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Derivation of Error Distribution
in Least Squares Steganalysis

Andrew D. Ker, Member, IEEE

Abstract—This paper considers the least squares method (LSM)
for estimation of the length of payload embedded by least-signifi-
cant bit replacement in digital images. Errors in this estimate have
already been investigated empirically, showing a slight negative
bias and substantially heavy tails (extreme outliers). In this paper,
(approximations for) the estimator distribution over cover images
are derived: this requires analysis of the cover image assumption of
the LSM algorithm and a new model for cover images which quan-
tifies deviations from this assumption. The theory explains both the
heavy tails and the negative bias in terms of cover-specific observ-
able properties, and suggests improved detectors. It also allows the
steganalyst to compute precisely, for the first time, a p-value for
testing the hypothesis that a hidden payload is present. This is the
first derivation of steganalysis estimator performance.

Index Terms—Least-significant bit (LSB) embedding, steganog-
raphy, structural steganalysis.

I. INTRODUCTION

TEGANALYSIS is the detection of steganography, and this

detection can take a number of forms. Many steganalysis
methods are quantitative: not simply a binary decision as to
whether an input is a cover or stego object, they estimate the
length of the payload (possibly zero). Particularly for LSB re-
placement steganography in digital images, quantitative detec-
tors seem to present themselves naturally as part of the detection
process (see, for example, [1]-[4]).

However, no steganalysis method is perfect so these estimates
will be subject to error. In the literature [5], [6], it has become
apparent that quantitative detectors for LSB replacement suffer
from errors of a pathological type. There are sometimes extreme
outliers in the error distribution (the errors appear to be very far
from Gaussian) and some estimators, particularly those with the
smallest error variance [4], [7], suffer from a small bias. Further-
more, the nature of these errors seems to be highly influenced
by the class of image under consideration: the size, local vari-
ance, and saturation are shown empirically to be important in
[6], but there are likely to be other influences on accuracy. This
presents the steganalyst with a difficult problem: given an esti-
mate for the amount of embedded data, how much confidence
should they have in it? This goes to the heart of the steganalysis
problem. As demonstrated in [8], knowledge of properties of the
cover source can make a vast difference to a steganalyst’s confi-
dence in their result, but in many applications (such as network
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monitoring), it probably cannot be assumed that the steganalyst
has much information of this sort.

This paper considers a particular quantitative detector for
LSB replacement in grayscale images: the least squares method
(LSM) variant [9] of sample pairs analysis (SPA) [3]. The aim
is to derive its error distribution; it will be possible to do so
for one source of error, as long as the detector is modified to
remove dependence on a pathological component.

In [6], it is observed that the steganalysis estimator error
should be decomposed into two components: within-image
error and between-image error. These are separated and their
nature investigated empirically for a number of LSB replace-
ment estimators, including the LSM/SPA algorithm. Broadly
speaking, the within-image error is due to the content and
location of the payload, whereas the between-image error is
entirely due to the cover. Although within-image error should
not be discounted, it is generally of much smaller magnitude
than between-image error, unless the embedded payload is very
large, and it always has much smaller, apparently Gaussian,
tails (therefore within-image error is not responsible for ex-
treme outliers). Furthermore, when no payload is embedded,
there is no within-image error. Therefore, it is sufficient for the
steganalyst to know only the between-image error distribution
in order to compute a p-value for an observed estimate, knowl-
edge of which is a fundamental aim.

In this work then, the focus is only on between-image error,
which is the error in the estimator when there is no payload em-
bedded.! The aim is to provide a genuine p-value for the stegan-
alyst, for testing the hypothesis that no payload is hidden against
the alternative that some payload is hidden.

Presenting the steganalysis method now known as WS, [10]
is another work which uses some theory to examine steganal-
ysis error. However, it does so in passing (as part of the tuning
process for the estimator), only for the less-significant within-
image error, and it is not clear that the theory has any connec-
tion with experimental practice. Another piece of early work
which considers steganalysis error is [11], although this pri-
marily presents heuristic methods for slightly improved detec-
tion reliability and is not about the analysis of error per se. Fi-
nally, steganalysis error and the factors influencing it can be esti-
mated empirically using large-scale experiments and regression
analyses, as in [6] and [12].

