with all types of
steganography detected by structural detectors using pairs of
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pixels, a least-squares estimator, and cover assumptions of the
same type. Therefore, we believe that this is a fair comparison,
and that it appears that 2LSB embedding is genuinely superior
(slightly so in never-compressed covers; substantially so in
previously compressed covers) to LSB embedding. That is
not to say that either method is sensible if an alternative to bit
overwriting is available.

Of course, we cannot say for sure that the “steganographic
capacity” is higher under 2LSB embedding because there might
be other detectors which make 2LSB embedding the easier one
to detect. However, it is now very clear that structural detec-
tors for LSB replacement are comfortably the most sensitive.
Although it is possible that, for example, structural steganalysis
of 2LSB replacement using an extended triples method might
prove easier than of LSB replacement using the triples detector
of [2], this seems unlikely. In any case, an extension to more
than pairs of pixels is likely to run in to complexities with the
cover assumptions.

Another natural progression would be the steganalysis of em-
bedding in three or more bit planes. Perhaps “3LSB” embed-
ding is more secure than 2LSB embedding? The author urges
caution: as a reductio ad absurdum argument, consider simple
replacement of whole cover bytes by a stego payload: there is no
structure in this embedding, and structural steganalysis will fail.
But, of course, such embedding is easily perceptible. At some
point, the structure of multiple bit-plane embedding will be re-
dundant, and other detection methods, such as the additive-noise
steganalysis of [14] will be more appropriate.

One issue we have not addressed here, postponing it to future
work, is how to determine which steganalysis method to apply.
Given a stego image, should one estimate the amount of hidden
data using couples, 2couples, or I2couples? There are a number
of ways to make this determination and we would prefer to find a
method with some optimality. This requires closer consideration
of the nature of errors in our cover assumptions.
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