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Abstract. The batch steganography problem is how best to split a
steganographic payload between multiple covers. This paper makes some
progress towards an information-theoretic analysis of batch steganogra-
phy by describing a novel mathematical abstraction we call perturbation
hiding. As well as providing a new challenge for information hiding re-
search, it brings into focus the information asymmetry in steganalysis of
multiple objects: Kerckhoffs’ Principle must be interpreted carefully.

Our main result is the solution of the perturbation hiding problem for
a certain class of distributions, and the implication for batch stegano-
graphic embedding. However, numerical computations show that the re-
sult does not hold for all distributions, and we provide some additional
asymptotic results to help explore the problem more widely.

1 Introduction

The batch steganography problem was first posed in [1]. It supposes that a
steganographer possesses a set of cover objects which, between them, are to
conceal a covert payload. The aim is to split the payload into a number of parts
and embed the parts, using standard steganographic methods, into some or all
of the individual objects. The key question is whether the payload should be
spread thinly amongst all the covers, whether a small number of covers should
be filled to maximum capacity, or some intermediate choice.

This question is relevant to any scenario in which multiple covers are available,
including covert communication and steganographic file systems. In fact, it is
hard to imagine many scenarios in which only one cover is made available to the
steganographer: if they have a plausible reason to send one cover communication,
they almost certainly have a plausible reason to send more than one. Then it
becomes important to know how to split the payload between the covers, to
evade detection.

The initial analysis of the batch steganography problem in [1] includes only
a few special cases, making very strong assumptions about the detector’s be-
haviour, and subsequently there have been some results attacking other limited
cases: [2] for a detector which counts observations exceeding a threshold, and [3]
under the assumption that steganographic distortion is square in the number of
embedding changes. An asymptotic capacity result is found in [4] but does not
determine the best method of spreading the payload amongst multiple covers.
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Here we attack the general problem, not constraining the detector, and to
do this we propose a mathematical abstraction which we call perturbation hid-
ing. It is approached using tools of information theory, but the level of ab-
straction is different from the usual information-theoretic analysis of
steganography [5, 6].

We will now summarise the batch steganography problem and point out some
ambiguities in its statement; there follows a brief discussion of the appropriate
interpretation of Kerckhoffs’ Principle in steganography. In Sect. 2 we pose the
perturbation hiding problem, discuss its connection with batch steganography,
and solve the problem for a class of cover families: it is best to spread pay-
load equally between the cover objects, even though this denies the opportunity
to keep the enemy guessing as to payload distribution. However, this is not a
general solution, as some numerical explorations show. Motivated by the numer-
ical results, Sect. 3 suggests some asymptotic results (proved with rather less
rigor than the solution of Sect. 2) which point towards more general conclusions.
Finally, we will discuss the next steps in Sect. 4.

1.1 The Batch Steganography Problem

We take the role of a steganographer who, for reasons legitimate or not, wishes
to conceal a payload in a number of cover objects. If the payload is spread
thinly amongst all covers then there is little in each object; on the other hand,
if a smaller number of objects are filled to capacity then the complete set of
objects (all of which are transmitted) contains many genuinely innocent covers,
which could confound the detector. The batch steganography problem is how
best to balance those factors, but it is difficult to formalize. The security of
an embedding process should be measured by the (un)reliability of detectors,
but of course this depends on the choice of detector. The results in [1, 2] fix
on a few particular cases of detector, and measure security by the number of
false positive detections when the false negative rate is 50%. Such results are of
limited applicability.

A detector-independent measure of security was suggested by Cachin in [5]
and is now widely used in literature on the theory of steganographic security.
Cachin postulated a distribution of covers, a corresponding distribution of stego
objects, and considered the Kullback-Leibler (KL) divergence [7] between those
distributions. KL divergence is nonnegative and zero only for equal distributions.
Most importantly, there is a well-known connection with hypothesis testing:
error rates for determining whether an observation is from distribution X or
distribution Y are bounded below by a function of DKL(X ‖ Y )1.

Incidentally, the detector’s task is not as simple as it may seem: they cannot
simply test all the objects, knowing that they need only prove a single example
of steganography, because this would compound their false positive errors. By
measuring KL divergence we avoid discussion of the detector itself, bounding the

1 Any detector must mistake an observation of X for Y with probability α, and vice
versa with probability β, satisfying α log α

1−β
+ (1 − α) log 1−α

β
≤ DKL(X ‖ Y ).
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performance of any detector (including detectors which choose to ignore some
of the available evidence).

