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ABSTRACT
We present a new benchmark for binary steganalysis meth-
ods, based on the asymptotic information (in the entropic
sense) it gives about the presence of hidden data. The the-
oretical foundation is quite unlike ad hoc performance mea-
sures found in steganalysis literature that are based on false
positive and negative rates. It is argued that this new met-
ric is an application-independent long-run measure of true
performance. There are some challenges to computing the
benchmark empirically, and some suggested methods are
presented, but no definitive answer emerges. As a simple
case study, some steganalysis methods from the literature
are evaluated using these techniques.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
information hiding ; H.1.1 [Models and Principles]: Sys-
tems and Information Theory—information theory

General Terms
Performance, Security

Keywords
Steganalysis, Steganographic Capacity, Benchmarking

1. INTRODUCTION
Initially, the literature on the competing fields of steganog-

raphy (hiding information undetectably in cover objects)
and steganalysis (detecting the presence of hidden informa-
tion) consisted of ad hoc methods for the embedding and
detection of data. One would expect that, alongside the
maturation of the techniques, methods for measuring their
efficacy would become more refined. This has indeed been
the case with steganography: a key innovation, adapted by
Cachin [2] from prior work on authentication, was to use the
Kullback-Leibler (KL) divergence [13] between the distribu-
tion of cover and stego objects to bound the detectability
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of hidden data. Despite some difficulty applying the the-
ory (because of the need for a realistic “distribution of cover
objects”) this benchmark has aided further understanding
of the fundamental aims of steganography, driving better
embedding methods.

Benchmarks for the efficacy of steganalysis schemes, on
the other hand, have not become very sophisticated. As we
will briefly survey in Sect. 2, a number of different metrics
have been used in the literature, all of which can be criticized
for being relevant to only a limited range of applications.
Further, it is not uncommon for the various benchmarks to
rate steganalysis methods inconsistently.

The aim of this paper is to present a new benchmark for
(binary) steganalysis, based on the information it provides
as to the presence or absence of hidden data. It is based on
principles (empirically-estimated KL-divergence and asymp-
totic behaviour) which are quite different from those of the
benchmarks commonly used in the literature. It is argued
that this measurement, which ultimately produces a single
number by which steganalysis methods (applied to a particu-
lar type of cover) may be ranked, constitutes an application-
independent measurement of the long-term detection capa-
bility. The principles from which the metric is derived are
outlined in Sect. 2, the practical challenges in computing
it are addressed, although not optimally solved, in Sect. 3,
and a few current steganalysis methods are benchmarked by
the new metric in Sect. 4, to provide some examples. Brief
conclusions appear in Sect. 5.

2. PRINCIPLES OF AN APPLICATION-
INDEPENDENT BENCHMARK

A vital first step is to state the problem precisely. Fix an
embedding method E. We are benchmarking a steganalysis
method by its ability to distinguish an innocent cover object
from a stego object containing a payload embedded by E,
i.e. given a single object to perform the hypothesis test

H0 : there is no payload
H1 : there is some payload embedded by E.

(1)

We have restricted our attention to the commonly-consid-
ered case called binary steganalysis: there is only one embed-
ding method E and it is known. There do exist multi-class
steganalysers which attempt to determine E, but bench-
marking them is a more difficult problem and not addressed
here. Although the embedding method is considered fixed,
the alternative H1 remains a composite hypothesis because
the size of payload, if any, is not known (it would be unre-
alistic to assume that it is known). It is quite common for
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Figure 1: A conceptual breakdown of steganalysis into three stages, and differences in distribution at each
point. Above, when a steganographic payload is embedded. Below, steganalysis with no payload.

steganalysis methods to make an estimate of the payload
size, if any, (this is known as quantitative steganalysis) but
we consider such estimation a secondary facet and not part
of the benchmark.

In the literature there have arisen a number of standard
benchmarks for the ability to perform hypothesis test (1).
Simulating steganography on a set of cover objects, and then
performing steganalysis, empirically-determined false posi-
tive (type I) and false negative (type II) errors are found,
sometimes varying the detector’s sensitivity to produce ROC
curves. Because ROC curves often cross they do not usually
allow competing steganalysis methods to be ranked, so they
are commonly reduced further: to the area under the curve
(AUC), or to the false positive rate for a fixed false negative
rate (or vice versa). All of these measures are dependent
on the size of embedded payload, which further complicates
their use for comparison purposes. To condense to a one-
dimensional metric, one can set a maximum tolerable false
positive and false negative rate and determine experimen-
tally the smallest payload size for which such detection is
achieved.

