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ABSTRACT
There are a number of recent information theoretic results
demonstrating (under certain conditions) a sublinear rela-
tionship between the number of cover objects and their total
steganographic capacity. In this paper we explain how these
results may be adapted to the steganographic capacity of a
single cover object, which under the right conditions should
be proportional to the square root of the cover size. Then
we perform some experiments using three genuine stegano-
graphy methods in digital images, covering both spatial and
DCT domains. Measuring detectability under four differ-
ent steganalysis methods, for a variety of payload and cover
sizes, we observe close accordance with a square root law.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
information hiding

General Terms
Security, Algorithms

Keywords
Steganographic Capacity, Benchmarking, Steganalysis, Ste-
ganography

1. INTRODUCTION
Clearly, the size of a cover object is a major factor in its

capacity for hidden information. It is common for stegano-
graphy and steganalysis literature to report data hiding as
a rate (so many bits per second, bits per pixel, or, in trans-
form domains, bits per useable coefficient) but it has been
observed that rates are not comparable, and data hidden in
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a small cover is often less detectable than data hidden at
the same rate in a large cover. Apart from making compa-
rability of different authors’ benchmarks difficult, it poses a
fundamental question: how does secure steganographic ca-
pacity depend on the cover size, if this dependence is not
proportional?

Some related theoretical work [13, 16] on the problem of
batch steganography [12] (data hiding in multiple covers) de-
monstrates that, under certain conditions, the steganogra-
phic capacity of a batch of N cover objects is proportional
only to

√
N . It suggests a square root law for steganogra-

phic capacity: a result in sharp contrast to capacity in noisy
channels, which demonstrates that the theory of hidden in-
formation is rather different to the theory of information.
In this paper we investigate that law, testing contemporary
steganography and steganalysis methods to show that it ap-
pears valid in practice. The experiments must be designed
carefully, and the law interpreted cautiously, because along
with size there are other properties of cover images which
significantly affect the detectability of payload.

The paper is structured as follows. In Sect. 2 we sum-
marise some recent results about a square root law for stega-
nographic capacity in multiple covers, and show that under
(rather strong) conditions they could apply to single covers
too. In Sect. 3 we perform some experiments on spatial-
domain steganography, examining how the accuracy of some
leading steganalysis methods depends on the cover and pay-
load size, and demonstrating close accordance with a square
root law. In Sect. 4 we do the same for F5 steganography in
JPEG images. Finally, in Sect. 5 we draw conclusions.

2. THE SQUARE ROOT LAW
Steganographic capacity is a loosely-defined concept, in-

dicating the size of payload which may securely be embed-
ded in a cover object using a particular embedding method.
What constitutes “secure” embedding is a matter for de-
bate, but we will argue that capacity should grow only as
the square root of the cover size under a wide range of defi-
nitions of security.

Turning to the literature, even as long ago as 1996 we
find references to the possibility of sublinear steganographic
capacity. Anderson [1, §4.3] states:

“Thanks to the Central Limit Theorem, the more
covertext we give the warden, the better he will



be able to estimate its statistics, and so the smaller
the rate at which [the steganographer] will be
able to tweak bits safely. The rate might even
tend to zero...”

But it seems that this idea was not pursued and the rate of
capacity was not quantified. Note, however, that the refer-
ence to the Central Limit Theorem already suggests that a
square root relationship should be considered.

The first empirical results relating size of payload to size
of cover can be found in [9, §2.1]: a fixed set of cover images
was repeatedly rescaled to different sizes, fixed-rate payloads
embedded, and one simple detector’s performance measured.
It was observed that the payload was more detectable in
larger images, and concluded:

“This is not contrary to the instinctively obvious
fact that larger images can carry larger messages
securely, but it does indicate that the increase is
not proportional.”

Further investigation in [2, §4.1] formulated statisical tests
to distinguish between different possible relationships be-
tween cover size and detector dispersion (the inverse of which
is a proxy for detectability). Of those tested, the best fitting
was a log-proportional model for dispersion, and a square-
root model the second best fit. The latter would suggest a
square root law for capacity, the former something asymp-
totically greatly.