KL divergence is used to measure security of batch steganography in [3], but
we now demonstrate a weakness in the formulation. For now, we will adopt the
same notation as that paper, writing Xpi

i for the random variable corresponding
to the i-th object, in which a payload has been embedded causing pi embedding
changes. If we may assume that the objects are independent random variables
(for example, the covers should not be successive frames from a video, and the
payloads should not be identical) then the additivity property means that the
total KL divergence satisfies

DKL
(
(X0

1 , . . . , X0
n) ‖ (Xp1

1 , . . . , Xpn
n )

)
=

n∑

i=1

DKL(X0
i ‖ Xpi

i ) (1)

and it is now, in principle, possible to select the number of changes p1, . . . , pn

to minimize (1), thus minimizing the detector’s reliability.
There are two problems. First, it is cumbersome to account for the relationship

between the size of embedded payload and the number of embedding changes
induced. Apart from the added layer of complexity, evident in [3], there are
also implicit assumptions that all embedding changes are equally detectable,
and that the number of changes depends deterministically on the payload size
but not the cover object. Neither is correct: in digital media it is highly likely
that some embedding changes are more obvious than others, and the number of
changes varies with random correlations between cover and payload.

Second, and more seriously, there is a paradox in this analysis. Suppose that
the steganographer has n (independent) covers drawn from the same distribu-
tion, and in just one object makes p embedding changes. The KL divergence
between the random vector emitted and a vector of n unaltered objects is

DKL(X0 ‖ Xp) = DKL(X0
1 ‖ Xp

1 ) +
n∑

i=2

DKL(X0
i ‖ X0

i ) = DKL(X0
1 ‖ Xp

1 )

(regardless of which object is altered) and this is independent of n. This cannot
be right: surely it is harder to detect one stego object in amongst many covers,
than to tell a single stego object from a single cover? The explanation is that KL
divergence is only appropriate for bounding the performance of a hypothesis test
where both null and alternative are simple, involving no unknown parameters.
When we use KL divergence as a metric we are assuming that the opponent
knows everything except whether there is any payload or not, including the
object which would be selected to carry the payload. This is surely unrealistic.

We do not use this example to claim that KL divergence is the wrong measure
for security. It was an incorrect formulation of the (implicit) hypotheses which
caused the paradox, and to avoid such problems we must take care about the
information asymmetry in steganalysis scenarios.
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1.2 Kerckhoffs’ Principle in Steganography

So let us reconsider the security model for steganography. It is traditional, in
analysis of cryptographic security, to assume the worst case: the opponent is
granted almost omniscience regarding the cryptosystem, and (in the case of
protocols) almost omnipotence as respects sabotage of transmitted messages.
Such conservatism is justified by the possibility of traitors in the communications
system.

This is known as Kerckhoffs’ Principle, one of six desiderata for cryptosystems
suggested by the Dutch cryptographer Auguste Kerckhoffs in 1883:

Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber
entre les mains de l’ennemi [8]

or (approximately) that it must not be necessary to keep the system secret:
it should not cause trouble were it to fall into enemy hands. Additionally to
Kerckhoff’s Principle, cryptographers consider the chosen-plaintext attack, when
the opponent is given the ability to generate their own cyphertexts.

How should we interpret Kerckhoffs’ Principle, and the chosen-plaintext at-
tack, in the context of steganography? This issue is discussed in [9], whose au-
thors point out that the principle is rarely mentioned in steganography literature.
First, we can dispose of the full chosen- (or known-) plaintext model, which is
not appropriate for covert communication if we assume that the steganographer
uses an encryption scheme, secure against chosen-plaintexts, prior to embedding.
This is analogous to the usual assumption of perfect cryptography added to the
Dolev-Yao threat model for protocol security [10]. But even if the payload bits
embedded in the cover are obscured by encryption, the same is probably not
true of the number of such bits, i.e. the payload size.

So consider what we should grant the opponent. As well as knowledge of
the steganographic embedding process for placing payload in individual objects,
there seem to be four possibilities involving payload size in the batch situation:

(a) the steganalyst knows nothing about the payload being transmitted;
(b) the steganalyst knows the total payload size, but nothing of the steganogra-

pher’s strategy for breaking it into components;
(c) the steganalyst knows the sizes of the individual payloads to be embedded

in the covers, but does not know which object receives which payload size;
(d) the steganalyst knows the amount of payload in each object, they only lack

knowledge of whether any embedding happens at all.