These metrics are inevitably slanted towards certain ap-
plications. For example, if we measure sensitivity at a cer-
tain false positive rate, that only gives good information
about steganalysis performance in applications with approx-
imately the same false positive rate – and one can envisage
applications ranging from intelligence (in which case false
positives rates of a few percent are acceptable) to network
scanning (in which case false positive rates must be many
orders of magnitude lower, because of the number of tests
carried out). Although it is common to fix a rate of, for
example, 5%, it is impossible to justify such a choice ob-
jectively. Even the AUC is not application-independent be-
cause it gives equal weight to false positives and negatives: a
very dubious principle for steganalysis. Only the full ROC
family (one ROC for each possible payload size) could be
called application-independent, and it is too large an amount
of data to make for a usable benchmark.

Fundamentally, the aim of steganalysis is to give informa-
tion about the presence or absence of payload. We propose
a new measure which, like Cachin’s framework for steganog-
raphy, quantifies this information by the difference between
the distributions of cover and stego objects, measured using
KL-divergence: recall that, when f and g are the density
functions for distributions F and G, DKL(F, G) is defined

as
R

f(x) log f(x)
g(x)

dx; the definition can be extended to non-

continuous distributions with the appropriate abstract inte-
gral. Our logs will be taken to natural base.

We must measure the KL-divergence at the right stage of
the steganalysis process. Let us breakdown a steganalysis
method into three conceptual components. Consider Fig. 1,
which displays the development of a cover object, through
either embedding (with payload of size p) or not, and then
subject to steganalysis. We argue that all steganalysis meth-
ods can be broken down into the three stages depicted: ex-
traction of feature vectors from the object, use of some clas-
sification engine or payload estimation to reduce the dimen-
sionality to one, and finally setting a simple threshold. If the
one-dimensional value exceeds a threshold, the object is clas-
sified as a stego object, otherwise a cover. Sometimes, and
often in steganalysis based on machine learning algorithms,
the last two stages are not presented separately. Nonethe-
less, the author believes that such a breakdown can always
be made because a classifier can (or, with extra work, can be
made to) output a level of certainty as to its output, e.g. the
distance of the observation from the classification boundary.
The level of certainty becomes the one-dimensional value on
which a sensitivity threshold can be set. (If we are interested
only in KL-divergence then the exact form of this level of
certainty is not important because KL-divergence is invari-
ant under 1-1 transformations.)

This leads us to the first principle for the application-
independent benchmark.

Principle 1. Steganalysis performance should be mea-
sured by KL-divergence, at some intermediate stage before
reduction to a binary decision, between covers and stego ob-
jects (as a function of payload size).

In Fig. 1, the notations A0, Ap, etc, represent the distri-
bution of objects at each point. So Ap (parameterized by p)
are the distributions of the stego objects with payload size p,
Bp are the distributions of whatever feature vectors the ste-
ganalysis uses (a smaller dimensional distribution than Ap),
Cp are the univariate distributions of the steganalysis prior
to classification as cover or stego objects, and Dp are the
binary distributions of the output. At which stage should
we measure KL-divergence?

The value of DKL(A0, Ap) is certainly interesting, but
it is a measure of how secure the embedding process is
(cf. [2]), not the efficacy of the detector. At the other end,
DKL(D0, Dp) is a poor measure because too much informa-
tion is quantized away when a threshold is applied (indeed,
it is the setting of a threshold which causes application-
dependent benchmarks). It would be nice to evaluate the
steganalysis features separately from the classifier by bench-
marking on DKL(B0, Bp) but there are two problems. First,
estimation of KL-divergence is much more difficult when



there is large dimensionality, so practical considerations will
usually preclude its measurement. Second, it would admit a
nonsense result: the information processing theorem forces
DKL(B0, Bp) ≤ DKL(A0, Ap), and therefore an “optimal”
feature extraction method is the identity function! The
paradox exists because high KL-divergence does not guar-
antee the existence of a good decision procedure. (When
the null and alternative hypothesis are nonparametric the
Neyman-Pearson Lemma gives an optimal decision proce-
dure, but in the steganalysis problem the payload size is not
known and there is often no uniformly most powerful test
for composite hypothesis testing.) We should only consider
steganalysis methods with a clear decision procedure.