Presented here is the first derivation of steganalysis error
which does not make unrealistic assumptions about the source

In some literature (e.g., [1]), this is referred to as detector bias but this term
will not be used as it suggests bias in the statistical (i.e., strictly additive) sense,
which it is not. Indeed, empirical data in [6] suggest that the between-image
error is relative, decreasing with higher embedding rates to zero under maximal
embedding.
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Fig. 1. Histogram of observed LSM/SPA estimates of proportionate length of
hidden payload, when none is hidden in 3000 grayscale cover images.

of cover objects, and which accords well with experimental
results. But it only applies, at this point, to steganalysis error in
cover objects and can only approximate error in stego objects.
Despite that limitation, this work has applications both in
improved steganalysis and, more speculatively, in adaptive
steganography.

As an introductory example, Fig. 1 displays the histogram of
the LSM/SPA estimator when applied to 3000 grayscale cover
images (no payload is present so the estimator should be around
zero). Two features are apparent in this distribution: there is a
small negative bias (which turns out to be statistically signifi-
cant), and a large number of outliers. The distribution does not
look Gaussian (it conclusively fails a normality test) and seems
somewhat skew. The theory will explain these features in terms
of properties of cover images: in fact, the error distribution is
approximately Gaussian, but the mean and variance are influ-
enced by image-specific factors so the resulting distribution is a
Gaussian mixture.

The structure of this paper is as follows. In Section II, there
are some simple mathematics, relating to perturbations in para-
metric curves of a certain type, which will be a key part of the
later derivations. In Section III, the LSM/SPA method is de-
scribed in just enough detail for the purpose of deriving its error
when no payload is embedded. In Section IV, a simple model for
cover images is proposed; it explains the errors and is combined
with the previous results to derive first- and second-order ap-
proximations to the between-image error distribution. It is ver-
ified that the second approximation gives a high degree of ac-
curacy in Section V. Applications of this work are briefly pre-
sented in Section VI, including a modification of the LSM/SPA
method with improved performance. Finally, conclusions are
drawn in Section VII.

II. SMALL PERTURBATIONS IN QUADRATIC PATHS

This paper begins with some abstract mathematics. A para-
metric curve in R™ will be called a quadratic path if each co-
ordinate is of the form (s + pt + p?u)/(1 — p)?, where p < 1

Fig. 2. Small perturbations in quadratic paths.

is the parameter and s, ¢, u € R (the reasons for this shape will
become apparent later). Its locus will be written in the form

_ s+pt+p2u
(1-p)?

for p < 1, where the vectors s, £, w are in R™. The steganalysis
application will be to curves which pass through the origin at
p = 0 (so s = 0) and perturbed curves whose coefficients in
the numerator are affected by small random vectors. The aim is
to estimate p, the value of the parameter on the perturbed curve
which is closest to the origin. First- and second-order approxi-
mations for p will be found.

Suppose that a quadratic path P passes through the origin
at p = 0, and that a perturbed path is P’. Write v = (pt +
p?u)/(1 — p)? for the locus of path P and v = (s’ + pt’' +
p?u’)/(1 — p)? for P'. Approximate P’ close to p = 0 by its
tangent at p = 0, which passes through s’ and has direction
vector dv/dp|,=0 = t' + 2s’. This is closest to the origin at the
point whose vector is orthogonal to the direction vector of the
tangent (see Fig. 2), so the scalar product (s’ + p(¢' + 2s')) -
(' + 2s") = 0, which occurs when

. st +2¢")
P2y (F + 28)

Now identify the perturbations s’ = &, ¥ = & + &;, v’ =
u+ 0,
3 Os -+ b5 - (6¢ + 265)

t-t+4 2t (6 + 265) + (6 + 285) - (8 + 205)

p=

which, up to first order (i.e., discarding terms whose magnitude
is of the order of the square of the perturbations), is

bs -t
t-t’
The second-order approximation (discarding terms with mag-
nitude cubic in the perturbations) is obtained by expanding the

denominator using the binomial theorem; after some simplifica-
tion this gives

PR ey

ﬁw_&;'t ((6t+26s)'t)(6s't)_

t-t (t-1)?

These results will be applied in Section I'V.

bs - (6 + 285)
t-t

)

III. LSM FOR STEGANALYSIS OF LSB REPLACEMENT

Replacement of LSBs in a digital image is an easy (but in-
secure) method to embed a payload below the visual threshold.
The simplest form of embedding traverses the cover in a pseu-
dorandom order and replaces the lowest bits of each pixel value
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by the payload bits, in which case the number of payload bits
is about twice the number of altered cover pixels; more so-
phisticated methods involving source coding (see, for example,
[13]) allow for embedding the same payload with proportion-
ately fewer embedding changes.