Option (a) is dangerously weak, clearly contradicting the spirit of Kerckhoffs’
Principle. We should consider the possibility that the steganalyst might use a
confederate to insert a payload of known size into the covert communication
channel, or could compromise a recipient after the fact. Option (d) is probably
too strong, for it is hard to see how the steganalyst could know so much informa-
tion without also knowing for certain that the covert channel is being used2. The

2 Note that estimating the payload in each object is not the same as knowing it.
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correspondence between cover object and payload segment should be considered
part of the steganographer’s secret key shared with their intended recipient. We
believe that reliance on option (d) is a significant weakness of [3].

This leaves (b) and (c), both sensible attack models for covert communication.
(c) is the more conservative, but not unreasonably so: if the steganalyst were to
obtain the steganographer’s embedding software, they might learn the strategy
for splitting payload between covers. More practically, option (b) seems difficult
to analyse because it cannot be cast as hypothesis test without a compound
alternative or an (unjustifiable) prior, and so KL divergence is not a good model
for detection accuracy. In this paper, therefore, we focus on option (c).

1.3 Notation

In order to reduce complexity of presentation, we will use the following nota-
tional conventions throughout the paper. Random variables will always be given
upper case letters, observations lower case, and distribution parameters will be
Greek lower case. Vectors (of variables, random or otherwise, or parameters)
will be boldface, x = (x1, . . . , xn), and x̄ will denote 1

n

∑n
i=1 xi. The set of per-

mutations on n elements is Sn; its members will be denoted π and π(x) means
(xπ(1), . . . , xπ(n)). If D is a one-parameter family of distributions, with parame-
ter λ, then X ∼ D(λ) indicates that the random variable X has this distribution
with the given parameter. The expectation is denoted E[X ] and, where the dis-
tribution of X needs clarification, it indicated by a subscript: E[X ]X∼D(λ). With
random vectors, X ∼

(
D(λ1), . . . , D(λn)

)
means that Xi ∼ D(λi) for each i,

and also that the Xi are independent. Finally, X ∼ D(λ)n is used when the
independent components of X are identically distributed.

2 The Perturbation Hiding Problem

We now present the perturbation hiding problem, draw the connection with
batch steganography, and solve for a class of distribution families.

Suppose a fixed one-parameter family of probability distributions D(λ)3 de-
fined for λ ≥ 0, an integer n ≥ 2, and a positive constant l. We must choose
a nonnegative vector of parameters λ = (λ1, . . . , λn) subject to the constraint
λ̄ = l, with the aim of making the random vectors X and Y , defined by

X ∼ D(0)n

Y ∼
(
D(λ1), . . . , D(λn)

)
,

as close to indistinguishable as possible: it should be difficult for an opponent to
classify a realization as either X or Y accurately.

This is called perturbation hiding because we are required to choose the per-
turbation from zero in the n parameters defining the random vector. One could
3 There is nothing in this paper which requires them to be one-dimensional random

variables, and the same results will apply to random vectors.
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imagine many variations of the problem, when the opponent has more or less
knowledge about the choice of λ, but we will fix on the version best aligned with
batch steganography: we grant the opponent knowledge of the components of λ
but not their order. Since the opponent has no information on the order of λ,
their observation is equivalent to one of X or Y with

X ∼ D(0)n

Y ∼ Π
(
D(λ1), . . . , D(λn)

)
, where Π is chosen uniformly from Sn

independently of all other random variables.

The perturbation hiding problem is:

Choose λ, subject to λ̄ = l and all λi ≥ 0, to minimize DKL(X ‖ Y ). (2)

2.1 Connection with Batch Steganography

If we suppose that the steganographer has selected an embedding method, and
uses a source of covers which are uniform (possessing the same characteristics
as regards their potential for information hiding), then we can define D(λ) as
the distribution of objects with payload of size λ (bits). If the total payload is of
size nl, there are n covers, the opponent knows everything about their strategy
except which cover receives which payload size, and they know nothing more
about the opponent so that KL divergence is the appropriate metric, then we
have a direct correspondence with the perturbation hiding problem.

It is worthwhile to contrast this with other information theoretic analyses of
steganography. Papers following Cachin [5] focus on optimizing the embedding
method for individual objects to minimize DKL

(
D(0) ‖ D(λ)

)
. An analysis of

perfectly secure steganography, in which the KL divergence is zero, is described
thoroughly in [6]. Such work considers a cover object to be a sequence of samples
emitted by a source with known characteristics. Here, we are taking a different
level of abstraction where the source emits entire cover objects, and furthermore
our assumption is that a perfectly secure embedding is not used. This is reason-
able because there are no known perfect schemes which work in genuine digital
media, and mathematical models of such media do not accord closely with re-
ality. In our setting, detection is possible; the question is how to minimize the
reliability of detection, by allocating payload amongst multiple covers.