These results should not be taken at face value because
the differently-sized covers were obtained by resampling. It
is now known [3] that there are other highly significant fac-
tors which affect steganographic capacity, including the local
variance of the cover. When an image undergoes significant
downsampling, its local variance is usually increased, so the
empirical results in [9, 2] had inadvertently caused, and did
not control for, a confounding factor. Nonetheless, the re-
sults are strongly suggestive of sublinear capacity.

Notwithstanding these experimental results, there is the-
oretical work to show that information could in principle be
hidden at a linear rate: in [24], codes are constructed which
guarantee that the distribution of stego texts is identical to
that of cover texts, and which do convey hidden messages
proportional to the cover size. Indeed, it is entirely rea-
sonable to believe that a cover source has a fixed entropy
rate, in which case selecting a sequence of unaltered covers
itself conveys information at a linear rate. However, such
results depend on the steganographer knowing everything
about their cover source. In the practice of steganography
in digital media objects, a model of the source (if used at
all) can only be an approximation, and there is always the
possibility that a detector has a better model.

In a world where the steganography is not perfect, then,
what is the relationship between cover size and capacity?

To our knowledge, the question is not addressed directly
in the literature. However, a closely-related question has
been studied recently. Instead of considering a single cover
and its capacity in relation to its size, imagine a set of N
cover objects amongst which a payload is to be spread. This
is the problem of batch steganography introduced in [12]. In
the batch setting, the capacity question becomes the rela-
tionship between the number of covers and their total secure
capacity. In [12] we also find the first explicit conjecture that
steganographic capacity follows a square root law.

Defining security by Neyman-Pearson style bounds on the
performance of a pooled detector, which takes evidence from
steganalysis of each individual object to decide whether a
batch of N contains any payload, [13] proves a result about
capacity. Under certain conditions, capacity is proportional
to

√
N in the following sense:

Theorem 1. Suppose that a detector maps objects to real
scalars, and that the effect of embedding payload is cause a
linear shift in the detector response; suppose also that the de-
tector response density has infinite support, is at least twice
continuously differentiable, and the second derivative of its
logarithm is bounded below.

If a steganographer embeds a total payload of M bits into
N uniform cover objects, then

(1) If M/
√

N → ∞ as N → ∞ then there is a pooled de-
tector which, for sufficiently large N , comes arbitrarily
close to perfect detection.

(2) If M/
√

N → 0 as N → ∞ then, by spreading the
payload equally between N covers, the performance of
any pooled detector must become arbitrarily close to
random for sufficiently large N .

(This paraphrases the result in [13].)
These conditions are certainly strong, particularly in as-

suming that embedded payload causes a linear shift in detec-
tor response (such an assumption is motivated by payload-
size estimators in [12]). In [13] it is conjectured that this
need hold only locally for payloads near zero. There is also
an implicit assumption that the detector output is i.i.d. for
covers, forcing a kind of uniformity on the cover objects
themselves.

Although the hypotheses are strong, this was the first re-
sult to prove a square root capacity relationship between
secure payload and cover size.

Another square root law for batch steganography is also
proved, under different conditions, in [16]. There we have

Theorem 2. Suppose that the covers are N independent
objects, that the KL divergence [18] between cover and stego
objects with payload p is proportional to p2, and that security
is defined in terms of a bound on the total KL divergence be-
tween the sequence of covers and corresponding stego objects.
Then the maximum secure payload M is O(

√
N).

(This paraphrases Theorems 4 and 5 of [16].)
This version of the batch square root law has different hy-

potheses: it allows nonuniformity of the covers (as long as
their characteristics are bounded in a suitable sense, see [16]
for details) and transfers conditions on the detector into a
hypothesis about KL divergence between cover and stego ob-
jects. The KL divergence assumption remains quite strong,
although it can be justified by regularity conditions similar
to those in [14], and it still requires independence of the
cover objects.

How do these capacity results, for batch steganography,
relate to the capacity of individual covers? Embedding in
a single cover object can be modelled as an instance of the
batch problem if we consider the cover to consist of a se-
quence of small regions, with the embedder having freedom
to split the payload amongst the regions. However, the pre-
ceding theorems required independence of the component
objects: not implausible for different cover objects, but un-



likely for regions within a single object because of image-
wide effects of the cover source. Nonetheless, we might ex-
pect to see approximate independence of different regions,
or at least believe that any dependencies are not exploited
in steganalysis.