The LSM principle [9] leads to a quantitative detector for LSB
replacement steganography. More precisely, it is an estimator
for twice the number of flipped LSBs in the cover; nonetheless
it will be referred to as an estimator for payload size because it
was designed for the absence of source coding, but one should
bear in mind that it is only the number of flipped LSBs that can
truly be estimated. It is based on the sample pairs method of
[3], but varies at the final stage when a number of approximate
equations are combined to make a single overall estimate. It
fits into the structural framework of [4]: a feature vector, which
counts the numbers of pixel pairs of certain types, depends in a
predictable way on the cover and the number of flipped bits; this
relationship can be inverted to see how the same properties of the
cover depend on the number of flipped bits and the stego object;
finally, there is a model for those properties of cover images.
Given a stego image, the payload size is estimated as the value
which leads to the closest fit for the cover model.

This estimator will be described in the compact presentation
suggested by [4], including only enough detail for subsequent
analyses. As in [4], calligraphic letters will be used (X') for sets,
uppercase letters (X) for random variables, and lowercase let-
ters (x) for constants and realizations of random variables. The
cover image is (for now) considered constant, and the payload
random. Suppose that a digital image consists of a series of N
samples with values si, s2,...,sy in the range 0...2M + 1
(typically M = 127). A sample pair is a pair of sample loca-
tions (4, k) for some 1 < j # k < N. Let P be a set of sample
pairs; [3] suggests using all pairs which come from horizontally
or vertically adjacent pixels. Then consider some subsets of P

=1 Skl |3
Cm_{(J’k)eP' [2J_[2J+m}
Em ={(J, k) € P | sp = sj +m, with s; even}
Om ={(j.k) € P | s = s; +m, with s; odd}

for —M < m < M in the first case, —2M < m < 2M + 1in
the second, and —2M + 1 < m < 2M in the third.

Suppose that embedding a payload alters each sample in each
pair, independently, with probability p/2: this includes the sce-
nario when a payload of length p N (uncorrelated with the cover)
is embedded using simple the LSB replacement of a random se-
lection of samples. Alternatively, if a method of source coding
is used and the embedding changes are located independently at
random, then this same detector will be an estimator for twice
the number of embedding changes. The sets C,,, do not involve
the LSBs of the pairs, so any pair in C,,, must remain there after
LSB replacement. The sets &,,, and O,, are called trace subsets:2
each C,,, is partitioned into o, , E2m 415 O2m—1, O2m, and LSB
replacement moves sample pairs among these four trace subsets
according to the transition diagram Fig. 3.

2Note that these sets are not quite equivalent to those called X, and V,,
used by Dumitrescu et al. in [3] or by the original LSM of [9]. Their definition
is symmetrical in the sample pairs but introduces an unnecessary special case at
m = 0. This is explained in [4].

ggm B e — OQm—l
50-3)
(1-%)? (1-%)?

Fig. 3. Transitions between trace subsets when proportionate payload p is em-
bedded by LSB replacement.

(NS}

Next, count the size of the trace subsets: let e,,, (respectively
o) represent the number of sample pairs in &, (O,,) before
embedding, and the random variable E/, (O.,) be the number
after such a random embedding. Considering Fig. 3, [9] (or, in
this notation, [4]) shows

E[Eém] €2m
E[05,, 1] | _ _pp 02m—1
ElE) 1] | M(l 2’ 2> €2m 41 )
E[OIQm] 02m
where
a?> af af B?
2 2
M(a7 /B) = gg /(;2 /22 ZZ
B2 af af o

The matrix is invertible as long as p # 1: the inverse is
1/(1=p)*M (1 = p/2,—p/2).

Two assumptions are required. First, appealing to the law of
large numbers, that the observed realizations e, (o)) of the
random variables E/ (O!.) are close to their expectations

e, =~ E[E]], o, =~E[O]] 4)

Second, the cover model which drives the estimator
€2m+1 — 02m+1 = 0 (5)

for —M < m < M. Approximate equations of the form of (5)
are termed symmetries in [7]. They are justified by the belief
that there will be no correlation between parity structure and
pixel difference in continuous-tone images. (The reason for not
including also es,,, = 09, is explained in [4]).

As in [3], it will be very convenient to define d,, = e, +
om,and d,,, = el + ol,,. Putting together (5) with the relevant
elements of the inverse of (?1), anz (/4), gives )

O~ eami1 — O2my1 = e
p

+ 5( 12m+2 - /2m - 26,2771,-‘,—1 + 20/2771,—‘,—1)

€oam+1 — 92m+1

2
p / / / ’ / /
+Z(d2m_d2m+2+02m—l — €53 T €5 i1 — O2pi1)

(6)
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which is an equation for p involving only observations of the
stego image. Such an equation can be found for each m. The
novelty in [9] is to find the value p of p which minimizes the
sum square error of all of these approximately zero quantities.
The mechanics of how such a p may be determined will not be
included here, as this may be found already in [9]3 and is not
relevant to subsequent analysis.