The perturbation hiding problem is attractive for a number of reasons. First,
it seems to be an interesting mathematical challenge in its own right. Second, it
allows use of KL divergence even in a situation when the opponent does not know
which cover receives which payload, expressing the problem as a test between two
simple hypotheses. This is at the cost of algebraic complexity. Third, it avoids
the complications of [3] by folding the relationship between cover changes and
transmitted payload into the parameterization of the distribution family D(λ).
Parameterization is important to this problem: as a simple example, the families
D(λ) ∼ N(λ, 1) and D′(λ) ∼ N(eλ − 1, 1) describe the same set of distributions
as λ ≥ 0 varies, but they correspond to different batch steganography problems,
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the latter much less favourable for the steganographer because the distribution
D′(λ) moves away from D′(0) much faster than D(λ) from D(0). (However,
Theorem 2 demonstrates that the two problems have the same solution).

In the formulation of [3] the optimal solution – spread the payload equally
between all covers – makes sense intuitively. But in the perturbation hiding
problem the same solution is not so clearly optimal. For when the payload is
spread equally between all covers, the opponent does know everything about the
allocation of payload. Unevenly-spread payload has an apparent advantage of
keeping the opponent guessing about its location.

2.2 Solution for Suitably Convex Exponential Families

Let us write f(x; λ) for the density function of the distribution D(λ). The so-
lution of (2) can depend on f , but we will demonstrate that the symmetrical
vector λ = (l, l, . . . , l) is the solution for a certain class of functions f . Thus, for
these distribution families, the disadvantage in allowing the opponent to know
everything about the allocation of payload is outweighed by the advantage in
having no object containing more payload than the necessary minimum.

Theorem 1. A sufficient condition for (l, l, . . . , l) to be the solution to (2) is

n∑

i=1

log E
[

f(X;λi)
f(X;λ̄)

]

X∼D(0)
≤ 0 (3)

for all choices of λ.

Proof. Let us identify the distribution of observations at λ = (λ̄, . . . , λ̄): Z ∼
D(λ̄)n. Assuming (3), we must show that DKL(X ‖ Y ) ≥ DKL(X ‖ Z) for all
choices of λ. Considering the difference,

DKL(X ‖ Y ) − DKL(X ‖ Z)

= E
[
− log

(
1
n!

∑

π∈Sn

n∏

i=1

f(Xi;λπ(i))
f(Xi;0)

)
+ log

( n∏

i=1

f(Xi;λ̄)
f(Xi;0)

)]

X∼D(0)n

= E
[
− log

1
n!

∑

π∈Sn

n∏

i=1

f(Xi;λπ(i))

f(Xi;λ̄)

]

X∼D(0)n

(1)
≥ − log

(
1
n!

∑

π∈Sn

E
[ n∏

i=1

f(Xi;λπ(i))

f(Xi;λ̄)

]

X∼D(0)n

)

(2)
= − log E

[ n∏

i=1

f(Xi;λi)
f(Xi;λ̄)

]

X∼D(0)n

(3)
= − log

n∏

i=1

E
[

f(X;λi)
f(X;λ̄)

]

X∼D(0)

= −
n∑

i=1

log E
[

f(X;λi)
f(X;λ̄)

]

X∼D(0)
≥ 0.
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(1) is by Jensen’s inequality4 and linearity of expectation, (2) by identical dis-
tribution of the Xi, and (3) by their independence. �

Now we demonstrate families of distributions for which the condition in Theo-
rem 1 holds. Recall that a one-parameter family in λ is an exponential family [11]
if the density function can be written in the form

f(x; λ) = h(x) exp
{
η(λ)T (x) − A(λ)

}

for functions h, η, T and A. Then T (x) is a sufficient statistic, and A(λ) is
the normalizing constant determined by exp

(
A(λ)

)
=

∫
h(x) exp

{
η(λ)T (x)

}
dx.

When η is invertible the family can be re-parameterized to fit the form f(x; μ) =
h(x) exp

{
μT (x) − Ā(μ)

}
and in such cases μ is called the natural parameter.

Even when the parameterization cannot be chosen (as in the perturbation hiding
problem: we must solve the problem for the parameterization we are given) it
is often cleaner to phrase results in terms of a natural parameter, as is the case
here.

