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Abstract. This paper draws together two methodologies for the detec-
tion of bit replacement steganography: the principle of maximum likeli-
hood, which is statistically well-founded but has lead to weak detectors
in practice, and so-called structural detection, which is sensitive but lacks
optimality and can suffer from complicated exposition. The key novelty is
to extend structural analysis to include a hypothetical “pre-cover”, from
which the cover object is imagined to derive. Here, maximum likelihood
detection is presented for three structural detectors. Although the alge-
braic derivation is long, and maximizing the likelihood function difficult
in practice, conceptually the new detectors are reasonably simple. Ex-
periments show that the new detectors are the best performers yet, very
significantly so in the detection of replacement of multiple bit planes.

1 Introduction

There is no doubt that replacement of low-order bits, whether in digital images,
movies, or audio, is an insecure method of embedding and there is a large body of
literature on the detection of this steganographic method. Broadly, detectors fall
into three categories: methods that target the structure of bit replacement1, those
that apply statistical techniques to derive maximum likelihood (ML) detectors
based on features such as histogram or co-occurrence matrix, and blind classifier-
based methods that pick ad-hoc features and train on cover and stego images.

Each class has its advantages. The structural detectors, which include (in
increasing order of complexity) [1–7], are easily the most sensitive. But their
exposition can become complex, and the methods themselves are often based
on dubious statistical principles (for example, assuming that all observations
of random variables equal the expectation). Statistical rigour is at the heart of
maximum likelihood detectors [8–11] but their performance is weak. The blind
classifier-based methods can detect a range of embedding methods (not limited
to bit replacement) but have neither good detection power nor statistical rigour
and we shall not consider this last class here.

This paper combines the theoretical rigour of ML detection with the sensitiv-
ity of structural steganalysis. Not only does this produce superior detectors, it
1 An even cover sample can be incremented or unchanged, but never decremented,

when the least significant bit is replaced, conversely for odd samples; similar structure
occurs in replacement of other bits.
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also presents a framework which avoids some of the difficulties that plague struc-
tural steganalysis using large groups of pixels [6]. Indeed, with hindsight, this is
arguably the mathematical setting within which structural steganalysis should
always have been presented. We will confine our analysis to digital grayscale
images with spatial-domain embedding, but the principles described here should
apply in other domains too.

The contents of the paper is as follows. Section 2 is a brief survey of ML
and structural steganalysis methods for detection of bit replacement. Section 3
describes ML detection of least significant bit (LSB) replacement using an ex-
tended structural analysis, deriving a likelihood function and explaining a max-
imization procedure (at this stage only a simple, slow, maximization is used),
with experimental results following. Sections 4 and 5 repeat the same process
and experiments for the detection of embedding in two lowest bit planes and
then a more complex structural analysis of embedding in just the LSB plane. Fi-
nally, Sect. 6 draws conclusions. In order to include multiple detectors the later
sections contain little detail; this paper aims to present the principles only, and
we refer to an extended version of this paper [12] for fuller derivations, explicit
likelihood functions, and wider experimental results.

2 ML Steganalysis and Structural Steganalysis

The starting point for ML steganalysis is the Neyman-Pearson Lemma, which
states that the optimal discriminator between two point hypotheses is given by
the likelihood ratio. Further, good performance for composite hypotheses is given
by the generalized likelihood ratio (GLR) test and for parameter estimators by
the method of maximum likelihood (although the optimality of these extensions
is not universal). One of the earliest uses of ML in steganalysis is found in [8],
which derives the effect of LSB replacement on the probability mass function
(PMF) of a signal; if the PMF of the cover source is known, it is possible to
create a GLR test for the presence of data hidden by LSB overwriting and a ML
estimate for the size of payload.

In practice the PMF of the cover is not known: it must be estimated by either
filtering the observed PMF [8] or postulating an “ideal” cover PMF ([9] uses
this latter approach, in a transform domain). The detectors are weak for three
reasons: estimation of the cover PMF is subject to inaccuracy; considering only
the PMF discards Markovicity in the cover source; and the detectors are unable
to exploit the aforementioned structure of LSB replacement. Improved detectors
based on maximum likelihood principles can be found in [11], which models
the source as a Markov chain, and [10] which also tries to exploit some of the
structure of LSB replacement via the so-called “stair-step” effect. Nonetheless,
even the improved detectors remain unable to detect even moderate payloads2.

In contrast, the most successful class of steganalyzers for bit replacement
(including LSB embedding as well as replacement of multiple bit planes) are
2 We should be clear that some of the ML detectors cited are not specialised towards

LSB replacement, so weak performance is expected.
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those which focus on the structure of the embedding process. Their general
strategy, described in [5], is as follows. First, define a feature set of stego images
which depends on the size of payload p, a vector S(p); second, derive how S(p)
depends on p and S(0) and then invert so that, given a stego image, we can
hypothesise a value for p and compute what this would imply for S(0). Third,
express a model for covers in terms of S(0). Then we create an estimator for the
payload size p as whichever implies a value of S(0) closest to the model.