Two assumptions were made: (4) and (5). The former is re-
sponsible for within-image error, the latter for between-image
error. As stated in Section I, the analysis in this paper will dis-
regard the within-image error and concentrates only on the be-
tween-image error, looking at the steganalysis estimation when
no payload is hidden. In that case, ¢/, = ¢,, and o/, = 0,,, (4)
is redundant, and (6) becomes

Sm + Pl + P00 _ o
(1-p)?

wherle
Sm= €2m+41 — 02m+1
1
t:n: §(d2m,+2 - d2m) - (62m+1 - 02m+1)

1
u,= 1 (d2m — d2m+toF 02m—1—€2m+3+€2m+1—02m+1)- (8)

Therefore, the least squares estimator can be given a geometric
interpretation by

. 8"+t + pPu
p = arg min|—————

» (1-p)?
where s’ (respectively, ¥/, u') are vectors whose entries are
each s (¢, u,.) for —-M < m < M, and | - || represents

the L?-norm. p is the parameter where the quadratic path
v = (s + pt' +p?u)/(1 — p)? is closest to the origin.

IV. DERIVATION OF BETWEEN-IMAGE ERROR

Now approximations will be derived for the distribution of the
between-image error when the LSM algorithm is used. The key
component is a model for natural images which explains devia-
tions from the cover assumption (5). Note that the cover image
is no longer considered constant, as it was in Section III, but
subject to random “error.” But the notation will not change, so
the reader is warned that some lowercase letters are now random
variables.

A. Model for Symmetry Deviation

The assumption e,, X o,, is natural, but it does not hold
precisely in images. A model is sought for cover images which
explains the deviations from exact equality. It is desirable for
the model to be as gentle as possible (and, crucially, not para-
metric) so that it is not too dependent on the image source for
its accuracy.

1) Model: 4 Consider the set of all sample pairs in a natural
image. Of all those pairs whose values differ by m, the first value

3The version presented in [9] does differ slightly from the estimator consid-
ered here, because the former uses Dumitrescu’s symmetrical sample pairs def-
inition. It leads to a slightly more complicated formula for p, but the difference
in performance is negligible.

4This model was first proposed in passing in [7], as part of a method for quan-
tifying the accuracy of cover symmetries.
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in each pair is even or odd with probability 1/2, independent of
other pairs.

That is, the difference histogram (the frequency of differences
of adjacent pixels) is assumed fixed, and the parity of the first
pixel in each pair is uniformly random. Of course, this does
not reflect the construction of images, but nonetheless it rep-
resents a plausible hypothesis about parity structure in a contin-
uous-tone image. An isolated test of this model will be made in
Section V-B: it will be seen to be quite accurate for || > 3,
marginally so when |m| = 3, and not accurate for |m| < 2.
In this work, nothing more will be done other than restricting
the analysis by altering the LSM detector to avoid using the as-
sumption (5) in cases where this model does not fit well.

It would be possible to make stronger assumptions about
cover images (e.g., to model the shape of the difference his-
togram; it is common in the literature to use a generalized
Gaussian distribution). However, this temptation is to be re-
sisted for now: the more imposing the assumption is, the less
widely applicable it will be.

Given the model, d,,, are constants but the ¢,,, are binomial
random variables; e,,, then determines o,,,. Making the Gaussian
approximation e,,, ~ Bi(d,,,1/2) = N(d.,/2, dvn/4) (valid as
long as d,, is at least about 10; see, for example, [14]) leads to

em — Om = 2€p, —

dy ~ N(0,d,,).