This leaves DKL(C0, Cp), which is still not a simple bench-
mark because it depends on the payload size. We must de-
cide on how “payload size” is to be quantified: we suggest
that the size of the embedded data is, contrary to intuition,
the wrong measure. All a steganalysis method can ever hope
to do is detect changes in the cover, rather than the pay-
load itself, and the existence of adaptive source-coding tech-
niques [5] mean that the number of changes is not necessarily
proportional to the payload size. Therefore we will measure
payload by the number of embedding changes involved; this
is acceptable as long as the embedding changes are of ap-
proximately equal magnitude: a common situation.

Now, return to the hypothesis test (1). It refers to the
application of steganalysis to single objects, but a commu-
nications system does not consist of a single transmission. In
the case of a stream of objects, steganalysis will be applied
repeatedly, and most important is its long run performance.
The application of steganography and steganalysis to mul-
tiple objects (so-called batch steganography) is considered
in [9] and a result about capacity in the batch setting is
found in [10]. We extract a key conclusion: if a steganogra-
pher is to act repeatedly, they must reduce the payload per
object, as the number of objects increases. Whether or not
you accept the hypotheses of the result in [10] it is hard to
argue against the proposition that constant-rate embedding
will cause evidence to build up over time, sufficient to guar-
antee detection eventually. Therefore we believe that long-
term steganography must necessarily involve ever-decreasing
payloads, leading to a second principle.

Principle 2. For long-run performance it is sufficient to
measure KL-divergence in the limit as embedding change rate
tends to zero.

The shape of such a limit is given by the following theo-
rem (which is a much simplified statement of a result found
in [13, §2.6]).

Theorem 1. Suppose that {Fp | p ≥ 0} is a family of
distributions indexed by p, satisfying Cramér’s conditions
[3]. Then DKL(F0, Fp) is locally quadratic at p = 0, i.e. the

limit lim
p→0

DKL(F0,Fp)

p2 exists.

Cramér’s conditions are standard regularity conditions:
the density function of the distribution family has to be dif-
ferentiable three times, with the first two derivatives boun-
ded by integrable functions and the third uniformly boun-
ded in expectation. They allow Taylor expansion of the
logarithm of the density function of Fp, and differentiation
under the integral sign. More modern results are able to

relax the conditions slightly, but we will not concern our-
selves with their detail: it suffices to know that almost all
standard nonpathological one-parameter distributions have
the required properties, so we will assume that they hold for
steganalysis outputs and omit the mathematics.

The theorem tells us that the information generated by
steganalysis is governed by quadratic term in its power se-
ries. And we have argued that the limiting behaviour as
p → 0 is what matters to long-term repeated steganalysis.
Finally, we have reached a position where steganalysis per-
formance can be reduced to a single number:

Q = lim
p→0

DKL(C0, Cp)

p2

where p measures the number of embedding changes. Q (so-
named because it is the coefficient of the quadratic term of
DKL(C0, Cp)) tells us everything about the amount of in-
formation, as to whether p = 0 or not, produced by the
steganalysis method when considering its long-term sequen-
tial application, and it is the proposed new benchmark. In
fact, Q is related to another fundamental statistical concept,
which we shall discuss shortly.

3. COMPUTING THE BENCHMARK
How can the benchmark be computed? One possibility

is to propose a model for cover objects and a model for
steganography, then attempt to derive how p affects the dis-
tributions C0 and Cp, hence computing Q, but there are
many difficulties. First, realistic models for multimedia cov-
ers are difficult to find, and less-than-accurate models might
well give wholly inaccurate answers: recall that it is precisely
due to defects in cover models that many “undetectable”
steganography schemes are broken (see e.g. [17]). Second,
the feature extraction and dimension reduction stages are
likely to be mathematically complex, so even if we know
how p affects Ap, we may not be able to compute the con-
sequence for Cp. One paper which makes some initial steps
in this direction is [11], but complete analysis is likely to be
so difficult that we will discard, for now, the possibility of
deriving the benchmark theoretically.