The structure of LSB replacement in individual samples is trivial and does
not give a detector, but extending to pairs or larger groups of pixels produces
extremely sensitive detectors. The earliest detector used the structure implic-
itly [1]; analysis of the effect of bit replacement on specific structural features
was first given in [2] and extended in [4, 5]. Further application, to large groups
of pixels and replacement of two bit planes, can be found in [6,7]. A key novelty
is the principle of least-squares [3], which defines the closest cover fit to be when
the features’ sum-square deviation (from an ideal) is minimized.

Although very effective, the structural detectors have drawbacks. The analysis
of the effect of bit replacement on groups of three or more pixels can be handled
in an elegant manner [5], but specification of the cover model for such groups
can become desperately complicated, as demonstrated in [6]. And the statistical
methodology is poor: it is not truly the case that stego features S(p) depend
deterministically on p and S(0) (it also depends on the payload content, usually
assumed random) and it is necessary to take expectations. Neither is the cover
model exact. Moreover a least-squares cover fit, while plausible, cannot be shown
optimal (indeed we shall later be able to see that it is not).

3 Maximum Likelihood and the “Couples” Structure

We now present a fusion of the sensitive features used by the structural detec-
tors with the principles of maximum likelihood. In this section we consider the
features used by the detectors known as Sample Pairs (SPA) [2, 3] or Couples
[5] (other possibilities will be examined in later sections).

We assume a single-channel cover image3 which consists of N pixels with
intensities s1, s2, . . . , sN in the range 0 . . . 2M +1 (typically M = 127). A sample
pair is a pair of pixels (j, k) for some j �= k. Let P be the set of all pairs that
represent adjacent pixels and define some subsets of P , called the trace subsets :

Dm = {(j, k) ∈ P | sk = sj + m}
Em = {(j, k) ∈ P | sk = sj + m, with sj even}
Om = {(j, k) ∈ P | sk = sj + m, with sj odd}

for −2M + 1 ≤ m ≤ 2M + 1. Analysis of the movement of sample pairs among
these subsets, when payload is embedded by LSB replacement, is the key to
structural steganalysis. The cover model in [2, 3] is |Em| = |Om|, although only
odd indices can be used for steganalysis.
3 Colour images are usually separated into colour channels, whose signals are either

treated separately or concatenated.
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Fig. 1. The evolution of the Couples trace subsets, from “pre-cover” to stego-image,
when proportion p

2 least significant bits are flipped

3.1 Derivation of Likelihood Function

We present here a new analysis of trace subsets. To model trace subsets in
cover images, we use the technique of [13], which proposed a model as part of
the analysis of errors in least-squares steganalysis. Imagine that, for each m,
the set Dm is first determined (in what we will call a “pre-cover”) and then
partitioned binomially to make the cover image, with each sample pair in Dm

placed independently and equiprobably into Em or Om. Of course this bears no
relationship to the physical processes which create, for example, an image in the
CCD of a digital camera – there is no “pre-cover” except in our imagination
– but it is a natural explanation of the cover property |Em| = |Om| and it is
demonstrated, in [13], very accurate in most circumstances4.

Second, we model how LSB replacement converts trace subsets in the cover
to trace subsets in a stego image, depending on the size of payload. We suppose
that the LSB of each sample is flipped, independently, with probability p

2 – this
corresponds to embedding a payload (uncorrelated with the cover) of length pN
by randomized LSB replacement, or perhaps the embedding of a longer payload
when LSB flipping is used as part of a source coding scheme [14] (of course
the estimator will be truly for twice the number of flipped pixels, regardless of
the connection this has with payload size; it could be nothing else). Under this

4 In [13] the limitations of this model are explored; it is not very accurate for m near
zero and there is observed a negative correlation between the sizes of E1 and E−1;
in fact it is possible to explain these features in terms of over-saturated images, but
that is not within the scope of this paper. We content ourselves with using the model
as is, in the knowledge that it is not perfect.
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embedding operation each quartet of trace subsets O2m−1, E2m, O2m, E2m+1
undergoes permutation, with probabilities determined by p. We will not repeat
that analysis, since it can be found in much of the other steganography literature
including [2, 3, 5].

The overall evolution of sample pairs, from “pre-cover”, through cover, to
stego image, with the probability of each transition, is shown in Fig. 1. Note that
transitions originating from Dm are of different structure depending on whether
m is even or odd, because E2m and O2m can be interchanged by embedding
whereas E2m+1 and O2m+1 cannot. Figure 1 is the foundation from which we
will derive a likelihood for an observed stego image, given the sizes of the Dm in
the pre-cover and p.