For steganalysis by the LSM algorithm, it is only necessary to
apply the model for odd values of m. It will be convenient to
write €2m4+1 — 02m41 = Em = d2m+1Zm, so that the 7,
are iid standard Gaussian random variables encompassing all of
the randomness in deviations from the exact equations eg,,,+1 =

02m+1-

B. Distribution of Between-Image Error

Consider the geometric presentation of the LSM estimator. It
is the parameter which places v = (s’ + pt’ + p?u’)/(1 — p)?
closest to the origin. Write s’ = s + 8, and so on, where s, t,
and u are the values of s, #, ' when (5) holds exactly, and the
perturbations 85, d;, 6, are due to . Using (8), the following is
derived:

s=0 6s =€
tm = %(dgm_,_z — dom) by = —¢
(there is no need to know u or 8,,). The first-order approximation
(1) gives Ly 2 ;(dm” — dom)V/dom+1%m
PRIV T > (dzmrz — da)?

m
which implies that p has a Gaussian distribution p ~

N(/L17v(d)), where A5 (domss — dom)?domas

v(d) = 5
@ (X (damy2 — dam)?)

m

w1 =0, C))

Note that if the relative shape of d is fixed and the size of
cover N varies, d,,, is O(N), implying that v(d) = O(N~1).

The second-order approximation leads to a more complicated
distribution. Equation (2) is simplified because, here, 8; + 265 =
€. Write X =¢e-t/t-tandY = € - e/t - t. Then, (2) reduces to

pr~—X+2X%2-Y.
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Fig. 4. Experiment with synthetic data. From left to right: the image used; the difference histogram of this image; histogram of standardized p computed using
synthetically generated e,,, and 0,,,, with a standard Gaussian density superimposed; logarithmic tail plot compared with Gaussian tail.

Itis already known that X has a Gaussian distribution, but the
other terms do not. Therefore, the second-order approximation
to p is not Gaussian. Rather than proceed to a complex deriva-
tion of the exact distribution of p, simply observe that the con-
tribution to distributional shape by X? and Y is small—their
variance, and covariance, are all O(N ~2)—whereas their con-
tribution to location is O(N~1). Therefore, a simple approx-
imation is to ignore all except the shift in mean caused by the
additional term 2X?—Y . Using E[Z2] = 1, E[X?] = v(d) and
ElY] = 43, domt1/>,.(d2m+2 — d2sn)? can be derived.
The second approximation to the distribution of p is therefore
approximate Gaussian 4 doms1

P N(/J2(d)=v(d))7 Z(dgm,+2 - d2m)2

(10)
and v(d) is as in (9). The results of Section V will bear out the
approximations that have been made here, and the necessity of
the more complex second approximation.

o(d) = 20(d) -

V. EXPERIMENTAL RESULTS

These results are tested empirically, computing the LSM es-
timates over a large set of cover images. The primary test set
of covers is 3000 never-compressed bitmaps, downloaded from
http://photogallery.nrcs.usda.gov; originally very high resolu-
tion color images, for most of the testing they were reduced to
approximately 640 x 450 pixels. Tests were repeated using im-
ages reduced to grayscale, and also extracting the color channels
and using them separately. Additionally, a summary of results
for wider tests, with other sets of covers, will be reported.

To test the theory, standard statistical tests of mean and vari-
ance will be used. In order to test whether data fit a Gaussian
distribution, the Anderson-Darling test [15] will be used; this is
known to be generally powerful with particular discriminating
power in the tails of the distribution. The tails are especially
important if high reliability is the aim, and these will be aug-
mented by plots of both the empirical histogram (which effec-
tively checks the center of the distribution) and a logarithmic
plot of the observed distribution function (which exposes any
heavy-tailed behavior), compared with the standard Gaussian.

A. Results From Synthetic Data

First, some synthetic simulations will be reported, testing the
accuracy of the results of Section IV-B independent of the ac-
curacy of the cover model in Section IV-A.

Consider initially the first-order approximation (9). Taking
a single grayscale image (pictured in Fig. 4), the difference
histogram (also displayed) was extracted. For this particular
vector d, (9) predicts v(d) = 8.941 x 10~°. Two-thousand
simulations were then repeated, setting each e,, according to
a binomial random variable with parameters d,,, and 1/2, and
Om = dim — €, then computing p according to the LSM algo-
rithm. Standardizing, the theory predicts a Gaussian distribution
with zero mean and unit variance for p/+/v(d). This histogram,
and logarithmic tail plot, is displayed in Fig. 4.

Close accordance with the theory is seen. The data easily
pass the Anderson—Darling normality test (p = 0.637). The ob-
served mean is —1.634 x 10~%, not significantly different from
zero (t-test p = 0.433). The observed variance is 8.693 x1072,
not significantly different from the theoretical prediction of
8.941 X105 (x2-test p 0.366). Observe that the tail of
the standardized estimates, displayed in Fig. 4, fits a standard
Gaussian tail very closely. The first-order approximation to the
distribution of p has been quite adequate.