Theorem 2. A sufficient condition for (3) is that f is a one-parameter expo-
nential family for which a natural parameter exists, such that (a) η is convex
nondecreasing, and (b) A′′ is nondecreasing in the natural parameter.
One such case is D(λi) ∼ N

(
φ(λi), σ2

)
, when φ is continuous and convex in-

creasing, and σ2 any positive constant.

Proof. We compute

E
[

f(X;λi)
f(X;λ̄)

]
=

∫
h(x)eT (x)(η(λi)−η(λ̄)+η(0))−A(λi)+A(λ̄)−A(0) dx

= exp
{

A ◦ η−1
(
η(λi) − η(λ̄) + η(0)

)
− A(λi) + A(λ̄) − A(0)

}

because of the relationship exp
(
A(λ)

)
=

∫
h(x) exp

{
η(λ)T (x)

}
dx. If we write

Ā = A ◦ η−1, expressing A in terms of the natural parameter, the log of the
expectation is equal to g(λi) where

g(θ) = Ā
(
η(θ) − η(λ̄) + η(0)

)
− Ā

(
η(θ)

)
+ Ā

(
η(λ̄)

)
− Ā

(
η(0)

)
.

Note that g(λ̄) = 0 and

g′′(θ) = η′(θ)
[
Ā′′(η(θ) − c

)
− A′′(η(θ)

)]
+ η′′(θ)

[
Ā′(η(θ) − c

)
− A′(η(θ)

)]

where c is the constant η(λ̄)−η(0). Then use our assumptions: η′ is nonnegative
because η is nondecreasing; for the same reason c ≥ 0 and so Ā′′(η(θ) − c

)
−

A′′(η(θ)
)

≤ 0 because Ā′′ is nondecreasing; η′′ is nonnegative because η is convex;
Ā′(η(θ) − c

)
− A′(η(θ)

)
≤ 0 because Ā must be convex (this is always true for

an exponential family). We deduce that g′′ ≤ 0.

4 E[φ(X)] ≥ φ(E[X]) for convex φ; note that φ(x) = − log x is a convex function.



Perturbation Hiding and the Batch Steganography Problem 53

Therefore g is concave, hence
∑

log E
[

f(X;λi)
f(X;λ̄)

]

X∼D(0)
=

∑
g(λi) ≤ g(λ̄) + g′(λ̄)

∑
(λi − λ̄) = 0.

For the Gaussian case mentioned, write the pdf of N
(
φ(λ), σ2

)
in the ex-

ponential family form: f(x; λ) = e−x2/2σ2

√
2πσ2 exp

{φ(λ)
σ2 x − 1

2σ2 φ(λ)2
}
. φ must be

invertible, so μ = φ(λ)/σ2 is the natural parameter. By assumption, φ is convex
increasing, and A(μ) = μ2σ2/2 satisfies A′′ nondecreasing. �

The given example is relevant because of adaptive source coding. Suppose, as a
simple example, that the covers are Gaussian N(c, 1) where c is the number of
embedding changes in a cover of size N . It is well-known [12] that the size of
transmitted payload p satisfies c ≥ NH−1

(
p
N

)
(H is the binary entropy function),

a convex function of p. The relationship between bits transmitted and locations
changed should always be convex in efficient codes, so this nonlinear relationship
does not affect the conclusion that payload should be equally spread.

The conditions in Th. 2 seem natural. Monotonicity of η precludes the pos-
sibility that increasing payload is less detectable (in single objects). Some sort
of convexity condition could be expected. And recall that, when A is expressed
in terms of a natural parameter, A′′ is the variance of the random variable: the
condition that A′′ is nondecreasing ensures that we do not have more certainty
about larger payloads. But we should note that the conditions in Theorems 1
and 2 are stronger than necessary. It is possible to construct exponential families
which do not satisfy the conditions of the latter, but do satisfy the former, and
we will see next that there are distributions which do not form an exponential
family at all, yet the solution to (2) is still (for some choices of n and l) the
constant vector (l, l, . . . , l). We hope to widen the results in future work.

2.3 Explorations with Student t-Families

We now ask whether the preceding results apply more widely, when D(λ) is
not an exponential family. We might expect that the same conclusions should
hold for random variables with exponentially-decaying tails, but for long-tailed
distributions it might be optimal to concentrate the payload in a few cover
objects. This would be plausible because, in the case of long tails, a small number
of extreme observations would be expected even when no payload is present, so
mimicking this could be a sensible embedding choice.

To explore this question, we performed some numerical computations. How-
ever, accurate estimation of the KL divergence

DKL(X ‖ Y ) = E
[
− log

(
1
n!