In practice, many steganalysis methods use only local
measurements (based on 8 × 8 DCT blocks, or properties
of small groups of adjacent pixels) and their aggregate op-
eration treats the blocks as independent. If a steganalysis
method can be expressed as some function of independent
regions (whether or not it is explicitly written in such a
form) then it is an example of a pooled detector and obeys
the batch capacity laws. This applies particularly to JPEG
steganalysis, which tends to use statistics of 8 × 8 blocks
without considering inter-block dependency.

In the absence of perfect steganography these discussions
suggest that, all other things being equal, the secure stega-
nographic capacity of a cover object should be proportional
to the square root of the number of available embedding lo-
cations. Of course, the preceding discussion is certainly no
proof of such a square root law in general. Indeed, we do
not believe that a square root law will be a single theorem.
Instead it is likely to constitute a suite of results, similar
in style to Theorem 1, for a range of mathematical mod-
els of cover objects and embedding methods. For example,
the batch steganography results deal with some cases where
the cover objects are modelled as a sequence of independent
random variables. That the square root law holds in general
is a falsifiable, but probably unprovable, thesis.

Before testing this hypothesis empirically, we return briefly
to the definition of capacity. It is not quite correct to speak
of capacity as a bound on the size of payload because it
is not payload itself which is detected by steganalysis. It
is the changes induced by embedding which are detected,
and capacity is more properly given by a bound on per-
missable changes; in simple embedding schemes where the
changes are of fixed magnitude, it is the number of changes
we should measure. This difference is important because of
the existence of adaptive source codes [6], which can exploit
freedom of choice of embedding locations to reduce the num-
ber of changes required. We will return to this question in
Sect. 5, until then proceeding under the implicit assumption
that embedding changes and payload size remain in fixed
proportion.

3. EXPERIMENTAL INVESTIGATION:
SPATIAL-DOMAIN STEGANOGRAPHY

We now conduct experiments to validate the square root
law, concentrating on digital images. Payloads will be em-
bedded, using a number of different embedding methods and
various payload lengths, into cover images of different sizes.
Then we will measure the ability of some recent steganalysis
methods to detect the payload, and look for a square root
relationship. In this section we will focus on spatial-domain
embedding and detection methods; in the next we will con-
sider DCT-domain steganography for which there are some
additional challenges.

There are two difficulties to overcome in testing the theo-
retical result of Sect. 2. First, the caveat that capacity is a
square root law all other things being equal. Other literature
on the benchmarking of steganalysis [2, 3] has shown that
there are cover properties other than size – local variance,

saturation, prior image processing operations – which sig-
nificantly affect the detectability of payload, and it is not
possible to control or even determine them all. Therefore
we cannot use sets of differently-sized covers from different
sources to estimate how capacity depends on size: variations
in the other properties may invalidate the results. Neither
can we generate small cover images by downsampling large
ones, because downsampled images have a higher semantic
density so, usually, higher local variance. The solution is
to use a single set of large covers and repeatedly crop down
to smaller images. In an attempt to preserve other image
characteristics, the cropped region can be chosen so that the
average local variance (here measured by average absolute
difference between neighbouring pixels) is as close as possi-
ble to that of the whole image. Our image libraries are not
large enough to partition them into disjoint sets for cropping
to different sizes, so we may observe correlation between the
content of the different-sized cropped images, but this is not
expected to cause significant effects in the experiments.

The second difficulty is to define “capacity”. We can set
a level of detection risk which the steganographer is pre-
pared to accept, but (even apart from the fact that the level
itself will be arbitrary) how to measure detectability? As
discussed in [14] and [15], there are many different detec-
tion metrics found in the literature. For these experiments
we will consider three metrics, two standard and one very
recent:

(a) The area under the ROC curve of a binary classifier
for the presence or absence of payload (AUR), unnor-
malized so that AUR = 0.5 corresponds to a random
detector and AUR = 1 to perfect detection;

(b) The minimum sum of false positive and false negative
errors for a binary classifier PE = 1

2
min(fp + fn) (for

comparability with other measures, 1 − PE is used);

(c) Directly from the observed cover and stego distribu-
tions of steganalysis features, a recently-developed mea-
sure called Maximum Mean Discrepancy (MMD). Its
key features are described in the Appendix.