However, the experiment was also repeated by artificially
reducing the size of each d,, by a factor of 20, simulating a
smaller image with the same general characteristics. Another
set of charts is not shown; it suffices to say that the data still
pass a normality test (p = 0.059), and the variance is not
significantly different from the prediction (p = 0.145). But the
observed mean of —0.00617 is significantly lower than zero
(p < 1071%). However, the second approximation (10) would
imply a mean of —0.00515, not significantly different from the
observed value (p = 0.270).

This illustrates that the second approximation is necessary for
what would be a smaller image, and that it accords well with the
empirical results in this case.

B. Testing the Cover Model

This section considers genuine cover images. First, the cover
image model of Section IV-A is tested in isolation. According
to this model, the statistic z,, = (€m — 0m)/v/€m + 0m should
have standard Gaussian distribution. This statistic is computed
for a set of 3000 grayscale images and the results are displayed,
form = 1 and m = 5, in Fig. 5. Observe that the model seems
appropriate for m = 5 (it passes the normality test with p =
0.276) but is completely inappropriate for m = 1 (p < 10719).
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Fig. 6. Tests of the cover image model. Displays the p-value for the An-
derson—-Darling goodness-of-fit test for z,, against a standard Gaussian
distribution. p = 0.05 is indicated.

Indeed, in the latter case, it would appear to have tails closer to
Pareto [14] than Gaussian.

Rather than repeat such charts for every m, only the p-value
for the Anderson-Darling test is displayed, for |m| < 12, in
Fig. 6. It appears that there is no evidence to reject the model
for |m| > 3. Other experiments using covers made of individual
color channels extracted from 3000 color images (chart not dis-
played) bring into question the validity of the model for |m| = 3
also. But for |m| > 3, the model fits well.

Another experiment was performed using covers which had
previously been subject to JPEG compression, in the firm expec-
tation that the frequency-domain quantization would strongly
disrupt any assumptions about parity structure. Suprisingly, in
fact, it was found that the model still fits for |m| > 3 if the JPEG
covers are converted to grayscale before use: an unlooked-for
bonus. The model is not appropriate for single color channels
extracted from previously JPEG-compressed images although,
even here, it was found that there were circumstances highly
dependent on the nature of the image before compression, in
which the fit was reasonable. This is worthy of further study but,
for now, the model will only be applied to never-compressed
images.

Note that the cover image model is only used for odd values
of m: the model for €2, +-1 — 02, +1 drives component m of (7).
Because the model has been observed to fail for z,,, = —3, —1,
1, 3, the LSM estimator will henceforth be modified to exclude
the corresponding components (m = —2, —1, 0, 1). The esti-
mator should then satisfy (9) or (10).

The assumption that the random variables z,, are independent
must also be tested. Computing pairwise correlation coefficients
between each z,,, it was found that none were correlated with
R2 of more than 0.1, and for most pairs the correlation was al-
most exactly zero. The only exception is that z; and z_; are
strongly negatively correlated (R? = 0.84). Some visual in-
spections of the data were conducted to test for the possibility
of nonlinear dependence—none were found. As long as at least
one of m = —1 and m = 0 is excluded from the sum-square
error, it appears that independence of the components may be
assumed.

C. Distribution of the LSM/SPA Estimator

Predictions of between-image error distribution can now be
tested for the modified estimator. According to (9), computing
p and d for each image, the theory predicts thatp/ /v (d) is stan-
dard Gaussian. However, when the set of 3000 grayscale images
was tested, it was found that this was not a very good fit. The
histograms are not displayed; it is sufficient to note that the ob-
served mean of this standardized estimate was —0.326 (signifi-
cantly different from the prediction of 0, p < 10710); also, the
standardized distribution fails a normality test (p < 10710). It
appears that the first-order approximation is not sufficient. Al-
though the images are the same size as the first synthetic exper-
iment in Section V-A, by excluding m = —2, —1, 0, 1, many of
the pixels are ignored (an average of about 50% of the pixels in
each image are now excluded; in some images as many as 90%)
and, thus, the available evidence is analogous to that of smaller
images.

In fact, the first-order approximation is sufficient for larger
images: another set of 3000 images, sized approximately 1.5 M
pixels each, gave results passing all of the tests. However, for
the images sized 640 x 450, the second approximation (10) will
be applied. The theory predicts that (p — pi2(d))/1/v(d) has a
standard Gaussian distribution: the histogram and logarithmic
tail-plot of these standardized estimates appears in Fig. 7. The
standardized mean is 0.0199 (not significantly different from
0, p = 0.285), and the standardized variance is 1.049 (p =
0.0597). The data pass the Anderson—Darling test with p =
0.314. Thus, the second approximation (10) accords very well
with the experimental data. Although there appears to be one
outlier in the right tail, the reader is cautioned against placing
too much significance on the last few data points in a logarithmic
tail plot: extreme order statistics are notoriously unreliable mea-
surements.
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Fig. 7. Observed modified LSM/SPA estimates (in which components m = —2, —1, 0, 1 are excluded) in 3000 grayscale covers, standardized according to (10).
Left, histogram; Right, logarithmic tail plot. An excellent fit is observed (the single outlier should be disregarded).