∑

π∈Sn

n∏

i=1

f(Xi;λπ(i))
f(Xi;0)

)]

X∼D(0)n

(4)

– an integral over R
n of a function with n! terms – represents a huge challenge

unless n is very small. But even the cases n = 2 and n = 3 are suggestive.
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Fig. 1. The case n = 2. Numerically-computed DKL(X ‖ Y ) as a function of λ1, when
the parent distribution family is Student t with 2 d.f. (above) and 4 d.f. (below). Three
different values of l are displayed.

We will concentrate on families of the Student t-distribution, determined by
the degrees of freedom ν > 0, and parameterized by location:

f(x; λ) =
Γ
(

ν+1
2

)

√
νπ Γ

(
ν
2

)
(
1 + (x−λ)2

ν

)− (ν+1)
2

. (5)

They were chosen because they never form an exponential family, and describe a
continuum of distributions with varying tail weights: as ν → ∞ the distribution
tends to Gaussian, and for ν = 1 it is Cauchy, so heavily-tailed that even the
expectation is not defined. Between these extremes, the density function f(x; λ)
tail decays as |x|−(ν+1). We are interested in solutions to the perturbation hiding
problem, with distribution family determined by ν and total payload by l.

First, we take the case n = 2, corresponding to splitting a steganographic
payload between just two objects, with λ1 in one object and λ2 the other (the
opponent does not know which is which), subject to λ1 + λ2 = 2l. For a number
of different Student t-families D(λ), determined by ν, and various values of l,
we estimated the KL divergence, using quadrature, as λ1 varies between 0 to 2l.
A selection of results are shown in Fig. 1, corresponding to the families ν = 2
or ν = 4 and l = 0.3, 1.5, 3. The figures are, of course, symmetrical because of
symmetry between λ1 and λ2.

Regardless of ν, we observed that, as l grows large, the case of equally-spread
payload λ1 = λ2 = l eventually becomes the worst choice: the optimal choice of
λ1 is somewhere between 0 (concentrate payload) or l (spread equally), decreas-
ing as l increases. Hence the conclusion of Theorem 1 cannot hold universally.

More interestingly, we observed distinct behaviour as l → 0, depending on ν.
As appears in Fig. 1, even for very small values of l the choice λ1 = λ2 = l is
not optimal for ν = 2, but for l smaller than approximately 1.06 it is optimal
for ν = 4: although the curve for ν = 4 and small l is very flat near the centre,
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Fig. 2. Below, the numerically-determined optimal values of λ1 as l varies, when the
parent family is from the Student t-family. Four different d.f.s are displayed.
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Fig. 3. The case n = 3. Numerically-computed DKL(X ‖ Y ), as a function of λ1 and
λ2, when the parent family is Student t with 4 d.f.

we do observe a genuine minimum at the central point. Figure 2 examines this
further, showing how the optimal value of λ1 (to minimize (4), assuming λ1 ≤ λ2)
depends on l and ν. For t-families with sufficiently light tails (apparently ν at
least approximately 4), we can say that small enough total payloads are best
spread equally between the covers, but we cannot say the same of heavily-tailed
t-families (this is seen at least for ν ≤ 3). These results are only illustrative, but
they motivate study of (4) as l → 0; this will be performed in Sect. 3, where the
critical change of behaviour near ν = 4 will be explained.

We performed similar experiments for the case n = 3; charts for ν = 4 and
l = 0.3, 1.5, 3 are shown in Fig. 3, but others will not be included for reasons of
space. The same features are apparent as for n = 2: when ν = 4, for sufficiently
small l (less than approximately 1.04), equally-spread payload λ1 = λ2 = λ3 = l
gives the lowest KL divergence, but not when ν ≤ 3. Additional numerical
explorations (of necessity not very thorough) show similar behaviour for n = 4
and, pushing our ability to compute (4) numerically to the limit, n = 5. The
critical values of l do not seem to vary much with n, remaining a little over 1 in
all observed cases, suggesting that the limiting result comes into play for larger
payloads when there are more objects in which to hide.

3 Asymptotic Results

Motivated by the numerical results, we consider the asymptotics of the pertur-
bation hiding problem. The results are presented briefly and some details are
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omitted. We will assume considerable regularity without justifying it here. We
will consider small payloads, and as l → 0, λ → 0. Using the notation

	(x; λ) = log f(x; λ), 	λ(x) =
∂

∂λ
l(x; λ)|λ=0, 	λλ(x) =

∂2

∂λ2 l(x; λ)|λ=0,

we can show:

Theorem 3. Assuming sufficient regularity, as λ → 0 we have

DKL(X , Y ) ∼ c1
(∑

λi

)2 + c2
(∑

λi

)3 + c3
(∑

λ2
i

)(∑
λi

)
+ O(|λ|4) (6)

where

c1 =
1
2n

E
[
	λ(X)2

]
, c2 = − 1

3n2 E
[
	λ(X)3

]
, c3 =

1
2n

E
[
	λ(X)3+	λ(X)	λλ(X)

]
.