In each case, higher values denote lower security.
Our first series of experiments was performed on never-

compressed cover images. A set of 3000 images was down-
loaded from the NRCS website [19]: apparently scanned
from film in full colour, these images vary slightly in size
around approximately 2100 × 1500 pixels. We downsam-
pled the images to a larger side of 1024 pixels, and reduced
them to grayscale: the same set of images has been used
by a number of steganalysis researchers. Nine sets each of
3000 grayscale cover images were then created by repeated
cropping, selecting the crop region best to match the local
variance of the original, to sizes 100 × 75, 200 × 150, . . .,
900 × 675.

Random payload was embedded using simple LSB replace-
ment (for payload smaller than maximum a random selec-
tion of embedding locations was used). We selected three
different strategies for choosing the payload size according
to cover size: embedding a fixed-size payload in all cover
sets, embedding payload proportional to the square root of
the number of cover pixels, and embedding payload propor-
tional to the number of cover pixels. For each option, three
different constants of proportionality were tested.

The method in [17] gives the currently-known best ste-
ganalysis of LSB replacement in never-compressed images,
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Figure 1: Detectability (y-axis, measured by AUR, 1 − PE, and MMD on a log scale) as a function of cover
size N (x-axis) and payload size. 90% bootstrapped confidence intervals are indicated. Left, fixed payload

size. Middle, payload proportional to
√

N . Right, proportional to N . LSB replacement steganography in
never-compressed cover images, detected by method of [17].

and we applied it to each set of covers and stego images. The
accuracies of the resulting detector for payload, as measured
by AUR, PE , and MMD, are displayed in Fig. 1, along with
90% confidence intervals obtained using a simple resampling
bootstrap. These experiments are in line with the theo-
retical predictions: whichever detectability metric is used,
fixed-length payload becomes harder to detect in larger cov-
ers, fixed-proportion payload becomes easier to detect, and
payload proportional to square root of cover size is (approxi-
mately) of constant detectability. At least these results sug-
gest that square root capacity is much more plausible than
proportionate capacity.

To check that the preceding results are not an artefact of
the covers, we repeated the same experiments with a dif-
ferent set of 1600 images taken by the first author using a
Minolta DiMAGE A1 camera in raw format at a resolution
of 2000×1500, subsequently converted to grayscale and sub-
ject to JPEG compression (quality factor 80). The images
were cropped to 16 different sizes between 100× 75 and full
size, again selecting the crop region to match the average
local variance of the original. When cover images have been
previously compressed, different detectors for LSB replace-

ment have better performance than that in [17], so we used
the Triples detector of [10].

Charts analogous to those in Fig. 1, for the compressed
cover images and Triples steganalysis, are displayed in Fig. 2
and we can draw similar conclusions: secure payload is cer-
tainly not constant, nor proportional to cover size, but ap-
pears to be approximately proportional to the square root
of the cover size. More visible in this second set of experi-
ments are artefacts in the charts for very small cover sizes,
but these are to be expected if the theoretical results are
only asymptotic for large covers.

Finally, we tested an alternative method of spatial-domain
LSB embedding known as LSB matching, or ±1 embedding.
It does not have the structural flaws of LSB replacement,
and seems much more difficult to detect. For the detector,
we used the method known as the adjacency HCF COM
found in [11], but this detector is still quite weak: payloads
as small as those in the previous two experiments are un-
detectable, so we had to increase the payload sizes consid-
erably. As a result, it was not possible to fit the payloads
into very small covers (one cannot embed more than 1 bit per
pixel using LSBs). We used the same 3000 never-compressed
scanned images as for the first experiment, cropped down to
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Figure 2: Detectability as a function of cover size, cf. Fig. 1. LSB replacement steganography in previously
JPEG-compressed digital camera images, detected by method of [10].

ten sizes between 360 × 270 and 900 × 675. The resulting
charts are displayed in Fig. 3.