The alternative is to use empirical data. Suppose that
a large set of cover objects is selected and, in each of a
randomly-selected half, a payload is embedded causing p
changes. Applying steganalysis to each object, but stopping
short of setting a threshold to give a binary classification,
gives some experimental evidence about the distributions C0

and Cp
1, and thus to an estimator for Q. There are then

two challenges: to estimate DKL(C0, Cp) from finite samples
drawn from the distributions C0 and Cp, and to use this data
to estimate the value of the limit limp→0 DKL(C0, Cp)/p2.

First, estimation of KL-divergence. Write D̂KL(F, G) for
an estimator of the divergence DKL(F, G). There is a fair
amount of literature on this topic, with the simplest method
being a plug-in approach, where kernel density estimation is
performed separately for F and G, and the KL-divergence
computed therefrom. A novel method by Wang et al. [16]
is preferable because it demonstrates superior performance

1It is important that the set of test covers and test stego
objects are distinct (i.e. the same covers are not re-used to
create stego objects) to avoid correlations between the two
data sets which might destroy the accuracy of the estima-
tors.



(faster convergence) as well as an elementary description.
We will not repeat the construction of this estimator; the
reader is referred to [16] for all details.

Estimation of limp→0 D̂KL(C0, Cp)/p2 is more difficult,
since we must confine ourselves to a finite (preferably small)
number of choices of p. A simple approach is to fix a “small”
value of p, say ε, and use D̂KL(C0, Cε)/ε2 to approximate
the limit. But determining a suitable value of ε is not easy:
too large a value gives an answer too far from the limit, but
too small a value means that D̂KL(C0, Cε) is itself too small
to estimate with good accuracy unless the number of exper-
iments is huge. All we can do is use initial data to hand-pick
a sensible choice of ε; we will call this estimator Q̂1.

Or we could assume some slightly stronger regularity con-
ditions than in Theorem 1 to conclude that D̂KL(C0, Cp)/p2

can be fitted to a polynomial near p = 0 (we have found
that a cubic is usually sufficient), then fit based on data for
a small number of values near p = 0 to predict the limit at
zero (again, there is no universal way to determine which
data, but the answer should be less sensitive than with a
single value of p). We will call this estimator Q̂2.

There is an alternative method to estimate Q. In [13,
§2.6] is a continuation of Theorem 1, telling us that Q is in
fact one half times Fisher’s Information,

Z

`

∂
∂p

log fp(x)
´˛

˛

p=0
f0(x) dx (2)

(where fp represents the density function of Fp). This is
of no immediate help because Fisher’s Information seem no
easier to estimate than Q, but it becomes simpler if we make
a further assumption about the effect of small payloads on
steganalysis response.

Suppose that the effect of payload in Cp is locally linear
in the number of embedding changes, i.e. if fp is the density
function of Cp then for p near zero and some constant λ,

fp(x) ≈ f0(x − λp). (3)

A steganalysis response with this property is called quasi-
linear in [10], and it is argued that many or all steganalysis
methods should have this property. In such a circumstance
we can reduce (2) to a function of λ and f0, giving:

Q =
λ2

2

Z

f ′

0(x)2

f0(x)
dx. (4)

Estimating λ is straightforward (use the difference in mean
between observations of zero and small payloads; a variety
of payload sizes can be used) and it is possible to estimate
the integral using a plug-in density estimator for f0, based
on the empirical observations from C0: combining these es-
timates according to (4) gives an estimator we shall call Q̂3.
It would be attractive if a data-dependent method similar
to [16] could be used to estimate Fisher’s Information but
the author is not aware of such a technique in the literature.
If (3) applies, we should expect to see consistent answers

produced by all three estimators Q̂1, Q̂2, Q̂3.
We are under no illusions about the methods, for estimat-

ing Q, presented here. Although we believe that Q is in
some sense an optimal benchmark, these methods for esti-
mating it are far from optimal. They suffice as a temporary
measure to allow Q itself to be investigated but further work
is needed to find better estimators.

Sample size
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Figure 2: Comparison of three estimators for Q.
Mean, and upper/lower 10% quantiles of 200 re-
peated experiments are shown, at each of 8 sample
sizes (the estimators are shown staggered for clar-
ity). The true Q-factor of 3 × 10−5 is indicated.