Consider for example the trace subset E2m+1 in the stego image. A sample
pair has arrived there by one of four possible paths:

(i) Beginning in D2m in the pre-cover, it was placed into E2m in the cover and
moved to E2m+1 under embedding; the probability of a pair beginning in
D2m making these transitions is 1

2
p
2 (1 − p

2 ).
(ii) Beginning in D2m, it was placed into O2m and moved to E2m+1 under em-

bedding; again the probability of a pair in D2m making such transitions is
1
2

p
2 (1 − p

2 ).
(iii) Beginning in D2m+1, it was placed into E2m+1 and did not move under

embedding; the probability of a pair in D2m+1 doing so is 1
2 (1 − p

2 )2.
(iv) Beginning in D2m−1, it was placed into O2m−1 and moved to E2m+1 under

embedding; the probability of a pair in D2m+1 doing so is 1
2 (p

2 )2.

Similar calculations can be carried out for all trace subsets Em and Om: each
can have arisen from one of three of the Dm in the pre-cover. We display these
probabilities in Tab. 1, with the columns corresponding to the source Dm and
the rows to the Em and Om in the stego image. Therefore the full table, for
8 bit images, has 511 columns (trace subsets Dm exist for −255 ≤ m ≤ 255)
and 1020 rows (O−255, E−254,, O−254, ..., E254, O254, E255) and only a portion is
displayed, from which the rest can be constructed. We have made the convenient
abbreviation πi = 1

2 (p
2 )i(1 − p

2 )2−i for i = 0, 1, 2. Observe that fifth displayed
row corresponds to our analysis, above, of trace subsets finishing in E2m+1.

Now suppose that an image is observed, with unknown payload. Let us form
a vector of the observed sizes of trace subsets in the stego image, interleaving
as A′ = (O′

−255, E
′
−254,, O

′
−254, ..., E

′
255)

T , to correspond with the row labels of
the complete table excerpted in Tab. 1. We write pm for the column of Tab. 1
headed by the pre-cover trace subset Dm and suppose that the size of this sub-
set was dm. Because each sample pair beginning in the pre-cover must end up
in some trace subset of the stego image, and under the assumption of random
uncorrelated payload all destinations are independent, we have that the number
of pairs in each trace subset originating from Dm takes a multinomial distrib-
ution. Summing up over all subsets Dm in the pre-cover, we thus deduce that
A′ =

∑
m A′

m, where each A′
m has a multinomial distribution with size para-

meter dm and probability vector pm.
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Table 1. Table showing the probability that, given a random payload of pN , each
sample pair from a trace subset Dm in the pre-cover is observed in each trace subset
Em or Om in a stego image

D2m−1 D2m D2m+1 D2m+2

E2m−1 π0 0 0 0
O2m−1 π0 2π1 π2 0
E2m π1 π0 + π2 π1 0
O2m π1 π0 + π2 π1 0
E2m+1 π2 2π1 π0 0
O2m+1 0 0 π0 2π1

E2m+2 0 0 π1 π0 + π2

O2m+2 0 0 π1 π0 + π2

E2m+3 0 0 π2 2π1

O2m+3 0 0 0 0

In order to find the likelihood for this sum of distributions we make the
standard multivariate Gaussian approximation to the multinomial distribution
(generally accurate as long as the size of the original trace subset is not very
small):

A
·∼ N(μ,Σ)

where μ =
∑

m dmpm, Σ =
∑

m dm(Δpm
− pmpT

m), and Δv represents a diagonal
matrix with v on the diagonal. This allows us to compute the (log-)likelihood
that a given image with trace subsets a arose from a pre-cover with specific trace
subset sizes d and a particular proportionate payload p:

l(a; p, d) = −L

2
log(2π) − 1

2
log |Σ| − 1

2
(a − μ)T Σ−1(a − μ)

where L is the length of the vector of observations a.
Although we omit the intermediate calculations, it is worthwhile to see the full

form of the mean vector μ = (. . . , E[O′
2m−1], E[E′

2m], E[O′
2m], E[E′

2m+1], . . .)
T

and covariance matrix Σ whose entries are Cov[E′
m, O′

m]. Extracting pm from
Tab. 1 and using μ =

∑
m dmpm, we derive

E[O′
2m−1] = π0d2m−1 + 2π1d2m + π2d2m+1

E[E′
2m] = π1(d2m−1 + d2m+1) + (π0 + π2)d2m

E[O′
2m] = π1(d2m−1 + d2m+1) + (π0 + π2)d2m

E[E′
2m+1] = π2d2m−1 + 2π1d2m + π0d2m+1

for each m. From Σ =
∑

m dm(Δpm
− pmpT

m) we can compute all covariances;
they are displayed in the following table. We make a further abbreviation, σ =
π0 + π2, and elide the covariances of O′

2m (which are almost identical to those
of E′

2m) in order to fit the table onto the page.
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O′
2m−1 E′