Observe that the detector’s performance remains very low:
AUR is not much about 0.5 (which corresponds to a random
detector), PE not much below 0.5 (similarly), and MMD
is near to zero (corresponding to identical distributions of
cover and stego features) and, because we are digging in
the detector noise, the bootstrap confidence intervals are
wider. However, similar features are still apparent: falling
detectability in larger covers when the payload is fixed and
rising detectability when the payload is proportional to cover
size. When the payload is proportional to the square root of
the cover size, the detection metrics are approximately con-
stant, although there is a suggestion that the detectability
may be gradually decreasing.

To investigate more precisely how capacity depends on
cover size we performed additional experiments: fixing on
just one detection metric we set a bound on the risk to the
steganographer (a minimum value of PE) and determined
the largest payload for which the detection bound can be
met. This was accomplished by embedding 100 different
payload sizes in each of the cover sets, measuring PE for
each combination and using linear interpolation to estimate
PE for intermediate payloads. Denoting cover size (pixels)
by N and capacity (payload bits) by M , we can plot M

against N on a log-log scale: if there is a relationship of the
form M ∝ Ne then the points should fall in a straight line
with slope e.

Figure 4 displays the results for each of the three detectors
and cover sets in our experiments, with two different thresh-
olds for PE (in the case of LSB matching, we must set a very
high threshold for PE because the detector is so weak). In
each case a straight line fit is determined by simple linear
regression. When capacity is measured in this way, it does
indeed appear to follow a relationship M ∝ Ne, with val-
ues of e very close to 0.5. Even the line corresponding to
PE = 0.45 with the LSB matching detector would have slope
close to 0.5 if the data points from the smallest image sets
were discounted. Unfortunately we cannot use the standard
least-squares tests for whether e differs significantly from
0.5, because the data points are not independent (they arise
from images with overlapping content).

4. EXPERIMENTAL INVESTIGATION:
JPEG STEGANOGRAPHY

We repeated the experiments of the previous section for
steganography and steganalysis in JPEG images, to see whe-
ther the square root law still holds. A leading JPEG embed-
ding method is F5 [25], and we used the improved version
called no-shrinkage F5 (nsF5) [5], which has the same em-
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Figure 3: Detectability as a function of cover size, cf. Fig. 1. LSB matching steganography in never-compressed
scanned images, detected by method of [11].
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bedding operation but uses wet paper codes [4] to remove a
statistical anomaly where the absolute value of DCT coeffi-
cients tended to be reduced. F5 and nsF5 have an optional
matrix embedding [6] feature, which was disabled because it
introduces non-linearity between the payload and the num-
ber of embedding changes [5].

Measuring the size of a JPEG image is not as simple
as counting pixels. After lossy compression, many of the
DCT coefficients become zero and do not convey content:
these coefficients cannot be used for embedding. There-
fore we define the steganographic size as the total num-
ber of nonzero DCT coefficients (abbreviated nc). This is
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Figure 5: Detectability as a function of cover size (nonzero DCT coefficients). No-shrinkage F5 steganography
with matrix embedding disabled, in JPEG covers, detected by method of [21].

a generally-accepted measure, although some authors also
discount DC coefficients.

We began with approximately 9200 never-compressed im-
ages of different sizes, and from them cropped 15 sets of
cover images each with a specified number of nonzero coef-
ficients, 2 · 104, 4 · 104, . . . , 30 · 104, all under JPEG com-
pression with quality factor 80. None of the images were
double-compressed. As in the spatial-domain experiments,
cropping was favored over scaling: the latter produces im-
ages with a higher number of nonzero DCT coefficients on
higher frequencies, so statistics of DCT coefficients in scaled
images vary substantially with cover size. Also paralleling
the experiments in the previous section, we chose the crop
region to preserve some other characteristics of the cover.
In the case of JPEG images, we attempted to preserve the
proportion of nonzero DCT coefficients.

In each set of covers, a random message was embedded us-
ing the nsF5 algorithm. As before, our strategies for choos-
ing the payload were to embed a fixed size payload into all
cover sets, to embed payload proportional to the square root
of the number of nonzero coefficients, and to embed payload
proportionally to the number of nonzero coefficients.