This experiment has been repeated for a number of different
sets of covers. Only a summary of the results is reported. When
single color channels are used (simulating LSB replacement in
color images), there is still a good fit for a Gaussian distribution
and standardized variance of 1, but it was observed that, on oc-
casion, the mean of the standardized estimates is a little away
from zero. This “bias” is less than 0.1, which is statistically sig-
nificant but not very substantial given that the data are otherwise
standard Gaussian. Similar results arise in a set of 3000 smaller
images (320 x 225), and with a set of 1000 large raw images
converted to grayscale directly from a variety of digital cam-
eras (with no resizing). The slightly inaccurate mean would not
greatly damage the calculation of a p-value by a steganalyst.
In particular, there are no extreme outliers which, in the non-
standardized estimates, would cause unavoidable false positive
results. Similar results are again obtained when a set of 10000
previously JPEG-compressed, grayscale covers were used (al-
most regardless of the quality factor used in compression), but
extracting single color channels from JPEG-compressed covers
gave rise to non-Gaussian results. Clearly, this is due to the
failure of the cover model.

The same experiments were carried out without removing
m = —2, —1, 0, 1 but a Gaussian fit was observed: it has al-
ready been demonstrated that the model for cover images does
not hold well here, and this merely verifies that the failure carries
through into the distribution of the estimator. Removing these
components does have a negative impact on the estimator, in-
creasing its variance by not making full use of the data in the
stego image. But what is lost in general accuracy may be offset
by the removal of outliers using this new theory. Detailed bench-
marking of modified detectors to further work is postponed, but
initial results suggest that use of the p-value allows for much
lower false positive rates than previously.

Finally, consider Fig. 1 in the introduction of this paper; for
the results to hold exactly, one must change to the modified LSM
estimator which excludes m = —2, —1, 0, 1, but the histogram
of the modified estimator (not displayed) has very much the
same shape. Now it is known that an (approximate) Gaussian
mixture is being observed. For the same set of 3000 grayscale

covers, histograms of the mixture parameters 2 (d) and v(d),
with a scatterplot showing how they are correlated, are shown
in Fig. 8. The image-specific bias o (d) is almost always neg-
ative (the largest observed value was 0.00011 and 99.3% are
negative), explaining the negative bias in Fig. 1. The variance
v(d) is long tailed: some images have very high variance. This,
along with some outliers in the bias, accounts for the long tails in
Fig. 1. Although the long tails in v(d) and p2(d) are themselves
an as-yet unexplained phenomenon, it is important to note that
the quantities v(d) and p2(d) can be observed from the cover
image; those images with a propensity for large steganalysis
error can now be identified.

VI. APPLICATIONS

An immediate application of a sound model for estimator
error is a measure of confidence for the steganalyst. It would
be desirable to provide not only an estimate but a confidence
interval for the size of hidden payload. However, the theory
does not enable going that far, for two reasons. First, only the
between-image error (i.e., the theory only applies directly to
cover images) has been identified: while the within-image error
is negligibly small, relative to between-image error, for small
payloads, this is not so for large embedding rates [6]. Second,
computing the expected bias and variance of the between-image
error requires knowledge of d, which is a property of the cover.
Of course, the steganalyst does not have access to both cover
and stego object.

However the theory is sufficient to form the most important
measure of confidence: the p-value of the hypothesis test that no
payload is present versus some payload is present. The p-value
is the (im)probability of the observation, given the null hypoth-
esis (i.e., assuming that the object under consideration is itself
a cover). Therefore, the observed d can be used to compute
(p — pa(d)) /+/v(d) as a standard statistic, knowing that this is
standard Gaussian under the null hypothesis; one should be pre-
pared for a small bias up to 0.1 and take care to use the method
only on “well-behaved” images (either never-compressed, or
previously JPEG-compressed grayscale). And the steganalyst
must use the modified LSM/SPA detector which disregards the
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components m = —2, —1, 0, 1 else the cover model on which

the theory is founded cannot be relied upon.

