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ABSTRACT

The literature now contains a number of highly-sensitive de-
tectors for LSB replacement steganography in digital images.
They can also estimate the size of the embedded payload,
but cannot locate it. In this short paper we demonstrate
that the Weighted Stego-image (WS) steganalysis method
can be adapted to locate payload, if a large number of im-
ages have the payload embedded in the same locations. Such
a situation is plausible if the same embedding key is reused
for different images, and the technique presented here may
be of use to forensic investigators. As long as a few hun-
dred stego images are available, near-perfect location of the
payloads can be achieved.

Categories and Subject Descriptors

D.2.11 [Software Engineering)|: Software Architectures—
information hiding

General Terms
Security, Algorithms
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1. INTRODUCTION

There can be no doubt that replacement of least signifi-
cant bits (LSBs) in digital images is a poor choice for steg-
anography. Nonetheless, it remains popular in free stegano-
graphy software, perhaps because of the mistaken assump-
tion that visual imperceptibility implies undetectability.

Broadly, the literature contains two leading classes of de-
tector for LSB replacement. The first, termed the structural
detectors in [5], includes payload estimators found in [1, 3, 5,
6, 7, 9]; they analyse explicitly the combinatorial structure
of LSB replacement in pixel groups. The second, known as
the Weighted Stego-image (WS) detectors, are found in [2,
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8], and involve filtering a stego image to estimate the cover,
before using some properties of bit flipping. At the present
time, the most recent WS detectors and payload estimators
seem somewhat more accurate than the most recent struc-
tural detectors, but both exhibit astonishingly sensitive per-
formance: depending on cover type, payloads using only of
the order of 1% of capacity can often be detected with high
reliability.

However, none of these detectors go beyond estimating the
size of the payload (nor, to the author’s knowledge, do less-
sensitive detectors found in other literature): they cannot
locate or determine the payload. It is somewhat curious that
it is possible to make near-perfect estimates of the number
of payload-carrying pixels without learning anything about
which pixels they are.

Our aim here is to adapt the WS method to locate pay-
load. Our method will not work on a single image, but
instead assumes that the steganalyst possesses a number of
stego images each containing payload at the same locations.
We argue that such a scenario is not implausible, for example
if the different stego objects are the same size, each contain
the same amount of payload, and the same embedding key
was used. By applying the WS method in an unusual way,
it will be possible to determine with high accuracy which
pixels carry the payload.

One other technique for locating payload is found in the
literature [4]; there, the steganographic key space is tested
exhaustively and stego-signatures in the histogram are used
to determine the correct key from a single stego image. How-
ever, this method requires that the complete steganographic
scheme is known (and the key space must not be too large).
Our technique requires many stego images which (by reason
of using the same embedding key, or by defect in the embed-
ding method) locate the payload in the same pixels, but it
does not require us to know anything more than that LSB re-
placement was used. This may have potential applications in
image forensics: information about payload location could
be a key step in identifying the embedding software used,
with a technique such as [4] applied subsequently. Loca-
tion of payload pixels is the first step to the eventual aim of
decoding the payload.

The paper is structured as follows. In Sect. 2 we will
briefly summarise the key points of the WS method, but al-
ter the presentation to highlight what we call the WS residu-
als. In Sect. 3 we demonstrate how the residuals can be used
to locate payload, and test the locator in Sect. 4. Sect. 5
considers the limitations of this technique and suggests di-
rections for further research.



2. RESIDUALSAND THEWSMETHOD

The Weighted Stego-image method was first described
in [2] and substantially re-engineered and improved in [§].
We will present the core of the method in a slightly different
way, making the residuals explicit.

We first fix the notation, to be used throughout the paper.
Let us suppose that a cover image consists of a vector ¢ =
(c1,...,cn) of n pixel intensities, and that a corresponding
stego image s = (s1,..., $n) is created by replacing the LSBs
of proportion p of the cover pixels; the total payload size is
therefore np. Throughout the paper we will use the notation
Z to indicate the integer z with LSB flipped (more usually
T, but we want to avoid confusion with a sample mean, used
extensively here).

The first step of the WS method is to estimate the cover
image by filtering the stego image; we use the notation ¢ for
the estimate of ¢ obtained from s. In [2], the estimate of
each cover pixel is simply the average of the neighbouring
four stego pixels, but this is generalized in [8] to convolution
by an arbitrary linear filter, thus

c=fxs (1)

where f is the filter. (This constitutes a slight abuse of
notation, as * is intended to indicate a 2-dimensional convo-
lution taking into account horizontal and vertical structure
in the image, even though we have modelled images as 1-
dimensional vectors).

In this work we will define the vector of residuals

§i)(si — &)

which indicate the difference between stego object and es-
timated cover, with the sign adjusted to take into account
the asymmetry in LSB replacement (even pixels could only
be incremented, and odd pixels decremented, by overwriting
the LSB). If ¢; is an unbiased estimator for ¢;, the estima-
tion error is independent of the parity of ¢;, and the payload
is independent of the cover, then the residuals r; satisfy

E[TZ] _ {0, if Si = Cq, (2)

Ty = (Si -

1, ifsi :E;

We can define the mean residual ¥ = £ > r4; from (2), 27 is
an unbiased estimator for p. The factor of 2 is because, on
average, replacing a LSB only flips it with probability 1/2.