2m O′
2m E′

2m+1

O′
2m−3 −π0π2d2m−1 −π1π2d2m−1 ← −π2

2d2m−1

E′
2m−2 −π0π1d2m−1 −π2

1d2m−1 ← −π1π2d2m−1

O′
2m−2 −π0π1d2m−1 −π2

1d2m−1 ← −π1π2d2m−1

E′
2m−1 −π2

0d2m−1 −π0π1d2m−1 ← −π0π2d2m−1

π0(1−π0)d2m−1 −π0π1d2m−1 −π0π2d2m−1

O′
2m−1 +2π1(1−2π1)d2m −2π1σd2m ← −4π2

1d2m

+π2(1−π2)d2m+1 −π1π2d2m+1 −π0π2d2m+1

−π0π1d2m−1 π1(1−π1)d2m−1 −π1π2d2m−1

E′
2m −2π1σd2m +σ(1−σ)d2m ↙ −2π1σd2m

−π1π2d2m+1 +π1(1−π1)d2m+1 −π0π1d2m+1

−π0π1d2m−1 −π2
1d2m−1 −π1π2d2m−1

O′
2m −2π1σd2m −σ2d2m ↖ −2π1σd2m

−π1π2d2m+1 −π2
1d2m+1 −π0π1d2m+1

−π0π2d2m−1 −π1π2d2m−1 π2(1−π2)d2m−1

E′
2m+1 −4π2

1d2m −2π1σd2m ← +2π1(1−2π1)d2m

−π0π2d2m+1 −π0π1d2m+1 +π0(1−π0)d2m+1

O′
2m+1 −π0π2d2m+1 −π0π1d2m+1 ← −π2

0d2m+1

E′
2m+2 −π1π2d2m+1 −π2

1d2m+1 ← −π0π1d2m+1

O′
2m+2 −π1π2d2m+1 −π2

1d2m+1 ← −π0π1d2m+1

E′
2m+3 −π2

2d2m+1 −π1π2d2m+1 ← −π0π2d2m+1

These hold for all m, and other covariances are zero. Although fairly appalling
to look at, the matrix can quickly be computed from p and d.

It is worthwhile to contrast the principle of structural ML estimation with
the standard structural estimators. Consider, for example, [2]: the cover model
used there (with a minor variation) is that |E2m+1| = |O2m+1| for each m. In
Fig. 1 we can see that this is true in expectation, but a more sophisticated model
can quantify deviations from exact equality. Similarly, the standard structural
analysis of embedding is the same as the transitions from cover to stego object
in Fig. 1, but it assumes that the observed stego image trace subset sizes are
exactly their expectation, not allowing for random variation. The ML method
allows us, in effect, to take account of the fact that such approximations are
more accurate when the numbers involved are larger. Finally, the principle of
least-squares estimation [3, 7] is optimal if the random variables whose least
squares are minimized are Gaussian and independent. Under our model they
are Gaussian, but considering the covariance matrix Σ, one can show that the
relevant quantities are not independent, and hence least-squares steganalysis is,
at best, an approximation to optimality.

3.2 Implementing a ML Estimator

In principle, the rest is simple: given an image we observe the trace subsets a
and find the value of p (along with, as nuisance parameters, all the d) which
maximizes the log-likelihood. In practice there are some difficulties.
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First, how to find the maximum? There is no apparent closed form for it so
we must proceed numerically. The function is differentiable, but computing the
derivative (particularly with respect to p) seems extremely difficult and we have
not yet completed the calculation. This prevents us from using standard itera-
tive/scoring methods to locate the maximum. So that we can test the accuracy
of a structural ML detector, without being unduly distracted by implementation
issues, we have settled on a temporary, computationally expensive, solution: the
maximization method of Nelder and Mead [15] which walks a simplex through
the surface to be optimized and does not require derivatives. Of course, such a
method converges only slowly to a maximum. We must also find a point from
which to start the optimization: we used one of the standard methods for esti-
mating LSB replacement payload [2] as an initial value of p, and created initial
values for d by inverting the second half of the transition diagram in Fig. 1 (such
an inversion is already part of the standard method for structural steganalysis
of LSB replacement).

Unfortunately, maximization of the full likelihood function is computationally
unfeasible: it is a 512-dimensional problem, which is simply too complex to
optimize in any reasonable amount of time. But we can cheaply reduce the
dimensionality by discarding the parameters dm for |m| large: very few adjacent
pairs of pixels have a large difference, and discarding a minority of pairs does
not reduce the evidential base too much. We found that considering only D−11
to D11 still gave excellent performance (in our test set of cover images, 75.1%
of sample pairs are found in this range) and reduces the dimensionality of the
maximization to 24.

We can further ameliorate the computational cost by evaluating the log-
likelihood efficiently: because the matrix in Tab. 1 has many zeros (recall that
each trace subset in the stego image can come from only one of three subsets in
the pre-cover) the covariance matrix Σ is zero except near to the diagonal and
there exist efficient methods to compute |Σ| and (a−μ)T Σ−1(a−μ) exploiting
the Cholesky decomposition of Σ.