The combination of Support Vector Machine (SVM) clas-
sifiers [22] with a Gaussian kernel and so-called merged fea-
ture set [21] is the state of art general purpose steganalytic

system for JPEG images. We measured detectability using
SVMs trained specifically to each combination of cover and
payload size: for each such combination, 6000 images were
selected at random from the available set of 9200, split into
disjoint sets of 3500 for training and 2500 for testing. In the
training stage, the 3500 cover images and 3500 correspond-
ing stego images were used; similarly in the testing stage,
the 2500 cover images and 2500 corresponding stego images
were all classified by the SVM. The training and testing
of the SVM classifiers was repeated 100 times with differ-
ent random selections of training and testing sets, and the
overall AUR and 1−PE metrics computed for the resulting
binary classifiers.

Additionally, the MMD between the “merged feature set”
vectors in cover and stego images was computed. Again,
6000 images were selected at random, this time partitioned
into disjoint sets of 3000 covers and 3000 stego images (dis-
joint sets are necessary for good MMD estimation, see Ap-
pendix). This was repeated 100 times with random alloca-
tions of cover and stego images: increasing the accuracy of
the estimate, and also allowing us to estimate rough boot-
strap confidence intervals. Prior to computing MMD, the
vectors were normalized so that each cover feature had zero
mean and unit variance: note that, although the MMD ker-
nel γ parameter (see Appendix) is fixed for all cover sizes,
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the normalization parameters are determined separately for
each set. This proved necessary because we observed great
variability in the raw feature distributions, as the cover size
varied.

The results of the experiment (Figure 5) confirm the the-
oretical predictions, and are similar to the results presented
in Section 3. For fixed (respectively, linear) payload, by
any metric the detectability increases (resp. decreases) with
the cover size, and for payload proportional to the square
root of nc the detectability is approximately constant, al-
beit with a barely-visible downwards trend. It is thought
that the MMD measure shows this as a slightly stronger ef-
fect because of the different normalization parameters used
for different cover sets.

Following Sect. 3, the next experiment was to find payload
such that the probability of error PE matches a certain level.
The search for the payload was carried under the reasonable
assumption that the detectability increases with the payload
size. The PE measure at each given payload was estimated
by the accuracy of the classifier (again, a SVM with a Gaus-
sian kernel employing“merged” features) targeted to a given
combination of cover nonzero coefficients and payload size.
The training and testing conditions were the same as in the
previous experiment. Even though repeated training of the
classifier is very time consuming, this approach was favoured
because it provides good estimates of PE .

Figure 6 shows maximum payload M plotted against nc
N in log-log scale for PE = 0.1 and PE = 0.25. Payloads
were identified within 1% accuracy of the desired PE level.
In both cases, the graph shows a close accordance with a
straight line and the slope of the line is close to 0.5. This
shows that the capacity of JPEG images for nsF5 (without
matrix embedding) grows with square root of the number of
nonzero DCT coefficients.

5. CONCLUSIONS
In this work we have surveyed the literature relating stega-

nographic capacity to cover size, and argued that the square
root law proved for batch steganography may also apply to
the case of individual covers. There are suggestions, from
the literature on random processes, that the square root law
should also hold in rather general circumstances for Markov
chains: this would be powerful additional evidence for square
root capacity in general, and is the subject of future research.

Using carefully-designed experiments, which as far as pos-
sible isolate the effect of cover size from other cover proper-
ties, we tested the square root law for a number of stegano-
graphy schemes, using contemporary steganalysis detectors.
Close adherence to the law was observed.

It is not widely known that the secure capacity of a cover
is proportional only to the square root of its size (where size
should be measured by available embedding locations), in
the absence of perfect steganography. It seems to be of fun-
damental importance to the practice of steganography, and
could be particularly vital for the design of steganographic
file systems, where the user might expect to be given an
indication of secure capacity.

However, when interpreting the square root law we must
take care not to ignore other important factors which con-
tribute to capacity. In practice, properties of cover images
such as saturation, local variance, and prior JPEG compres-
sion or image processing operations have been shown to have
significant effects on detectability of payload [2, 3]. We can-
not simply conclude that, because one cover is twice as large
as another, it can carry

√
2 times the payload at an equiv-

alent risk. The law applies other all things being equal and,
as the difficulties constructing suitable experiments to test
the law illustrate, rarely are cover images equal.