The residuals themselves have quite a dispersed distribu-
tion, in comparison with a shift of 1 caused by LSB flipping.
For a set of images acquired from a digital camera (of which
more in Sect. 4), in which no payload was embedded and
no LSBs flipped, we computed the residuals for each pixel
and each image, and display their histogram in Fig. 1. The
observed mean was —0.000179, the standard deviation 5.30
(3 sig. fig.), and the distribution was significantly leptokur-
tic (fatter tails than Gaussian). But a single digital image is
likely to contain hundreds of thousands, or millions, of pixels
and so the mean residual 7 will have a much lower variance.
This is why sensitive detection, and payload size estimation,
of LSB replacement is possible by the WS method.

The version of WS described above is equivalent to the
simplest payload estimator in [2]. More sophisticated esti-
mators, with even more accurate payload size estimation,
can be found in [2] and [8]: additional techniques include
using better pixel predictors than the simple 4-neighbour
average above, optimizing the pixel predictor by training it,
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Figure 1: Histogram of WS residuals for pixels with
no payload.

forming a weighted WS estimator which amounts to taking
a weighted average residual — with areas of more confident
cover prediction being given higher weights — and correcting
for bias caused by parity co-occurrence between neighbour-
ing cover pixels. We will not repeat these here, and some
of them are not applicable to payload location, but we will
return briefly to improved pixel predictors and weighting in
Sect. 4.

3. LOCATING PAYLOAD IN MULTIPLE
COVERS

Suppose that we have a number of stego images, which
contain different payloads but locate the payloads at the
same pixel positions. This is not completely inconceivable:
some embedding schemes (particularly those foolish enough
to choose LSB replacement) use fixed payload locations, and
even when the location is varied by a secret key shared
between steganographer and recipient it is quite possible
that the same key is used for a batch of communications,
which would therefore contain payload in the same locations.
We will attempt to identify the location of these payload-
carrying pixels, by summing WS residuals between, instead
of within, images.

Suppose that there are N images, each of n pixels. Fol-
lowing the WS method, we can estimate each cover image
by filtering the corresponding stego images. Then denote
the residual of pixel ¢ in image j by

rij = (8ij — 8i3) (815 — Cij)-
The conventional WS method estimates the proportion of
flipped LSBs in image j by taking the mean7; = £ 3" | ;.
Instead, we can estimate the number of images in which pizel
i is flipped by

1 &
Ti. = NZTU.
j=1

Given (2), if pixel 7 is not used for payload (by assumption,
it will not have been flipped in any of the stego images) then
E[ri-] = 0. On the other hand, if pixel ¢ is used for payload
(by assumption, it will be overwritten in each of the images)
then E[r;:] = 0.5. Of course, the observations of 7;. will
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Figure 2: Histograms of the mean residuals of each pixel, when half of the pixels carry payload, for six

different values of N.

inherit high variance from the residuals unless N is large,
and we cannot reasonably expect N to be of the order of
10° in the same way as n in standard WS. However, neither
do we need as low a variance if our only aim is to distinguish
7. = 0 from 7;. =~ 0.5. So, given sufficient stego images, it
should be possible to separate the payload-carrying pixel
locations from the rest.

A classification of which pixel locations do contain pay-
load can be made in a number of ways. One could take
the grand mean 7. = ﬁ Z” ri; to estimate the number
of payload locations by M = 2n7.., and the M pixel loca-
tions with the highest mean residual 7;. can be identified as
containing payload. Alternatively, given symmetry of the
residuals, locations with 7;. > 0.25 could be identified as
containing payload.

Note that our assumptions include that the amount of
payload in each image is also fixed. However, the method
could also be adapted to unequal payload sizes, if payload
is placed into a fixed sequence of locations: those locations
at the start of the sequence would have the highest values
of E[77.], while locations at the end would have the lowest.
Simply ranking the observed values of 7;. would estimate
the pseudorandom path, but we will not pursue this here.

4. EXPERIMENTAL RESULTS

We now give some experimental data to measure how
well this adapted WS technique locates payload, and to
determine the necessary number of images to obtain reli-
able results. We began with a set of 1600 never-compressed
digital images, 2000 x 1500 pixels, converted from RAW
colour images obtained from a digital camera using the man-

ufacturer’s standard RAW-to-TIFF conversion software and
then reduced to grayscale by taking the luminosity. How-
ever, 1600 images is not enough to test large values of N,
and 2000 x 1500 pixel images are rather large if we need to
store all residuals of each pixel, so we created a set of 20000
smaller images by repeatedly cropping random 400 x 300
regions from the larger originals. There will be some over-
lap between a few of these images, but that should not be
a significant factor in these experiments. We chose a fixed
set of pixels to carry payload of 50% capacity (i.e. 60000
locations), and there embedded a random payload by LSB
replacement in each image.