A final improvement is to observe that E2m and O2m are always treated equally
in Tab. 1, μ, and Σ. This means that it is safe to combine such subsets, observing
and computing likelihood of only the sum E′

2m+O′
2m, but still separating E′

2m+1
and O′

2m+1. This leaves the dimensionality of the maximization unchanged, but
reduces the size of the quadratic form which must be computed for each evalu-
ation of the likelihood, from L = 44 to L = 33.

Nonetheless the ML estimator is still quite slow due to the inefficient max-
imization method. Using a moderately-optimized implementation in C, and a
computer with a 64-bit processor running at 2Ghz, we timed the standard SPA
estimator [2], a least-squares variant Couples/LSM [3], and our new Couples/ML
estimator, on various image sizes. The results are displayed in Tab. 2; observe
that the size of the images is almost irrelevant to the ML estimator which spends
almost all of its time maximizing the likelihood function, whereas the standard
methods spend most of their time simply counting the trace subsets and hence
their time complexity is roughly linear in the image size.
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Table 2. Images processed per second, for three detectors and three image sizes

Detector
Image size

0.5Mpixel 1.0Mpixel 1.5Mpixel

SPA 36.1 21.0 15.11

Couples/LSM 36.7 21.5 15.26

Couples/ML 0.401 0.392 0.387

There still remains a difficulty with implementing the estimator. As p tends
to zero, the covariance matrix Σ becomes singular. Thus the likelihood function
can grow without bound as p approaches zero, if the d are chosen in a certain
way, and the likelihood optimizer can find its way to an incorrect “solution”.
This is a standard problem and can be seen as either overfitting – some of
the observed trace subsets can match their expectations with arbitrarily good
accuracy, at the expense of others – or a breakdown in the multivariate Gaussian
approximation to the multinomial when the probabilities involved are small. The
common solution is to place a prior distribution on the difficult parameter (here
p) and convert the ML estimator to a maximum a posteriori (MAP) estimator.
If the prior is Gaussian this amounts to placing a quadratic penalty on the
log-likelihood function.

We already needed to find another estimate p̂ from which to begin the op-
timization, and found that using a Gaussian prior with mean p̂ and variance
p̂2/100 (knowing that we want to keep the estimator away from p = 0 without
fixing it too closely to the less-accurate prior estimate) was an effective solution.

3.3 Experimental Results

We now benchmark the MAP estimator Couples/ML against the best of the other
structural detectors based on pairs of pixels: SPA [2], Couples/LSM (in the form
described in [7]) and a new weighted least-squares version Couples/WLSM [16].
We report only results which use a set of 3000 never-compressed grayscale cov-
ers, which have been downsampled to approximately 0.3Mpixels from scanned
high-resolution originals. LSB replacement steganography was simulated with
embedding rates 0, 0.05, . . .1, and accuracy of the resulting estimates compared.

Making a comparison of estimator accuracy is not quite straightforward be-
cause the shape of error distribution is not necessarily the same for all estima-
tors. Therefore it can be misleading to compare, for example, only mean-square
error (such a measure will heavily penalize estimators with a few large out-
liers) or only interquartile range (which is completely insensitive to outliers).
Furthermore, there is both estimator bias (least-squares estimators consistently
underestimate large payloads) and spread to consider.

We will display a number of measures in order to give a balanced assessment:
mean-square error encompasses both bias and spread, sample mean estimates
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Couples/LSM
Couples/WLSM
Couples/ML

Detector p = 0 p = 0.25 p = 0.5 p = 0.75 p = 1.0

Bias

SPA 0.059 0.018 0.012 0.127 −6.298
Couples/LSM −0.061 −0.780 −1.864 −6.380 −36.597
Couples/WLSM 0.094 −1.499 −5.974
Couples/ML 0.824 −0.490 −0.466 −2.349 −20.315

IQR

SPA 2.699 2.576 2.618 3.383 4.037
Couples/LSM 2.782 2.814 3.265 6.881 27.738
Couples/WLSM 2.527 2.792 5.780
Couples/ML 1.034 2.190 2.652 4.860 6.673

MAE

SPA 2.076 1.909 1.822 2.245 6.305
Couples/LSM 2.086 2.323 2.939 6.823 36.675
Couples/WLSM 2.035 2.382 6.120
Couples/ML 0.826 1.725 1.843 3.525 21.039

Fig. 2. Above, chart displaying how the estimator mean-square error (MSE; log axis)
of the structural detectors depends on the proportionate payload p. Below, table dis-
playing other measures of estimator accuracy: sample bias, interquartile range (IQR),
mean absolute error (MAE), all displayed ×102, for five payload sizes.

bias, interquartile range is a measure of spread without regard to outliers, and
mean absolute error is a combination measure which is robust but not insensitive
to outliers. The first of these is charted, and the others tabulated, in Fig. 2.