4. EXPERIMENTAL EXAMPLES
We include two types of experiments. First, some ex-

periments on synthetic data, to try to determine which of
the estimators Q̂1, Q̂2, Q̂3 gives the most accurate results.
We will suppose a steganalysis method whose intermediate
distribution Cp is from the Student t-distribution with 2
degrees of freedom, shifted to cause a mean of 0.01p (this
decision is not arbitrary: up to a scaling factor, it is a well-
fitted model for quantitative steganalysis found in [1]). It
can be shown analytically that the true Q-factor for this
family of distributions is 3 × 10−5.

Eight sample sizes N = 200, 500, 1000, 2000, 5000, 10000,
20000, 50000 were tested, each repeated 200 times. Every
sample was divided evenly between cover and stego objects.
We tested values of p between 10 and 300 (some initial ex-
amples suggested taking ε = 50 as a reasonable trade-off
between proximity to zero and robustness) and computed

each estimator Q̂1, Q̂2, Q̂3 using the methods of Sect. 3. For
each sample size, the observed mean and upper and lower
10% quantiles of the estimators are displayed in Fig. 2, as a
summary of their accuracy.

From the displayed diagram we conclude that (for this

particular shape of steganalysis response, at least) Q̂3 is
the most accurate estimator (but recall that it makes an
assumption about locally-linear steganalysis response) oth-

erwise Q̂1 outperforms Q̂2, despite the latter’s extra sophis-
tication (trying to fit a polynomial to noisy data seems to
accentuate the noise). The estimators give reasonable accu-
racy as long as a few thousand cover objects are available.

We now proceed to an example of genuine steganalysis.
Consider LSB replacement embedding in bitmap images,
and the Triples steganalysis method (also known as Triples/
LSM) from [7]. Using a set of 10000 cover images (all ap-
proximately 0.6 Mpixels, full colour, bitmap images which
had previously been subject to JPEG compression at qual-
ity factor 75) embedding changes were made in half of the
images by flipping LSBs. Embedding change numbers of
50, 100, 150, . . ., 2500 were all tested, and D̂KL(C0, Cp)/p2



0 500 1000 1500 2000 2500
p

D̂
K

L( C
0, 

C
p)

p2

0.5x10−6

1x10−6

1.5x10−6

2x10−6

Figure 3: Experimental data from LSB Replacement
detection in images (Triples steganalysis), showing

how the quotient D̂KL(C0, Cp)/p2 (y-axis) depends on
the number of embedding changes p (x-axis); a poly-
nomial fit is indicated.

was computed in each case. In order to make some assess-
ment of the accuracy of the estimator for KL-divergence,
each experiment was repeated 10 times with a different ran-
dom allocation of the 10000 as cover and stego images. The
results are plotted in Fig. 3, with a best-fit cubic displayed.

It does indeed appear that DKL(C0, Cp) is locally quad-
ratic near p = 0, as Theorem 1 predicts, because the quotient
appears to converge to a nonzero finite value. This figure
also illustrates the tradeoffs of using small values of ε in es-
timating the limit: small values give D̂KL(C0, Cε)/ε2 closer
to the limit at 0 but are more subject to estimation error.
A compromise value of ε = 300 was therefore selected.

It is now possible to use the three techniques of Sect. 3 to
estimate the Q-factor for this particular steganalysis, when
applied to objects represented by this type of cover (for Q̂3

we used the plug-in density estimator of [15]). Similar ex-
periments were also performed for three other steganalysis
methods detecting the same type of steganography: SPA [4],
SPA/LSM [14], and Triples/WLSM [12]. The three esti-
mators for the Q-factor of each are displayed in Tab. 1.
The benchmarking was performed both for the set of 10000
colour JPEGs already used, and another set of 3000 colour
bitmap images which were never subject to compression,
sized approximately 0.3 Mpixels. As an aside, note that the
benchmark Q is not truly dimensionless. If all logarithms
are to base e then KL-divergence is measured in so-called
nats and then Q is measured in nats per embedding change
squared ; if the square-distortion principle of Theorem 1 is
accepted, then this is the fundamental unit of steganalysis
performance. In order to keep the values in the table read-
able, they are displayed in nanonats per embedding change
squared.