Proof. The full proof is laborious but routine, so we include only illustrative
sections. In an effort to keep notation brief, let us write

F (x; λ) =
n∏

i=1

f(xi; λi), Fi =
∂F

∂λi
, Fij =

∂2F

∂λi∂λj
, L = log

(
1
n!

∑

π∈Sn

F
(
x; π(λ)

))
.

Then

DKL(X ‖ Y ) = E
[
− log

( 1
n!

∑
π∈Sn

F
(
X ; π(λ)

)

F (X;0)

)]

X∼D(0)n

= E
[
−L(X; λ) + L(X;0)

]

= − 1
1!

n∑

i=1

λiE
[

∂L
∂λi

∣
∣
λ=0

]
− 1

2!

n∑∑

i,j=1

λiλjE
[

∂2L
∂λiλj

∣
∣
λ=0

]

− 1
3!

n∑ ∑ ∑

i,j,k=1

λiλjλkE
[

∂3L
∂λiλjλk

∣∣
λ=0

]
+ O(|λ|4) (7)

where, at the last stage, we have assumed sufficient regularity to allow a Taylor
expansion of L under the integral, in the second vector parameter, about λ = 0.
The expression will simplify because of the symmetry in L, and

E
[

Fs(X;0)
F (X;0)

]
= E

[
Fst(X;0)
F (X;0)

]
= 0 (8)

(in evaluating the expectation, the denominator cancels with the density func-
tion, and given sufficient regularity we can take the derivative of the numerator
outside the integral; differentiating a constant gives zero).

Therefore for the first- and second-order terms in the Taylor expansion of L,

E
[

∂
∂λi

L(X; λ)
∣
∣∣
λ=0

]
= E

[∑
πFπ-¹(i)(X;π(λ))∑

πF (X;π(λ))

∣
∣
λ=0

]
=

1
n

n∑

s=1

E
[

Fs(X;0)
F (X;0)

]
= 0,

E
[

∂2

∂λi∂λj
L(X; λ)

∣
∣
∣
λ=0

]

= E
[∑

πFπ-¹(i)π-¹(j)(X;π(λ))∑
πF (X;π(λ))

∣
∣
λ=0

]
− E

[∑
πFπ-¹(i)(X;π(λ))∑

πF (X;π(λ))

∑
πFπ-¹(j)(X;π(λ))∑

πF (X;π(λ))

∣
∣
λ=0

]
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=

⎧
⎪⎪⎨

⎪⎪⎩

1
n(n−1)

∑ ∑

s�=t

E
[

Fst(X;0)
F (X;0)

]
, if i 
= j

1
n

∑

s

E
[

Fss(X;0)
F (X;0)

]
, if i = j

⎫
⎪⎪⎬

⎪⎪⎭
− 1

n2 E
[ n∑

s=1

Fs(X;0)
F (X;0)

]2

= 0 − 1
nE[	λ(X)2]X∼D(0) = −2c1

(At the final stage, we used (8) along with independence of Fs(X;0)
F (X;0) and Ft(X;0)

F (X;0)
for s 
= t.) We observe that the first two terms of (7) together match the first
term of (6). The third term of (7) reduces to the second and third terms of (6)
for similar reasons, but the calculations are longer (because there are more types
of mixed partial derivative at third order) and we omit them here. �

We can draw some useful conclusions from Theorem 3, because the first two
terms of (6) cannot be varied by choice of λ, if λ̄ = 1

n

∑
λi is constrained to

equal l. Therefore, a) the steganographer’s choice of λ can only affect the second-
most significant term as l → 0, and b) they should minimize c3

(∑
λ2

i

)
. If c3 is

positive, the minimum is again at λi = l (for all i), but if c3 is negative then the
minimum is found on the edge of the feasible region, where some λi are zero (we
will not proceed to find the location of the minimum, in this paper). We have
shown that the sign of E

[
	λ(X)3 + 	λ(X)	λλ(X)

]
X∼D(0), a constant depending

on the distribution family and related to its skewness, determines the optimal
strategy for sufficiently small l.