We also emphasise that the law truly applies not to raw
payload size but to the embedding changes caused. In some
embedding schemes these quantities are not proportional.
For example, using syndrome coding [6] and binary embed-
ding operations it is possible to design embedding codes for
which the number of embedding changes c and payload size
M approaches asymptotically the bound c ≥ NH−1(M/N),
where H is the binary entropy function. The consequence of
an asymptotic limit c = O(

√
N) is then M = O(

√
N log N).

A parallel result is found in [16]. It would appear that,
fundamentally, steganographic payload capacity is of order√

N log N . This is a curious outcome.
One could argue that, because of the square root law, re-

searchers should cease to report payloads measured in bits
per pixel, bits per second, bits per nonzero coefficient, etc:
the correct units should perhaps be bits per square root pixel
and so on. (In the presence of adaptive source coding, “bits”
should be replaced by“embedding changes”.) However, such
a change would still not allow comparability of different au-
thors’ benchmarks, because of the other factors affecting
detectability; unless different authors use covers from the
same source, their results cannot be exactly comparable in
any case.

For future research, it may be valuable to repeat experi-
ments analogous to those in this paper for yet more stega-
nography and steganalysis methods, including in domains
other than digital images. Ideally, experiments would be
conducted using so large a library of cover objects that the
subsets of objects of different size come from disjoint origi-
nals. Then it would be possible to perform statistical tests



for whether the capacity exponent differs significantly from
0.5. Our investigations also revealed (unreported) interac-
tions between cover size and feature statistics, whose cause
is yet to be identified.
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[3] R. Böhme and A. Ker. A two-factor error model for
quantitative steganalysis. In Security, Steganography
and Watermarking of Multimedia Contents VIII,
volume 6072 of Proc. SPIE, pages 59–74, 2006.

[4] J. Fridrich, M. Goljan, and D. Soukal. Wet paper
codes with improved embedding efficiency. IEEE
Trans. Information Forensics and Security,
1(1):102–110, 2006.

[5] J. Fridrich, T. Pevný, and J. Kodovský. Statistically
undetectable JPEG steganography: Dead ends,
challenges, and opportunities. In Proc. 9th ACM
Workshop on Multimedia and Security, pages 3–14,
2007.

[6] J. Fridrich and D. Soukal. Matrix embedding for large
payloads. IEEE Trans. Information Forensics and
Security, 1(3):390–394, 2006.

[7] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf,
and A. Smola. A kernel method for the
two-sample-problem. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 513–520. MIT Press,
Cambridge, MA, 2007.

[8] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf,
and A. Smola. A kernel method for the
two-sample-problem. Technical report, Max Planck
Institute for Biological Cybernetics, Tübingen,
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APPENDIX

A. THE MMD MEASURE
Maximum Mean Discrepancy (MMD) [7] is a recently-

developed measure of difference between probability distri-
butions. If X and Y are random variables with the same
domain X then their MMD is defined as

max
˛̨
E[f(X)] − E[f(Y )]

˛̨
, (1)

where the maximum is taken over all mappings f : X �→ R

from a unit ball F in a Reproducing Kernel Hilbert Space



(RKHS). Although not a true metric, the MMD is symmet-
ric, nonnegative, and zero only when X and Y have the same
distribution.

For technical reasons it is simpler to use the square of the
MMD measure in (1) and in this paper we always report
squared MMD values. Given n independent observations
(x1, . . . , xn) of X and a further n independent observations
(y1, . . . , yn) of Y , the (squared) MMD may be estimated by

1

n(n − 1)

X X

i�=j

k(xi, xj) + k(yi, yj) − 2k(xi, yj)

where k is a bounded universal kernel k : X × X �→ R that
defines the dot product in the RKHS [23]. The variance of
the estimator decreases as 1/

√
n, almost independently of

the dimension of the random variables [8], and can also be
improved by bootstrapping. MMD has been used for com-
paring security of stego-schemes in [20].

In this paper we measure MMD with respect to a Gaussian
kernel

k(x, y) = exp(−γ‖x − y‖2),

with the width parameter γ set to η−2, where η is the me-
dian of the L2-distances between (normalized) features in a
pooled set of all cover images. This choice is justified in [20].
Note that, for direct comparison of MMD values obtained
from experiments on different cover sets, the γ parameter
should remain fixed.