Although the results are displayed to three significant fig-
ures, it is clear from Fig. 3 that the accuracy of estimation
is lower than this, particularly as respects the polynomial
fit for D̂KL(C0, Cp)/p2. The results show that the estima-

tors Q̂1, Q̂2, and Q̂3 do give similar results (as they ought).
As measures of steganalytic performance they are broadly
consonant with those found in [12], although they rate the

Table 1: Estimates of Q for four detectors of LSB
Replacement in images. All values in nanonats per

embedding change squared and displayed to 3 sig. fig.

Colour bitmaps Colour JPEGs
Steganalysis

Q̂1 Q̂2 Q̂3 Q̂1 Q̂2 Q̂3

SPA 16.1 16.5 17.8 28.3 33.5 38.7

SPA/LSM 12.1 13.8 12.3 161 183 174

Triples/LSM 20.7 17.6 14.6 1500 1760 1640

Triples/WLSM 16.1 16.3 17.3 1500 1600 1600

newer detectors less highly. We caution the reader that these
numbers should not, at this stage, be taken as a serious
evaluation of the steganalysis methods in [4, 7, 12, 14]; the
figures are to illustrate the benchmark and verify that the
three estimators agree on an approximate value for Q.

These experiments are all very well, but they involve quan-
titative steganalysis, in which case the steganalysis response
has a particularly simple form: it estimates the payload,
so the output should be proportional to p, with some error
added; this makes (3) automatic. To widen the experiments,
we now turn to a related but much more difficult steganal-
ysis problem, that of detecting LSB Matching in bitmap
images (the difference between LSB Matching and LSB Re-
placement is articulated in [8]). Not only is detection of this
type of steganography harder (so we expect to see less infor-
mation provided by the steganalysis) but also the steganal-
ysis methods are usually not quantitative. We will consider
just two from the literature, neither quantitative: the “HCF
COM” detector due to Harmsen [6], and a modification of
it [8] which calibrates the result by dividing by statistics of
a downsampled image.

This time we used a set of 20000 grayscale bitmaps previ-
ously stored as JPEG: the larger base mitigates the problems
of estimating very small KL-divergence values. We display
the analogue of Fig. 3, for the HCF COM detector against
LSB Matching embedding changes, in Fig. 4. Much larger
numbers of embedding changes must be used because the in-
formation is so small: we tested p = 6000, 8000, . . ., 160000
embedding changes, and could not test higher numbers be-
cause one should not change more than half of the cover
pixels (on average, LSB steganography would not do so).

Again, the Q factor appears to be well-defined, but it is
difficult to report its value with accuracy because of the noise
in the estimators; at least its order of magnitude is clear.
The analogue of Tab. 1 is Tab. 2. Again, the estimators
generally agree, although the Q̂3 statistic for the HCF COM
detector was out of line: further investigation showed that
the plug-in density estimator had produced a bad fit. These
results, despite larger potential estimation errors, confirm
the general superiority of calibrated HCF COM steganalysis
demonstrated in [8].

Because the information provided by the steganalysis is
so low, Tab. 2 displays the estimated Q-factor in piconats
per embedding change squared. One might ask: why, if de-
tection is so difficult that small payloads are essentially un-
detectable (even micronats of information is negligible), is
it reasonable to benchmark steganalysis by the limit as the
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Figure 4: Experimental data from LSB Matching
detection in images (HCF COM steganalysis).

payload size tends to zero? The answer is that, although
small payloads are indeed practically undetectable in indi-
vidual objects, if a steganographer continues to embed small
payloads in many objects the evidence against them can be
accumulated, as in [9], resulting in eventual detection. The
benchmark measures how their risk increases with payload
size, and number of stego objects.

As an illustration, suppose a steganalysis method pro-
ducing 500 piconats per embedding change (approximately
the performance of the calibrated HCF COM detector for
LSB Matching, in our grayscale JPEG covers), and that a
steganographer embeds payload requiring 10000 embedding
changes per cover object. Assuming that this is low enough
to be well-approximated by the limit, this means that the
detector is producing 500 × 10−12 × 100002 = 0.05 nats of
information per object. If 100 stego objects are transmitted,
the maximum information available to the detector totals 5
nats so, given an efficient method for pooling the evidence
(which might be difficult [9]), and supposing that the detec-
tor wishes to equalize false positive and negative rates, the
steganographer is at risk of detection with at least 0.63%
false positive and negative rate. (In individual objects, the
value of 0.05 nats implies the false positive and negative
rates would be equalized at values at least 42.1%.)