Does this explain the phenomena in Subsect. 2.3, where the degree of freedom
parameter appeared critical to whether equal payload was optimal as l → 0?
Sadly not, because in a symmetrical distribution, parameterized by location, we
always have c3 = 0! We have proved that the effect of payload allocation is (at
most) of order l2 smaller than the leading term in (6) (hence the very flat-looking
curves in Subsect. 2.3), but must continue the asymptotic analysis of Th. 3 to
the fourth order to understand the asymptotically optimal strategy.

The calculations are of a similar type to those in the proof of Th. 3, but
much more complex. We spare the reader the details, and simply state that the
fourth-order terms in (6) are

c4
(∑

λi

)4 + c5
(∑

λ3
i

)(∑
λi

)
+ c6

(∑
λ2

i

)2 + c7
(∑

λ2
i

)(∑
λi

)2

where

c5 = 1
18nd2 − 1

6nd3, c6 = 1
4n(n−1)d1 + 1

24nd2 + 1
8nd3, c7 = (n−2)

2n2(n−1)d1 − 1
3n2 d2,

d1 = E
[
	λ(X)2

]2
, d2 = E

[
	λ(X)4

]
, d3 = E

[
	λλ(X)2

]
.

(c4 is not relevant to the location of the minimum). Considering the Hessian at
the central point, it can be shown that λi = l is a (local) minimum if and only if

−6d1 + d2 + 3d3 < 0 (9)

(independently of l and n).
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Finally, for the Student t-family (5) one can compute d1, d2 and d3 in terms
of the d.f. parameter ν: (9) turns out equivalent to

ν3 + 2ν2 − 15ν − 20 > 0

which is true for ν > 3.6367 · · · . This explains the behaviour seen in Subsect. 2.3.

4 Conclusions

The batch steganography problem is of importance to covert communication
and storage, posing a fundamental question about the allocation of payload
between multiple objects. Some other work has addressed special cases, but
in this paper we have attacked the general problem. Perturbation hiding is a
mathematical abstraction of the batch steganography problem – at a different
level of abstraction to most of the literature on information-theoretic analyses
of covert communication – and we have given some results about its solutions.
It is likely that the results in Subsect. 2.2 can be extended to wider families
of distributions, and the asymptotic results of Sect. 3 deserve a more rigorous
analytical treatment. An asymptotic result as n → ∞ would also be useful:
perhaps Laplace’s method can be applied.

We chose the problem formulation after a careful consideration of how much
information should be granted to the steganalyst. The model should be seen as
conservative: we do not necessarily believe that the steganalyst always knows
the size of the individual payloads (without knowing their order), we merely
fear that they might find out, perhaps by later compromising a recipient: such
paranoia is in keeping with the spirit of Kerckhoffs’ Principle. It may seem
natural for the detector to try to gain information about payload allocation using
a quantitative steganalysis (such payload size estimators are common) but the
use of KL divergence as an insecurity measure limits the ability of any detector,
including those who first apply estimators.

We would like to conclude that the steganographer’s best choice is to spread
payload equally between covers (as long as the covers are uniform), and thus the
benefits of well-spread payload outweigh the drawbacks of the opponent having
no uncertainty about the amount in each object. We have proved that this is so
for suitably convex exponential distribution families, and for sufficiently small
payloads if the critical value c3, a constant depending on the distribution family,
is positive. However it is not so for when c3 is negative, or for large payloads.
In order to inform the practice of covert communication, and its counterpart
in steganalysis, it will be necessary to clarify circumstances under which these
dichotomous situations occur. A first stage would be to relate c3 to the tail
behaviour of the family. It would be attractive if a simple test can be developed
for genuine cover media, to determine the best embedding strategy.

For tractability and compactness, our analysis in this work has been limited to
uniform covers. We note that uniformity does not necessary mean that the covers
are truly uniform, merely that the parties do not know how, or do not choose,
to take advantage of nonuniformity. Although it is folklore that more data can
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securely be hidden in “noisier” covers there is not much literature quantifying
this, so state-of-the-art steganography is not in a good position to make use of
nonuniformity. More work on the perturbation hiding problem may be valuable
here, perhaps producing a rule for allocating payload in nonuniform covers.

We have already performed a simple small-payload analysis of the pertur-
bation hiding problem in nonuniform covers, but postpone it to a sequel. The
results are quite interesting: it is in the steganographer’s interest to distribute
payload unevenly between the covers, but also to randomise the distribution:
unlike in the uniform case, it does pay to keep the opponent guessing as to the
distribution of payload.
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