Observe that the Couples/ML estimator is uniformly superior to both Cou-
ples/LSM and Couples/WLSM (the latter is not benchmarked for proportionate
payloads greater than 50% because its “optimal” weighting depends on the true
payload being small). It is also superior to the standard SPA method for payloads
p < 0.5, and particularly for very small payloads. Of course, in some applications
the increased computational costs of the maximization will outweigh the accu-
racy advantages. The slight positive bias at zero payloads, for the ML method,
is because negative estimates can never happen.

It is curious that one of the very first payload estimators, which claims no
optimality, should appear the best performer for large payloads. In fact this can
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be explained by reference to a weakness in the cover model used here, which the
standard SPA method coincidentally does exactly the right thing to avoid, but
such an explanation is beyond the scope of this work.

4 Maximum Likelihood and the “2Couples” Structure

We now outline the extension of ML structural analysis to embedding in the two
lowest bit planes; this was called“2LSB” embedding in [7], where a least-squares
structural steganalyzer was presented. Again we consider pairs of pixels evolving
from a “pre-cover” through a cover to a stego-image. The trace subsets, which
we re-use from [7], are

Dm = {(j, k) ∈ P | sk = sj + m}
Bi

m = {(j, k) ∈ P | sk = sj + m, with sj ≡ i (mod 4)}

for i = 0, 1, 2, 3. They serve the same purpose as in the Couples case, exposing
exactly the structure of replacement of two bit planes. Traditional least-squares
steganalysis assumes that the sizes of B0

m, B1
m, B2

m and B3
m are all equal in cover

images, for each m, although in [7] it was noted that not all such equalities are
useful for steganalysis – a difficulty that the ML framework is able to avoid.

As before, we must model differences between the sizes of Bi
m in covers. We

will imagine that the “pre-cover” has fixed trace subsets Dm for each m, and
that every pair in Dm moves to one of Bi

m in the cover object, independently and
equiprobably. Again, this corresponds with traditional structural steganalysis in
expectation. Next, embedding a payload of length 2pN (or randomizing the two
least bits of each pixel with probability p) causes the 16 trace subsets B0

4m,
B0

4m+1, B0
4m+2, B0

4m+3 B1
4m−1, B1

4m, B1
4m+1, B1

4m+2 B2
4m−2, B2

4m−1, B2
4m , B2

4m+1
B3

4m−3, B3
4m−2, B3

4m−1, B3
4m to be permuted with certain probabilities, which are

described in [7] and will not be repeated here.
The added complexity means that we cannot fit in a diagram analogous to

Fig. 1: a pair in Dm in the pre-cover can move to any one of 32 trace subsets
in the stego image. We will skip directly to the analogue of Tab. 1, which we
display in Tab. 3 using the abbreviation πi = 1

4 (p
4 )i(1 − 3p

4 )2−i.
It would be horrendous to display the mean and covariance matrices here,

which are much more complex than those in Sect. 3, and we omit all calculations.
But the principle of ML estimation can now proceed as in the previous section:
concatenate the observed trace subset sizes into a vector a, and maximize the
log-likelihood function

l(a; p, d) = −L

2
log(2π) − 1

2
log |Σ| − 1

2
(a − μ)T Σ−1(a − μ)

where μ =
∑

m dmpm, Σ =
∑

m dm(Δpm
− pmpT

m), and pm are the columns of
Tab. 3. We must convert to a MAP estimator to avoid overfitting (the same prior
is appropriate) and again we find it necessary to reduce the dimensionality of
the optimization by considering only D−11 to D11, for a 24 dimensional surface.
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Table 3. Table showing the probability that, given a random payload of 2pN embedded
by 2LSB replacement, each sample pair from a trace subset Dm in the pre-cover is
observed in each trace subset Bi