For six different values of N, we selected N images at ran-
dom and computed residuals for each pixel and each image.
The cover predictor was the simple average of four neigh-
bours, described in [2]. Finally, we computed the mean-per-
pixel residuals 7;., and display their histograms in Fig. 2.
Observe that there is much noise in these residuals for small
values for N, but for N at least 1000 distinct peaks at 0 and
0.5 — corresponding to pixels without and with payload —
begin to appear. At N = 10000 there is complete separa-
tion between these two cases and so it is discovered exactly
which pixels carried the payload.

To evaluate the accuracy of classification, we chose the
simple method of identifying all pixels with 7. > 0.25 as
those carrying payload. We then compared our estimate
against the true set of 60000 payload-carrying pixels. For
some different values of N, we display accuracy (in terms of
true positive, false positive, and false negative) in Tab. 1.
The classification is near-perfect for N = 5000 and perfect
for N at least 10000. Even for smaller values of N the clas-



Table 1: Accuracy of payload location, for seven
different values of N. TP = true positives, FP =
false positives (pixels incorrectly classified as carry-
ing payload), FIN = false negatives (missed pixels).

N TP FP FN
100 40717 19042 19283
200 43850 15927 16150
500 49262 10674 10738
1000 55170 4861 4830
2000 58672 1290 1328
5000 59956 33 44
10000 60000 0 0

sification is more right than wrong, but it appears that this
method is of limited use unless a forensic investigator has
thousands of images, all embedded using the same key.
However, we can do better by boosting the performance
of the WS method, adopting some of the methods of [8].
Instead of predicting the cover image using the simple fixed
filter (1) we adjust the filter according to the image under
consideration: it is trained on each individual stego image
to determine the linear filter which best predicts the stego
image itself. Following [8], we used a 5 x 5 filter pattern
with horizontal, vertical, and diagonal symmetry (for cor-
rectness of (2), the central value of the filter must be fixed
at zero). Second, we take into account a varying level of
confidence in the predictor by weighting the residuals: each
pixel receives a weight factor w;; which depends on the lo-
cal variance of the neighbourhood of the estimated pixel
(in [8] the weights are chosen by w; = 1/(5 + 07;), where
U?j is the local variance weighted by the same filter used by
the predictor). Then the mean residual is a weighted sum:
T = [Z;V:l wijrij]/[zj\;l wi;]. In [8] it is shown that
these changes reduce the variance of payload size estimates.
The accuracy of payload location using the improved WS
is shown in Tab. 2, for comparison with Tab. 1. It is ap-
parent that the variance-reducing methods from [8] make a
huge improvement to this application too. In fact, perfect

Table 2: Accuracy of payload location, when the WS
method is enhanced by a trained pixel predictor, and
weighting.

N TP FP FN
100 51439 8505 8561
200 55289 4435 4711
500 59089 936 911
1000 59959 48 41
2000 60000 0 0
5000 60000

10000 60000

classification is achieved with N > 1500, and 99% accurate
classification for N > 600. Even N = 100 yields mostly
correct classification.

The large difference between results in Tabs. 2 and 1 is be-
cause, more than simply reducing variance, the techniques
of [8] dramatically cut down outliers in the residuals. A
further technique in [8], correction for additive bias, is not
applicable to this case because the bias is only caused by
parity co-occurrence between neighbouring pixels: when the
residuals summed are from different images, it is not reason-
able to suppose that such correlations exist.

5. CONCLUSIONS

The aim of this paper has been to identify the WS residu-
als, and to demonstrate that they can be used to locate LSB
replacement payload if enough stego images place it in the
same pixels. With the WS method presented in the form in
Sect. 2, the payload location method is almost absurdly sim-
ple yet, as long as the steganalyst has a few hundred images,
the payload can be located almost precisely. We have also
demonstrated that enhancements to the WS payload size
estimator also improve accuracy of the location estimator.
Knowledge of the payload location might help the investi-
gator to apply specialised detectors (e.g. for sequentially-
placed payload [8]) or to determine the exact embedding
software, with the eventual aim of extracting the payload
itself.

It is not completely implausible to imagine that such ev-
idence might be available to a forensic investigator, as any
steganographer sufficiently ignorant to use LSB replacement
could make further mistakes by placing payload nonran-
domly or reusing an embedding key. It has long been known
that re-using secret keys can compromise the security of
cryptosystems, and it is also known that digital watermarks
can be estimated and removed if the same watermark is used
in multiple objects. The primary contribution of this work
is to demonstrate that something similar is true in stegano-
graphy: even when the payloads are different, their locations
must not be kept constant.

As well as needing a large number of stego images, this
technique is also limited by dependence on LSB replacement
embedding. However, it may be possible to extend the tech-
nique to other spatial-domain steganography (perhaps LSB
matching): although we could not expect to see residuals
with higher mean at pixels where alternative embedding was
used, we might observe higher variance. However, a detector
based on this property is likely to be weak.

More generally, we could look for correlations between
residuals in different stego images. Even if the location of the
payload is not identical, this could tell us if there are some
similarities between payload locations in different images.
Searching for correlations between large numbers of vectors
of huge dimensionality would be a challenge with a data
mining perspective.
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