The removal of outliers is seen as the most important con-
tribution of this work: outliers to the right correspond to false
positive results and, until now, a certain false positive rate has
been almost unavoidable because of the presence of a few stub-
born images with a huge positive bias. Computing a true p-value
removes this problem and paves the way for genuinely high-reli-
ability steganalysis. Butitis not yet clear whether what is gained
in terms of reduced outliers makes up for the loss of the com-
ponents m = —2, —1, 0, 1, which is effectively to ignore parts
of the image; perhaps with a better cover model, such removal
will be unnecessary. In any case, the development and bench-
marking of improved estimators is postponed to further work.
It is reasonable to assume that removal of outliers is a necessity
for applications where very low false positive rates are essential.

A second application is in the development of better steganal-
ysis estimators. Consider a weighted least squares method, in
which a weighted sum

> wm (Sin + pth, +p2u’m)2
(1-p)?

[cf. (7)] is minimized to find p. The theory can be applied to
determine the weights vector w which gives rise to an estimator
with the lowest between-image variance.

Detailed discussion of this is postponed to further work, but
elementary calculations show that the optimal weight is given by
Wy, = 1/dam+1. In practice, this achieves a reduction of around
20% in between-image variance, but at the cost of increased bias
(which can now be corrected for).

A more speculative application is to aid the steganographer
in selection of a cover image. In the (probably unrealistic) sce-
nario where a steganographer needs to make but a single covert
communication, they could choose a cover which makes ste-
ganalysis difficult by picking one with high v(d). However, if
they can send multiple covers, they should instead split the pay-
load across all covers (see [16]) and it would be dangerous to
send only images with high v(d), which is itself a signature of
sorts. And a discerning steganographer can probably do better
by using just about any form of embedding other than LSB re-
placement.

Finally, note that the variance of the between-image error has
been shown to be O(N 1) if the shape of the difference his-
togram is fixed, so that the “secure capacity” of a cover, mea-

-0.3

image-specific bias

T T ! I T T 1
-02  -01 0.0 0.000 0.005 0.010 0.015
variance

Observed mixture parameters: image-specific bias o (d) and variance v(d) predicted for p in 3000 grayscale bitmap images.

sured in terms of the steganalyst’s ability to discriminate stego
objects from cover objects, increases as v/ N. This accords with
some of the author’s other work [16], which conjectures that
steganography capacity, in general, is proportional only to the
square root of the total cover size.

VII. CONCLUSION

A theoretical model of steganalysis error is valuable, not just
for the insights it gives into the robustness of the estimator, and
the mathematical roots of any weakness. Apart from explaining
the long tails and negative bias in the LSM estimator, some pos-
sible applications are noted, even in this analysis which only
considers between-image error.

Itis believed that this is the first rigorous derivation of its kind,
and perhaps sets a template for the derivation of error distribu-
tions of other quantitative estimators. The two key components
are a model for covers which quantifies deviations from the ideal
model driving the steganalysis, and some algebra of probabili-
ties to turn this into a distribution for p. Some other estimators
(e.g., the triples analysis of [4]) should only require an exten-
sion of the work in this paper. For detectors not based on LSM,
some new algebra of probabilities will be needed.

The most immediate direction for further work is to consider
within-image error for this estimator. It is likely that the results
of Section II will apply again. The within-image errors are due
to (4), and the true distribution of E/, and O/, is a small multi-
nomial mixture. The multivariate Gaussian approximation ex-
poses the first obstacle: the components are not independent.
This seems to complicate the analysis.

Also, to be addressed is how to estimate v(d) and 2(d) for
situations when the cover is not known to the steganalyst. There
seems to be an obvious solution: d can be estimated, using the
inverse to (3), observations of the stego object, and the estimate
of p. But errors in the estimate of p will feed back into errors
in estimates of d, but the aim was to use the latter to correct the
bias of the former. However, it may be possible to break this
circularity.

Finally, to tidy up this particular work, the cover model of
Section IV-A could be refined so that it works also for || < 3.
At first sight, it appears that the lack of independence between
the parity of nearby pixels must be accounted for. If a good
model for the cover which fits the case of small m could be
developed, even if it is not Gaussian, it could, in principle, be
included in calculations to determine the resulting distribution
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of p, although the algebra might be complex. But if it were to
turn out that e,,, 41 — 02,41 18 not Gaussian (which some exper-
imental evidence indicates is probably the case), then the prin-
ciple of least squares estimation is suboptimal. Moving gradu-
ally toward genuine maximum-likelihood estimation of  should
be viewed as the long-term goal of this research.
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