m in a stego image

D4m−3 D4m−2 D4m−1 D4m D4m+1 D4m+2 D4m+3

B3
4m−3 π0 2π1 2π1 + π2 2π1 + 2π2 3π2 2π2 π2

B3
4m−2 π1 π0 + π2 2π1 + π2 2π1 + 2π2 π1 + 2π2 2π2 π2

B3
4m−1 π1 π1 + π2 π0 + 2π2 2π1 + 2π2 π1 + 2π2 π1 + π2 π2

B3
4m π1 π1 + π2 π1 + 2π2 π0 + 3π2 π1 + 2π2 π1 + π2 π1

B2
4m−2 π1 π0 + π2 2π1 + π2 2π1 + 2π2 π1 + 2π2 2π2 π2

B2
4m−1 π2 2π1 π0 + 2π2 2π1 + 2π2 2π1 + π2 2π2 π2

B2
4m π2 π1 + π2 2π1 + π2 π0 + 3π2 2π1 + π2 π1 + π2 π2

B2
4m+1 π2 π1 + π2 π1 + 2π2 2π1 + 2π2 π0 + 2π2 π1 + π2 π1

B1
4m−1 π1 π1 + π2 π0 + 2π2 2π1 + 2π2 π1 + 2π2 π1 + π2 π2

B1
4m π2 π1 + π2 2π1 + π2 π0 + 3π2 2π1 + π2 π1 + π2 π2

B1
4m+1 π2 2π2 2π1 + π2 2π1 + 2π2 π0 + 2π2 2π1 π2

B1
4m+2 π2 2π2 π1 + 2π2 2π1 + 2π2 2π1 + π2 π0 + π2 π1

B0
4m π1 π1 + π2 π1 + 2π2 π0 + 3π2 π1 + 2π2 π1 + π2 π1

B0
4m+1 π2 π1 + π2 π1 + 2π2 2π1 + 2π2 π0 + 2π2 π1 + π2 π1

B0
4m+2 π2 2π2 π1 + 2π2 2π1 + 2π2 2π1 + π2 π0 + π2 π1

B0
4m+3 π2 2π2 3π2 2π1 + 2π2 2π1 + π2 2π1 π0

But there are twice as many trace subsets to count and there is less symmetry
than before, so each evaluation of the likelihood involves a quadratic form of
dimension 80; accordingly the estimator is even slower than that of the previous
section (about ten times slower, in our poorly-optimized implementation).

We benchmark this MAP estimator for 2LSB replacement, which we call
2Couples/ML, against the least-squares version 2Couples/LSM [7]. We also in-
clude another detector of multiple bit plane replacement, which is a modification
of the method known as WS and found in [17] (we will call it 2LSB WS ). Results
for the corresponding experiments to those in Sect. 3 are displayed in Fig. 3.

Observe that the new estimator is many times more accurate than the others,
except for very large payloads. It remains more accurate than the LSM detector
for all embedding rates, but above proportionate payloads of about 80% the WS-
based detector is the only one not to suffer from weak performance (this seems
to be a general feature of WS detectors, and their area of strength). Clearly the
method of maximum likelihood has made a vast improvement to the reliability
of payload estimation, particularly in the difficult case of small payloads.

5 Maximum Likelihood and the “Triples” Structure

Finally, we sketch how the ML technique can be applied to a more intricate
structural analysis of (single plane) LSB replacement, based on triplets of pixels.
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0
M

SE

p

2LSB WS
2Couples/LSM
2Couples/ML

Detector p = 0 p = 0.25 p = 0.5 p = 0.75 p = 1.0

Bias
2LSB WS 0.148 1.612 2.033 1.535 0.093
2Couples/LSM 0.806 −0.990 −2.765 −10.243 −20.521
2Couples/ML 0.600 −0.239 −0.094 −0.374 4.806

IQR
2LSB WS 3.466 3.912 4.129 3.658 2.991
2Couples/LSM 1.905 1.954 2.849 9.270 41.608
2Couples/ML 0.774 1.488 1.599 2.192 41.863

MAE
2LSB WS 2.341 2.828 3.050 2.647 2.028
2Couples/LSM 2.624 1.921 3.154 10.371 20.521
2Couples/ML 0.601 1.134 1.116 1.456 28.516

Fig. 3. Above, chart displaying how the MSE (log axis) of the 2Couples/LSM struc-
tural estimator [7], 2LSB WS [17], and the proposed 2Couples/ML estimator, depends
on the proportionate payload p. Below, table displaying other measures of estimator
accuracy: sample bias, IQR, and MAE, all displayed ×102, for five payload sizes.

Let T be the set of horizontal groups of three adjacent pixels with notation
analogous to Sects. 3 and 4, and define trace subsets as follows:

Dm,n = {(j, k, l) ∈ T | sk = sj + m, sl = sk + n}
Em,n = {(j, k, l) ∈ T | sk = sj + m, sl = sk + n, with sj even}
Om,n = {(j, k, l) ∈ T | sk = sj + m, sl = sk + n, with sj odd}

These capture the third-order effects of replacing LSBs; in covers we expect that
Em,n and Om,n will be of approximately equal size, and the corresponding least-
squares structural payload estimators [5] are generally (although not uniformly)
more accurate than those based on Couples structure.

For an ML detector we again imagine that Em,n and Om,n derive binomially
from Dm,n. This time it is the eight trace subsets O2m−1,2n, O2m−1,2n+1, E2m,2n,
E2m,2n+1, O2m,2n−1, O2m,2n, E2m+1,2n−1, E2m+1,2n which are permuted by LSB
operations – see [5] for the transition probabilities – and the analogy to Tab. 1
is displayed in part in Tab. 4. All instances of the displayed transitions make up
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Table 4. Extract from table showing probabilities of transition from pre-cover trace
subsets to stego object trace subset, when the Triples structure is analyzed