To examine the applicability of the proposed benchmark,
we tested a wide range of steganalysis methods, aimed at a
number of different embedding mechanisms. In almost all
cases the Q-factor appeared to be a well-defined measure
(the KL-divergence did appear to be locally square in num-
ber of embedding changes) but in a few cases the information
itself was too small to measure with any accuracy, and in a
very small number of cases the divergence did not appear to
be quadratic. In such cases it was observed that the quasi-
linear assumption failed. Wider testing of the applicability
of the Q-factor benchmark, and the mathematical hypothe-
ses which validate it, is something for future research.

5. CONCLUSIONS
We have presented the rationale for a new steganalysis

benchmark, based on principles of information theory. The
Q-factor itself is application-independent inasmuch as it nei-

Table 2: Estimates of Q for two detectors of LSB
Matching in bitmap images. All values in piconats

per embedding change squared, displayed to 3 sig. fig.

Grayscale JPEGs
Steganalysis

Q̂1 Q̂2 Q̂3

HCF COM 36.9 38.0 152∗

Calibrated HCF COM 435 504 491

∗density estimation failed

ther sets a particular error rate, nor assumes equivalency of
false positives and negatives. As long as it is acceptable to
consider performance of steganalysis as payload size tends to
zero – and we have argued that this is the case for long-run
performance – then it boils down a steganalysis method to a
single statistic for each type of cover object. (Unavoidably,
there are different classes of cover object in which certain
steganalysis methods do better than others.) Thus there
is a strong case for replacing or at least supplementing the
traditional benchmarks with that presented here.

We have not yet attempted to find optimal ways to esti-
mate the Q-factor benchmark from empirical data. Three
methods are suggested, but surely better choices exist (our
methods require the selection, by hand, of informative pay-
load sizes). The first direction for further work is to glean
what we can from statistical literature on estimation of Fis-
her’s Information.

We would like to have more certainty that Cramér’s reg-
ularity conditions hold in practice. It is not possible to de-
termine this using statistical tests on empirical data, but
perhaps it would be worthwhile to fit models to steganalysis
response and see whether the models meet the conditions.

As it stands, one requires at least a few thousand cover
objects in order to make even a rough estimate of the new
steganalysis benchmark. The key is the empirical estima-
tion of KL-divergence, and perhaps there are more efficient
methods, particularly for the low-divergence situations we
encounter here, than [16]. That estimator suffers partic-
ularly from the curse of dimensionality, but there may be
alternatives which can cope with higher dimensional data;
if so, it might become possible additionally to benchmark
on DKL(B0, Bp)/p2. This would inform feature vector se-
lection. One might also examine the quotient DKL(C0, Cp)/
DKL(A0, Ap) as a measure of steganalysis efficiency, as op-
posed to absolute performance.

Other considerations include investigating whether it is
optimal to split empirical data evenly between covers and
stego objects (intuition suggests that it might be better to
weight the evidence more towards covers), and whether es-
timator convergence can be accelerated by bootstrapping.
The latter technique might also provide approximate confi-
dence intervals for the Q-factors obtained.

Once these issues are addressed, it should be possible to
produce a clear and simple procedure for computing the Q-
factor benchmark so that authors can properly compare the
efficiency of their steganalysis methods.

One problem we have not considered here is nonuniformity
of the cover objects, and particularly the effect of cover size;
it has been assumed that covers are equal in their capacity



and ease of steganalysis, but is now well known that this
rarely holds in practice. It would be particularly interesting
to know how the size of the cover object affects detectabil-
ity of payload (in some special cases [11] it is known that a
square-root law applies, so that larger objects cannot con-
tain proportionately larger payloads) and this would allow
empirical estimation of the Q-factor using unequal covers.
More generally, one might combine the benchmark with the
framework of [1], to determine how other properties (in-
cluding noise, saturation, etc) of cover objects affect the
Q-factors of different steganalysis methods. But the scale of
experimentation (and, particularly, the necessity for thou-
sands of sample cover objects of each type) might make the
computational costs prohibitive.
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