D2m−1,
2n

D2m−1
2n+1

D2m
2n−1

D2m
2n

D2n
2n+1

D2m+1
2n−1

D2m+1
2n

O2m−1,2n π0 π1 π1 π1 + π2 π2 π2 π3

O2m−1,2n+1 π1 π0 π2 π1 + π2 π1 π3 π2

E2m,2n π1 π2 π2 π0 + π3 π1 π1 π2

E2m,2n+1 π2 π1 π3 π1 + π2 π0 π2 π1

O2m,2n−1 π1 π2 π0 π1 + π2 π3 π1 π2

O2m,2n π2 π1 π1 π0 + π3 π2 π2 π1

E2m+1,2n−1 π2 π3 π1 π1 + π2 π2 π0 π1

E2m+1,2n π3 π2 π2 π1 + π2 π1 π1 π0

the complete table and the abbreviation is πi = 1
2 (p

2 )i(1 − p
2 )3−i. Then a MAP

estimator can be derived in the same way as for Couples and 2Couples structure.
The optimization problem for this likelihood is much harder than those occur-

ring in Sects. 3 and 4, because the number of nuisance parameters (the sizes of
Dm,n in the pre-cover) is squared by the finer categorization of pixel differences.
We must radically reduce the number of subsets under consideration in order to
achieve a tractable optimization. For now we consider only |m| ≤ 3 and |n| ≤ 3,
but only 36.1% of sample triplets in our test covers are found in this range so
we are ignoring quite a large proportion of the evidence. Even so, this leads to
48 dimensional optimization problem, and each likelihood evaluation involves
a quadratic form of length 72, so this Triples/ML estimator is much slower to
evaluate than Couples/ML of Sect. 3 (over a minute per image).

Because of its complexity we have not yet conducted as full benchmarks as
for Couples/ML and 2Couples/ML. Some reduced experiments are reported in
Fig. 4. In order to make a fair comparison with least-squares Triples [5] (de-
noted Triples/LSM ) we weakened the standard estimator by similarly limiting
it to trace subsets with maximum absolute index of 3. The experimental results
indicate that the Triples/ML estimator is more accurate only for small payloads,
with the critical payload being somewhere between 25% and 50%. It is not clear
that the performance gain is worth the hugely inflated computational costs.

6 Conclusions and Directions for Further Research

Bringing together the statistical foundations of the maximum likelihood method
with the sensitivity of structural steganalysis has been fruitful in terms of new
and more accurate payload estimators for bit replacement steganography. At
the moment there is a large computational cost associated with maximizing the
likelihood function, but it is likely to be significantly reduced when the function
is differentiated. There is no fundamental bar to this: the problem is only one



218 A.D. Ker

Detector p = 0 p = 0.1 p = 0.25 p = 0.5

Bias Triples/LSM− −0.128 −0.478 −0.857 −0.326
Triples/ML 0.785 −0.695 −0.828 −1.031

IQR
Triples/LSM− 3.127 3.262 3.495 1.914
Triples/ML 0.957 1.998 2.537 2.631

MAE
Triples/LSM− 2.362 2.584 2.899 1.522
Triples/ML 0.785 1.750 1.990 2.027

MSE
Triples/LSM− 0.153 0.182 0.237 0.076
Triples/ML 0.042 0.074 0.099 0.095

Fig. 4. Comparison of estimator accuracy for weakened Triples/LSM (denoted
Triples/LSM−) and Triples/ML methods, with four payload sizes

of algebraic complexity. Another possibility for reducing the complexity is to
formulate a parametric model for the pixel difference parameters d. However,
no such model will be perfect and inaccuracies modelling d could damage the
accuracy of the ML estimator.

Regardless of computational cost, there is a certain elegance to the combined
method, particularly in that it avoids the potentially extremely complex question
of which equalities between trace subsets should be included in the cover model.
We believe that the ML foundation provides the “ultimate” structural stegana-
lyzers and that, once the efficiency is improved and one hole in the cover model
patched, these detectors will be the last and best bit replacement detectors.

The next application of a likelihood calculation might be the development of
a likelihood ratio test for the presence of hidden data (it may also be possible
to develop tests for which type of bit replacement – LSB, 2LSB, etc – have been
used). In some preliminary experiments we did implement such a detector but
its performance was disappointing – as a classifier for the presence or absence of
hidden data it was better to use simply the payload estimate. Very likely this is
because of the necessity of imposing a prior distribution, to avoid overfitting, so
that the usual generalized likelihood ratio statistic is not available.

We should note, though, that there is no guarantee of complete optimality
with maximum likelihood estimators, let alone the MAP estimator we have to
use in practice: their unbiased and minimum variance properties only apply
asymptotically. Indeed for a single image we have only one observation of the
trace subset sizes which make up the multinomial likelihood, although it can be
seen as many observations: the type of each sample pair or triplet. Finally, the
trace subsets used here have been demonstrated highly sensitive but this does
not completely preclude the possibility that better feature sets exist.

Even so, the experimental results included in this paper demonstrate that the
fusion of ML methods with structural analysis has practical value as well as a
well-principled derivation.
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